
MEETING 15 - RELATIONS

In this lecture we will study binary relations in general but mostly equivalence relations and partial order
relations.

Binary relations

We will start with a defintion of what a binary relation actually is:

Definition: Let A and B be sets. A subset R of the cartesian product A × B is called a binary relation

from A to B. If two elements x ∈ A and y ∈ B also have (x, y) ∈ R we say that x and y are related and we
write this xRy.

As we write this, we are introducting relations on just about anything we can form sets of. Since we can
form sets of anything, we are, in effect, introducting a way of describing relations between anything. This level
of abstraction can be confusing, so let us look at a few concrete examples.

Example: Let A be the set of 4 human beings, say {Charles, Linda,Muhammad, Sahar} and let B be
the set of professions {Carpenter,Doctor,Engineer, T eacher}. We can now define a relation from A to B
by saying that x (one of the humans in A) is related to y (one of the professions in B) if and only if x has
the profession B. We could then write ”Charles is a carpenter” as CharlesRCarpenter. This would then
set-theoretically mean that (Charles, Carpenter) ∈ R. It is also possible for a person to have two professions,
if Sahar is both a doctor and a teacher we write SaharRDoctor ∧ SaharRTeacher, which can also be written
(Sahar,Doctor) ∈ R ∧ (Sahar, Teacher) ∈ R.

Of course this is exactly the basis for a relational database management system (RDBMS) which is such a
successful computer technical application of a concept in discrete mathematics. Let us look at a more mathe-
matical example.

Example: Let us look at a numerical example. Let both A and B be the set of real numbers. Say that
xRy if and only if x2 + y2 = 1. This defines a subset of the plane which we recognize as a circle of radius 1.
And two real values x and y are related if and only if the corrsponding point (x, y) lies on the circle, that is
(x, y) ∈ R if we denote the circle with R. For example the points (1, 0), (0, 1), (−1, 0), (0,−1) are all on the
circle, therefore we have 0R1, 1R0, 0R− 1, and −1R0. Since none of the points (1, 1) and (−1,−1) ar eon the
circle, we do not have 1R1 or −1R− 1 though.

Binary relations have certain properties that makes them behave in special ways. In particular they are
very interesting when they relate elements of the same set. In the two examples above, the first example did
not relate elements of the sameset. The set of the four humans are not the set of professions (A was not B),
whereas the second example was an example of a relation that related elements from the same set, that is the
set A was the set B. We say that such a relation is defined on a set A. We formulate the most important
properties in a definition:

Definition: Let R be a relation on a set A. Then:

(a) R is called reflexive ⇔ ∀x ∈ A : xRx, this means that each element in A is related to itself.
(b) R is called symmetric ⇔ ∀x, y ∈ A : xRy ↔ yRx, this means that we always have xRy and yRx at the

same time, there can never be xRy unless we also have yRx.
(c) R is called antisymmetric ⇔ ∀x, y ∈ A : xRy ∧ yRx → x = y. We will describe the meaning of this

later on.
(d) R is called transitive ⇔ ∀x, y, x ∈ A : xRy ∧ yRz → xRz, this means that if x is related to y and y in

turn is related to z, then x is also related to z. The relation transcends y, or ”carries over”. We will
see better what this means later on.

We will now study various examples of all these properties.

Example: Let the relation R on the integers be given by xRy ⇔ ∃k ∈ Z : x− y = 7 · k. In words we can
say like this: the two integers x and y are related if they differ by a multiple of 7. (We express that multiple

1



2 MEETING 15 - RELATIONS

as 7 · k, where k is an integer.) This relation is reflexive. To see this we need to show that every integer x is
related to itself. Is it a fact that there is an integer k such that x− x = 7 · k? Sure! We can just pick k = 0.
That concludes the proof that every x is related to itself because this argument does not depend on which x
we are considering. Hence R is reflexive. We proceed to see that the relation is also symmetric. To see this
we must show that xRy ⇔ yRx. Pick two arbitrary x and y which have xRy. Can we somehow also see that
yRx? Well, if we study xRy in detail we see that it is the same thing as x− y = 7 · k for some k ∈ Z. But this
can also be written y−x = 7 · (−k) and since −k is also an integer, we see indeed that also yRx. Again since x
and y were chosen arbitrary we see that xRy ⇒ yRx. Letting the variables change roles also gives the reverse
implication, that is xRy ⇐ yRx so that in conclusion we have xRy ⇔ yRx. Again since the variables were
arbitrarily chosen, the proof is complete. We now show transitivity and choose x, y, z arbitrarily and assume
that xRy and yRz. This means that there are integers k and k′ such that x− y = 7 · k and y − z = 7 · k′. But
then we can write x − z = x − y + y − z = 7 · k + 7 · k′ = 7 · (k + k′) and since both k and k′ are integers,
we conclude that x and z also differ by a multiple of 7, that is xRz and we have shown transitivity since the
variables were arbitrarily chosen. The relation we are studying is not antisymmetric. To show this we must
find some numbers that fail to meet the requirement for antisymmetry. Can we find two numbers x and y such
that xRy and yRx but x 6= y? After some pondering, we find that yes, any two distinct numbers that differ
by a multiple of 7 will do, for example 0R7 and 7R0 but 0 6= 7.

Can you recognize which relation this is? Well, it is just the congruence relation modulo 7.

The second relation described above (with the circle) is not reflexive, but it is symmetric. The proofs of
these facts are left as exercises.

Example: We will now introduce a very important relation. Let x and y be integers and say that xRy ⇔
∃k ∈ Z : y = kx. That is x is related to y if y is a multiple of x. We sometimes say that x divides y or that y
is divisible by x. We then write this relation like this

x|y.

This relation is reflexive since each integer x divides itself, because x = 1 · x so that x = k · x holds for k = 1.
Similarly the relation is transitive, and we see this by again assuming x|y and y|z and showing that we also
have x|z. Then, according to the definition, there exists integers k and k′ such that y = kx and z = k′y.

Replacing y by kx in the last equation gives us z = k′kx = k̃x for k̃ = k′k, and since this is also an integer we
have shown that x|z. Since x, y, z were arbitrary we have shown the transitivity. This relation is however not
symmetric. To see this all we need to do is to find two numbers x and y such that x|y but not y|x. After some
pondering we realize that we can choose x = 2 and y = 6, then, certainly 2|6 (since 6 = 3 · 2) but we cannot
have 6|2 (since if 2 = 6 · k, the k would not be an integer). If we restrict ourselves to positive integers we shall
now see that the relation is antisymmetric and we see this by assuming x|y and y|x and showing that these
numbers must be the same. This is true since x|y and y|x means that there are integers k and k′ such that
x = ky and y = k′x. These relations show us that if one of x and y are 0, then both must be 0. We therefore
assume that both of them are nonzero. Replacing x with ky in one of the equations gives us the new equation
y = k′ky and we may cancel y (since it is not z0) yielding the equation 1 = k′k where k′ and k are integers.
The question then is, which integers work? If we multiply together any integers that are not ±1, we always
get a number which has absolute value greater than 1, this means that the equation 1 = k′k can only have the
solutions where both k′ and k have absolute value 1, that is they must both be either −1 or +1. Since the
product of them is 1, which is positive we alse see that they must either both be 1 or both be −1. If they are
both 1, then obviously x = y. If they are both −1 we have the equations x = −y and y = −x but this is im-
possible when we are restricted to positive numbers. Hence the only option is x = y and antisymmetry is shown.

Here is a problem: Is there a relation which has all four properties, reflexivity, symmetry, antisymmetry,
and transitivity?

Higher order relations: Study independently.

Equivalence relations

This deals with relations that have the three properties reflexivity, symmetry and transitivity. These re-
lations are particularly interesting and they are called equivalence relations. We lay this down formally in a
definition:
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Definition: Let R be a relation on a set A. If R is reflexive, symmetric, and transitive, then R is called an
equivalence relation on A.

We have seen one equivalnce relation, it wa the one above where xRy ⇔ ∃k ∈ Z : x − y = 7 · k. With our
notation on divisibility we could rewrite this a

xRy ⇔ 7|x− y,

that is 7 divides x− y. We also noted that with out earlier concept of congruences, this could be written x ≡ y
(mod 7).

We will now dissect this relation a bit. Which integers are related to 0? To find this out we study these
numbers as a set. The set of integers that are related to 0 can be denoted as

{x ∈ Z; 7|(x− 0)} = {x ∈ Z;∃k ∈ Z : x = 7 · k}

But this is merely the set consisting of all multiples of 7, that is {0,±7,±2 ·7,±3 ·7, . . .}. One usually say that
these are the numbers that give remainder 0 when we divide by 7. And, in our teminology of congruences,
this is all numbers congruent to 0 modulo 7.

We continue our dissection of this relation and as which integers are related to 1? To find this out we again,
as above, study these numbers as a set. The set of integers that are related to 1 can then be denoted as

{x ∈ Z; 7|(x− 1)} = {x ∈ Z;∃k ∈ Z : x− 1 = 7 · k} = {x ∈ Z;∃k ∈ Z : x = 7 · k + 1}

But this is merely the set consisting of all multiples of 7 with 1 added, that is {0+1,±7+1,±2·7+1,±3·7+1, . . .}.
And, similarly, we say that these are the numbers that give remainder 1 when we divide by 7. Again, in our
terminology of congruences, this is the set of all numbers congruent to 1 modulo 7.

We can continue in exactly the same way and see that all numbers that are related to 2, 3, 4, 5, and 6, are
the numbers that give the remainders 2, 3, 4, 5, and 6 when we divide by 7. All these sets can be written

{0 + 2,±7 + 2,±2 · 7 + 2, . . .}, {0 + 3,±7 + 3,±2 · 7 + 3, . . .}, {0 + 4,±7 + 4,±2 · 7 + 4, . . .},

{0 + 5,±7 + 5,±2 · 7 + 5, . . .}, {0 + 6,±7 + 6,±2 · 7 + 6, . . .}.

Now the interesting question is, what happens when we study all the numbers that are related to 7. Which
are those? Well, 7 itself is a multiple of 7 so it is in {0,±7,±2 · 7,±3 · 7, . . .}, and if a number x is related to
7, it is also related to 0, by transitivity, but then it must be in {0,±7,±2 · 7,±3 · 7, . . .} because this is the set
of all numbers related to 0. We come back to 0, which is where we started. Similarly we find that all numbers
related to 8 in fact again is the set {0 + 1,±7 + 1,±2 · 7 + 1,±3 · 7 + 1, . . .} and so on. I turns out that there
are no other sets of this type, the sets

{0,±7,±2 · 7,±3 · 7, . . .}, {0 + 1,±7 + 1,±2 · 7 + 1,±3 · 7 + 1, . . .}

{0 + 2,±7 + 2,±2 · 7 + 2, . . .}, {0 + 3,±7 + 3,±2 · 7 + 3, . . .}, {0 + 4,±7 + 4,±2 · 7 + 4, . . .},

{0 + 5,±7 + 5,±2 · 7 + 5, . . .}, {0 + 6,±7 + 6,±2 · 7 + 6, . . .}.

together contain all integers. We say that they form a partition of the set of integers, that is Z. If two numbers
x and y are related, they must therefore lie in the same set. This is a special type of equivalence on integers,
and it has it’s own name and we have encountered the name before but we restate the definition here in the
context of binary relations:

If the two numbers x and y lie in the same set (that is, they are related) we say that x is congruent to y
modulo 7.

Above we have worked with 7 and then the integers got partitioned into 7 sets. Of course this is no
coincidence, since we base all calculations on 7. If we would have chosen 2 then we would have had two sets
like this and the integers would then be partitioned into the sets

{0,±2,±2 · 2,±2 · 3, . . .}, {0 + 1,±2 + 1,±2 · 2 + 1,±2 · 3 + 1, . . .}

which are simply the even and odd numbers, and together they contain all integers. (When then talk about
congruence modulo 2.)

This is a general property of an equivalence relation: it partitions the set it is defined on into disjoint sets
and these sets together contain all the elements of the set. An equivalence relation thus introduces a structure
on the set it is defined on. Structures of this type often have extremely good uses, the congruence relation
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for example led to the development of the RSA cryptosystem. Because this property of equivalence relations
is so useful we will study it separately. We will do this by first introducing some terminology and some notation.

Notation: For an equivalence relation we often express the fact that two elements a and b are related by
writing a ∼ b. We very often refer to the relation itself by writing this symbol, and then we say ”the relation
∼”. The three characteristics of and equivalence relation can then be expressed that for every a, b, c in the
underlying set A we must have the three conditions

reflexivity: a ∼ a
symmetry: a ∼ b ⇔ b ∼ a
transitivity: a ∼ b ∧ b ∼ c ⇒ a ∼ c

We continue by introducing some terminology:

Definition: Let ∼ be an equivalence relation defined on a set A and let a be any element in A. If an element
b ∈ A is related to a we (a ∼ b) we say that a and b are equivalent. The set of all elements that are equivalent
to a is called the equivalence class of a and it is written ā. The set of all equivalence classes is denoted A/ ∼.
(This is a set of sets!)

Example: When we study the congruence relation modulo 7 above, the equivalence classes of the numbers
0, 1, 2, 3, 4, 5, 6 are the sets

0̄ = {0,±7,±2 · 7,±3 · 7, . . .}, 1̄ = {0 + 1,±7 + 1,±2 · 7 + 1,±3 · 7 + 1, . . .}

2̄ = {0 + 2,±7 + 2,±2 · 7 + 2, . . .}, 3̄ = {0 + 3,±7 + 3,±2 · 7 + 3, . . .}, 4̄ = {0 + 4,±7 + 4,±2 · 7 + 4, . . .},

5̄ = {0 + 5,±7 + 5,±2 · 7 + 5, . . .}, 6̄ = {0 + 6,±7 + 6,±2 · 7 + 6, . . .}.

and we have seen that these classes partition Z. We will now prove that this is the case for any equivalence
relation. We will formulate this as a theorem, but first we will state a very important property of an equivalence
class:

Proposition: Let ∼ denote an equivalence relation on a set A. Let a ∈ A. Then for any x ∈ A we have
x ∼ a ⇔ x̄ = ā.

Proof: Suppose x̄ = ā. Since x ∼ x we have x ∈ x̄, but since x̄ = ā this also means that x ∈ ā. But this
means exactly that x ∼ a which is what we wanted to prove. Supposed conversely that x ∼ a. We now need
to prove that x̄ = ā. Whenever we want that two sets S1, S2 are the same we often prove the two inclusions
S1 ⊆ S2 and S1 ⊇ S2. We will do this with the sets x̄ and ā, that is we will show that both ā ⊆ x̄ and
x̄ ⊆ ā. Suppose that y ∈ x̄. Then y ∼ x and x ∼ a so y ∼ a by transitivity. Therefore y ∈ ā so that x̄ ⊆ ā.
Conversely suppose that y ∈ ā. Then y ∼ a. Since we also have a ∼ x we have both y ∼ a and a ∼ x. Again,
by transitivity we get y ∼ x and hence y ∈ x̄ so that ā ⊆ x̄. In conclusion we have shown ā = x̄.

This proposition has a very important consequence for equivalence classes: We can choose any element of an

equivalence class and it will determine the whole equivalence class. We can therefore speak of a representative

of an equivalence class, and a representative of an equivalence class is simply any member of the equivalence

class. In the example above, as soon as we choose a number (say 15) this number has a certain remainder
(1) when we divide by 7, and all the other numbers in the same equivalence class as this number (15) also
have the same remainder when we divide them by 7. The same is of course true for any number. As an exer-
cise formulate this for another divisor, what happen when we divide by 4? What happens when we divide by 10?

Now we are ready to state and prove the theorem mentioned above:

Theorem: The equivalence classes associated with an equivalence relation ∼ on a set A gives rise to a
partition of A.

Proof: Every element a ∈ A is in an equivalence class, namely ā itself so we can be sure of that

A ⊆ ∪C∈A/∼C.

Here we denote the family of all equivalence classes of the relation by A/ ∼. Conversely since all elements only
come from A we must also have

A ⊇ ∪C∈A/∼C
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and these two inclusions give

A = ∪C∈A/∼C.

This means that if we take together all the equivalence classes in a union, then they form the set A. To show
that it is a partition of A we must show that two equivalence classes are either disjoint or they are equal.
Assume that two equivalence classes C1 and C2 have one element a in common. Then we have x ∼ a for all
x ∈ C1 and y ∼ a for all y ∈ C2. But this also means that a is a representative for both the equivalence class
C1 and C2, but then they must be the same class. This means that all the different equivalence classes must
either have all elements in common, that is they are the same class, or they must be disjoint. As their union
is A this shows that they form a partition of A and the the proof is complete.

The notation for the set of equivalence classes above is used in many mathematical texts. As told above,
the set of equivalence classes is denoted A/ ∼ and this is a set of sets. It is called the quotient set of A mod ∼.

Example: Returning to the example above with congruences modulo 7, we saw earlier that

0̄ = {0,±7,±2 · 7,±3 · 7, . . .}, 1̄ = {0 + 1,±7 + 1,±2 · 7 + 1,±3 · 7 + 1, . . .}

2̄ = {0 + 2,±7 + 2,±2 · 7 + 2, . . .}, 3̄ = {0 + 3,±7 + 3,±2 · 7 + 3, . . .}, 4̄ = {0 + 4,±7 + 4,±2 · 7 + 4, . . .},

5̄ = {0 + 5,±7 + 5,±2 · 7 + 5, . . .}, 6̄ = {0 + 6,±7 + 6,±2 · 7 + 6, . . .}.

To further illustrate the theorem about partitions of the set A, in our example here we have A = Z and if we
think about it, it is really a fact that

A = 0̄ ∪ 1̄ ∪ 2̄ ∪ 3̄ ∪ 4̄ ∪ 5̄ ∪ 6̄

and since none of these sets have any elements in common, they are clearly a partition of Z.

Partial orders

Equivalence relations is one very important form of binary relation. The other sort of very important binary
relation is the partial order. A partial order has two requirements in common with the equivalence relations:
reflexivity and transitivity, but instead of symmetry, a partial order is antisymmetric. We make a formal
definition:

Definition: A partial order on a set A is a binary relation that is reflexive, antisymmetric, and transitive.
A partially ordered set, poset for short, is a pair (A,�) where A is a set and � is a partial order defined on
A. Two elements a, b ∈ A are said to be comparable if either a � b or b � a. If every two elements of A are
comparable, then we call (A,�) a totally ordered set and � is then called a total order.

We will study some examples of partial and total orders.

Example: Of course an ordinary set of numbers together with the ususal less-than-or-equal relation is a
partially ordered set. Indeed is is even a totally ordered set since for every two numbers a, b we have either
a ≤ b or b ≤ b (or both if a = b).

Example: All positive integers together with the divides-relation, |, is a partially ordered set. Let us verify
the requirements for this to be a partially ordered set:

Reflexivity: As a positive integer x always divides itself (we have x|x since x = 1 · x), reflexivity is
fulfilled for the relation | on the set of positive integers.
Antisymmetry: We saw above that | was antisymmetric, that is we saw before that x|y and y|x leads
to x = y when we are restricted to positive integers.
Transitivity: Likewise we also saw before that transitivity was satisfied.

These three properties makes | into a partial order on the set of positive integers. What is the meaning of
the word partial? The fact is that under the relation | on the set of positive integers, we cannot compare all
numbers with each other. This means that | is not a total order on the set of all positive integers. For instance
we do not have 5|7 or 7|5 this means that the numbers 5 and 7 are not comparable.

Draw some Hasse diagrams of partially ordered sets.

A partial order compares elements in a set. This means that we can form the notion of upper and lower
bounds of sets. We make the following definition:
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Definition: Let (A,�) be a partially ordered set. An element a ∈ A is called maximum if and only if b � a
for every b ∈ A. Conversely, an element a ∈ A is called minimum if and only if a � b for every b ∈ A. An
element a ∈ A is called maximal if and only if

b ∈ A ∧ a � b ⇒ b = a

and minimal if
b ∈ A ∧ b � a ⇒ b = a.

Thus a maximum element is ”bigger” (in the sense of �) than all other elements in the set, while a (mere)
maximal element is one that is at least not less than any other element.

Draw some Hasse diagrams of partially ordered sets with maximal elements and maximum.

We skip the parts about greatest lower bounds/smallest upper bounds and lattices


