
Java I/O.
Overview of New I/O (NIO)

Leif Lindbäck, Vladimir Vlassov

KTH/ICT/SCS

HT 2015

ID2212 Network Programming with Java
Lecture 5

Outline

• Java I/O
– I/O using Streams
– Types of streams
– Standard streams
– Accessing files
– File channels

• Overview of New I/O
– Buffers
– Channels
– Selectors

Lecture 5: Java I/O. Overview of New I/O 2

Lecture 5: Java I/O. Overview of New I/O 3

I/O in Java
• Package java.io
• I/O sources and destinations:

– standard input, standard output, standard err
– Files, streams of TCP socket and URL connections

• Input and output streams
– Java provides different types of stream APIs, e.g. byte streams,

character streams, object streams, etc.
– Different stream reading and writing primitives, e.g. read/write, print
– Basic streams: byte streams
– Other streams are built on top of byte streams

Lecture 5: Java I/O. Overview of New I/O 4

I/O in Java (cont’d)

• For example:
 try {
 BufferedReader r = new BufferedReader (
 new InputStreamReader

(socket.getInputStream()));
 String str;
 if ((str = r.readLine()) == null){
 s.close(); return;
 } else {
 … process the line read
 }
 } catch (IOException e) {
 System.out.println(“OBS, “ + e.toString());}
 }

Lecture 5: Java I/O. Overview of New I/O 5

Streams

• Streams pass data from/to programs.
– Input can be performed by different types of input

streams, e.g. byte input stream, character input stream
(reader)

– Output can be performed by different types of output
streams, e.g. byte output stream, character output
stream (writer)

– If a stream handles characters on the program side,
then it is called a reader or a writer.

Lecture 5: Java I/O. Overview of New I/O 6

Streams

A source can be: A destination can be:

File
Socket input stream
Reader
InputStream
PipedOutputStream
array

File
Socket output stream
Writer
OutputStream
PipedInputStream
array

String
array
Object
char
int
short
...

Program

a stream a stream

Lecture 5: Java I/O. Overview of New I/O 7

DataInputStream Example
try {
 DataInputStream indata =
 new DataInputStream (new FileInputStream

(“f1.txt”));
 int no;
 while (true) {
 no = indata.readInt();
 System.out.println(“No ” + no);
 }
} catch (EOFException reachedEndOfFile) {
 try {
 indata.close();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
} catch (FileNotFoundException e) {
 System.err.println (“file f1.txt is mising”);
} catch (IOException e) {

e.printStackTrace();
}

Lecture 5: Java I/O. Overview of New I/O 8

Some Types of Streams

ObjectOutputStream

ObjectInputStream

Objects Serialized

DataOutputStream

DataInputStream

Typed
data

Binary
representation

Lecture 5: Java I/O. Overview of New I/O 9

Types of Streams (cont’d)

FileWriter

FileReader
Text file
(default encoding)

OutputStreamWriter
Bytes

InputStreamReader

characters

FileOutputStream

FileInputStream

ByteArrayOutputStream

ByteArrayInputStream

bytes

Byte array

File of bytes

Standard Streams

• Static fields in the java.lang.System
class:
– public static final PrintStream err;

• The “standard” error output stream;

– public static final PrintStream out;
• The “standard” output stream;

– public static final InputStream in;
• The “standard” input stream.

– All the streams are already open and ready to
supply/accept data

System.out.println(“your output “ + result);

Lecture 5: Java I/O. Overview of New I/O 10

Lecture 5: Java I/O. Overview of New I/O 11

Files (java.io package)
• File class supports platform-independent usage of file- and directory names.

– Instances of this class represent the name of a file or a directory on the host file
system.

• Some constructors:
File(String path)
File(String dir, String fileName)
File(File dir, String fileName)

• Some interesting methods of File :
public boolean exists();
public boolean isDirectory();
public boolean isFile();
public long length();
public String[] list();
public String[] list(FileNameFilter f);
public boolean mkdir();
public boolean renameTo(File dest);
public boolean createNewFile()

File Streams

• Used to access files (for reading and writing) as a
continues stream of bytes or characters

• FileInputStream and FileOutputStream
– for reading and writing bytes to the file

• FileReader and FileWriter
– for reading and writing character files

• Provide read and write methods
• Can be created by constructors given a file name or an

object of File
FileInputStream inf = new

FileInputStream(filename);

Lecture 5: Java I/O. Overview of New I/O 12

Lecture 5: Java I/O. Overview of New I/O 13

File Descriptor

• FileDescriptor class is a platform-independent
representation of a handle of an open file or an open
socket.

• Objects of this class
– are returned by getFD() of FileInputStream ,
FileOutputStream , RandomAcessFile , ...

– passed to (used by) FileInputStream ,
FileOutputStream , FileReader , FileWriter , ...

Lecture 5: Java I/O. Overview of New I/O 14

Random Access File

• RandomAccessFile class – provides an API similar
to the file API in C
– Instances of this class represent the file opened in a given mode,

e.g.
• “r” – for reading only
• “rw”– for reading and writing

– Methods of this class provide means for reading from file, writing
into file and changing current file access position.

– All methods (including constructors) of this class may throw
IOException.

– Contains object of the FileDescriptor class as a handle of
the file.

An Overview of New I/O

Use of the new I/O API when performing
course programming assignments is

optional

New I/0 (java.nio.*...)

• New I/O APIs introduced in JDK v 1.4

• NIO APIs sumpliments java.io
– provides a new I/O model based on channels, buffers

and selectors

– enables non-blocking scalable I/O

– allows improving performance of distributed
applications (mostly for the server side)

16Lecture 5: Java I/O. Overview of New I/O

Features in NIO APIs

• Buffers for data of primitive types, e.g. char, int
• Channels, a new primitive I/O abstraction
• A multiplexed, non-blocking I/O facility

(selectors, selection keys, selectable channels) for
writing scalable servers

• Character-set encoders and decoders
• A pattern-matching facility based on Perl-style

regular expressions (java.util)
• A file interface that supports locks and memory

mapping

17Lecture 5: Java I/O. Overview of New I/O

NIO Packages

java.nio Buffers, which are used throughout the NIO APIs.

java.nio.channels Channels and selectors.

java.nio.charset Character encodings.

java.nio.channels.
spi

Service-provider classes for channels.

java.nio.charset.s
pi

Service-provider classes for charsets.

java.util.regex Classes for matching character sequences against patterns
specified by regular expressions.

18Lecture 5: Java I/O. Overview of New I/O

NIO Programming Abstractions

• Buffers
– Containers for data
– Can be filled, drained, flipped, rewind, etc.
– Can be written/read to/from a channel

• Channels of various types
– Represent connections to entities capable of performing I/O

operations, e.g. pipes, files and sockets
– Can be selected when ready to perform I/O operation

• Selectors and selection keys
– together with selectable channels define a multiplexed,

non-blocking I/O facility. Used to select channels ready for I/O
• Charsets and their associated decoders and encoders

– translate between bytes and Unicode characters

19Lecture 5: Java I/O. Overview of New I/O

Buffers
• Buffer is a container for a fixed amount of data of a specific primitive

type; Used by channels
– content (data)
– capacity

• size of buffer; set when the buffer is created; cannot be changed
– limit

• the index of the first element that should not be read or written; limit ≤ capacity
– position

• the index of the next element to be read or written
– mark

• the index to which its position will be reset when the reset method is invoked
– Buffer invariant: 0 ≤ mark ≤ position ≤ limit ≤ capacity

20Lecture 5: Java I/O. Overview of New I/O

Buffer Classes

Buffer Superclass for other buffers;
clear, flip, rewind, mark/reset

ByteBuffer provides views as other buffers, e.g. IntBuffer
get/put, compact, views; allocate, wrap

MappedByteBuffer
Subclass of the ByteBuffer
A byte buffer mapped to a file

CharBuffer
DoubleBuffer
FloatBuffer
IntBuffer
LongBuffer

absolute (index-based) and relative (position-based) get/put,
compact, allocate, wrap

21Lecture 5: Java I/O. Overview of New I/O

Some Buffer’s methods
static
allocateDirect
()

Allocates a new direct byte buffer. With direct ByteBuffer,
JVM avoid intermediate buffering when performing native I/O
operations directly upon the direct buffer.

static
allocate()

allocate a buffer of a given capacity

clear() clear the buffer, i.e. prepare the buffer for writing data into it by
channel-reads or relative puts (limit = capacity; position = 0)

flip() prepare the buffer for reading data from it by channel-writes or
relative gets (limit = position; position = 0)

rewind() prepare the buffer for re-reading data from it (position = 0)

mark() set this buffer's mark at its position (mark = position)

reset() reset this buffer's position to the previously-marked position
(position = mark)

22Lecture 5: Java I/O. Overview of New I/O

Some Buffer’s methods (cont’d)
static
wrap()

wrap a given array into a buffer; returns the buffer.

get/put absolute (index-based) and relative (position-based) get/put data
from/into the buffer; position = position –/+ 1;

asIntBuffer(
)
asCharBuffer
()…

create a view of this byte buffer as a other primitive type buffer, e.g.
as an IntBuffer, as a CharBuffer, etc.

slice() create a new buffer that shares part of this buffer's content starting
at this buffer's position.

duplicate() creates a new byte buffer that shares the this buffer's content.

compact() copy data between position and limit to the beginning of the buffer;
position is set to the number of data items copied.

boolean
hasRemaining
()

check whether there are any elements between the current position
and the limit.

23Lecture 5: Java I/O. Overview of New I/O

Creating Buffers

• Allocation
– Create an empty buffer on top of a backing Java array

Bytebuffer buf1 = ByteBuffer.allocate(100);
IntBuffer buf2 = intBuffer.allocate(100);

• Direct allocation (only ByteBuffer)
– Direct buffers (using DMA)

ByteBuffer buf3 =
ByteBuffer.allocateDirect(100);

• Wrapping
– Wrap a buffer around existing data array

byte[] data = “Some data”.getBytes(“UTF-8”);
ByteBuffer buf4 = ByteBuffer.wrap(data);
char[] text = “Some text”.toCharArray();
CharBuffer buf5 = CharBuffer.wrap(text);

24Lecture 5: Java I/O. Overview of New I/O

Filling/Draining Buffers
• Filling using wrap or put

String s = ”Some String”;
CharBuffer buf1 = CharBuffer.wrap(s);
CharBuffer buf2 = CharBuffer.allocate(s.length());
// put reversed s in to buf2
for (int i = s.length() - 1; i >= 0; i--) {

buf2.put(s.charAt(i)); // relative put
} // position in buf2 should be 11 after the loop

• Draining using get

buf2.flip(); // limit = position; position = 0
String r = ””;
while (buf2.hasRemaining())

r += buf2.get();
}

25Lecture 5: Java I/O. Overview of New I/O

Reading/Writing Buffers from/to
Channels

• Reading from a channel to a buffer

while (buf.hasRemaining() &&
channel.read(buf) != -1) {

// process the buffer’s content

}

• Writing to a channel from a buffer

while (buf.hasRemaining() && channel.write(buf) !=
-1) ;

26Lecture 5: Java I/O. Overview of New I/O

Channels

• Channels represent connections to various I/O
sources, such as pipes, sockets, files, datagrams;
– operate with buffers and I/O sources: move (read/write)

data blocks into / out of buffers from / to the I/O
sources;

– can be open or closed;
– can be blocking/non-blocking, selectable (socket, pipe),

interruptible (file);
– enable non-blocking I/O operations

27Lecture 5: Java I/O. Overview of New I/O

Channels versus Streams
Channels (new I/O) Streams (traditional I/O)

Write/read data to/from buffers;
similar to buffered streams;
buffers can be directly allocated in
memory – efficient implementation

Write data onto output streams and
reading data from input streams

Block-based: a streams of blocks
from/to buffers

Byte-based: a continues stream of
bytes

Bi-directional: tend to support both
reading and writing on the same
object (source, buffer)

Uni-directional: input streams and
output streams

28Lecture 5: Java I/O. Overview of New I/O

Some Channel Classes

• For TCP connections
– SocketChannel
– ServerSocketChannel

• For UDP communication
– DatagramChannel

• For file access
– FileChannel

29Lecture 5: Java I/O. Overview of New I/O

FileChannel
• java.nio.channels.FileChannel

– A channel for reading, writing, mapping, and manipulating a
file.

– Similar to RandomAccessFile
• Can be mapped to a buffer in the main memory

– MappedByteBuffer()
• Has a current position within its file which can be both

queried and modified.
• The file itself contains a variable-length sequence of bytes

that can be read and written and whose current size can be
queried.

Lecture 5: Java I/O. Overview of New I/O 30

Some methods of FileChannel

read (dst, pos)
write (src,
pos)

Read or write at an absolute position in a file without
affecting the channel's position.

MappedByteBuffe
r()

Map a region of a file directly into memory.

force() Force out file updates to the underlying storage device,
in order to ensure that data are not lost in the event of a
system crash.

transferTo()
transferFrom()

Bytes can be transferred from a file to some other
channel, and vice versa, in a way that can be optimized
by many OSs into a very fast transfer directly to or from
the file system cache.

31Lecture 5: Java I/O. Overview of New I/O

FileChannel Example
import java.io.*;
import java.nio.*;
import java.nio.channels.*;
public class FileChannelTest {

public static void main(String[] args) {
String filename = (args.length > 0)? args[0] :

"C:\\Documents and Settings\\vlad-adm\\My Documents\\test.txt";
try {

FileInputStream inf = new FileInputStream(filename);
FileChannel channel = inf.getChannel();
MappedByteBuffer buffer =channel.map(FileChannel.MapMode.READ_ONLY,

0, channel.size());
WritableByteChannel out = Channels.newChannel(System.out);
while (buffer.hasRemaining() && out.write(buffer) != -1) {

System.out.println("Writing the file " + filename);
}
channel.close();

} catch (IOException e) {
e.printStackTrace();
System.exit(0);

}
}

}
32Lecture 5: Java I/O. Overview of New I/O

import java.io.*;

import java.nio.channels.*;

public class FileTrasferTest {

public static void main(String[] args) {

String srcname = (args.length > 0)? args[0] :
"C:\\Documents and Settings\\vlad-adm\\My Documents\\test.txt";

try {

FileInputStream inf = new FileInputStream(srcname);

FileChannel src = inf.getChannel();

WritableByteChannel dst = Channels.newChannel(System.out);

src.transferTo(0, src.size(), dst);

} catch (IOException e) {

e.printStackTrace();

System.exit(0);

}

}

}

Using transfer method

33Lecture 5: Java I/O. Overview of New I/O

SocketChannel
• A selectable channel for stream-oriented connecting sockets.

– Reads from and writes to a TCP socket.
– Uses ByteBuffer for reading and writing
– Does not have public constructors

• Each SocketChannel is associated with a peer Socket
object
– Binding, closing, and manipulation of socket options must be done

through the associated Socket object

SocketChannel channel = SocketChannel.open();
channel.configureBlocking(false);
channel.connect(new InetSocketAddress(host,

port));

34Lecture 5: Java I/O. Overview of New I/O

import java.io.IOException;
import java.nio.channels.*;
import java.net.*;
public class ChannelTest {

public static void main(String[] args) {
String host = (args.length > 0)? args[0] : "www.sun.com";
int port = (args.length > 1) ? Integer.parseInt(args[1]) : 80;
try {

SocketChannel channel = SocketChannel.open();
channel.configureBlocking(false);
channel.connect(new InetSocketAddress(host, port));
//can do something here while connecting
while (!channel.finishConnect()) {

System.out.println("Connecting to " + host + " on port " + port);
// can do something here while connecting

}
System.out.println("Connected to " + host + " on port " + port);
// communication with the server via channel
channel.close();

} catch (IOException e) {
e.printStackTrace();
System.exit(0);

}
}

} 35Lecture 5: Java I/O. Overview of New I/O

SocketChannel Example 1

import java.io.IOException;
import java.nio.*;
import java.nio.channels.*;
import java.net.*;
public class HTTPClient {

public static final String GET_REQUEST = "GET /index.html HTTP/1.0\n\n";
public static void main(String[] args) {

String host = (args.length > 0) ? args[0] : "www.sun.com";
int port = (args.length > 1) ? Integer.parseInt(args[1]) : 80;
WritableByteChannel out = Channels.newChannel(System.out);
try {

SocketChannel channel = SocketChannel.open(new InetSocketAddress(
host, port));

ByteBuffer buf = ByteBuffer.wrap(GET_REQUEST.getBytes());
channel.write(buf);
buf = ByteBuffer.allocate(1024);
while (buf.hasRemaining() && channel.read(buf) != -1) {

buf.flip();
out.write(buf);
buf.clear();

}

} catch (IOException e) {
e.printStackTrace();
System.exit(0);

}
}

}

Example 2

36Lecture 5: Java I/O. Overview of New I/O

ServerSocketChannel
• A selectable channel for stream-oriented listening sockets.

– Abstraction for listening network sockets.
– Listens a port for TCP connections.

– Does not have public constructors

• Each ServerSocketChannel is associated with a peer ServerSocket object
– Binding and the manipulation of socket options must be done through the associated

ServerSocket object;

• accept on a ready ServerSocketChannel returns
SocketChannel

ServerSocketChannel serverChannel = ServerSocketChannel.open();
ServerSocket socket = serverChannel.socket();
socket.bind(new InetSocketAddress(port));
serverChannel.configureBlocking(false);
selector = Selector.open();
serverChannel.register(selector, SelectionKey.OP_ACCEPT);

Lecture 5: Java I/O. Overview of New I/O 37

Selectors

• Selector is an object used to select a channel ready
to communicate (to perform an operation)
– Used to operate with several non-blocking channels

– Allows readiness selection
• Ability to choose a selectable channel that is ready for some of

network operation, e.g. accept, write, read, connect

38Lecture 5: Java I/O. Overview of New I/O

Selectable Channels

• Selectable channels include:
– DatagramChannel
– Pipe.SinkChannel
– Pipe.SourceChannel
– ServerSocketChannel
– SocketChannel

• Channels are registered with a selector for specific
operations, e.g. accept, read, write

• Registration is represented by a selection key

39Lecture 5: Java I/O. Overview of New I/O

Selection Keys

• A selector operates with set of selection keys

• Selection key is a token representing the
registration of a channel with a selector

• The selector maintains three sets of keys
– Key set contains the keys with registered channels;

– Selected-key set contains the keys with channels ready
for at least one of the operations;

– Cancelled-key set contains cancelled keys whose
channels have not yet been deregistered.

– The last two sets are sub-sets of the Key set.

40Lecture 5: Java I/O. Overview of New I/O

Use of Selectors

• Create a selector
Selector selector = Selector.open();

• Configure a channel to be non-blocking
channel.configureBlocking(false);

• Register a channel with the selector for specified operations
(accept, connect, read, write)
ServerSocketChannel serverChannel =
ServerSocketChannel.open();

ServerSocket serverSocket =
serverChannel.socket();

serverSocket.bind(new InetSocketAddress(port));
serverChannel.configureBlocking(false);
serverChannel.register(selector,
SelectionKey.OP_ACCEPT);

– Register as many channels as you have/need

41Lecture 5: Java I/O. Overview of New I/O

Use of Selectors (cont’d)

• select() on the selector to perform the
selection of keys with ready channels
– Selects a set of keys whose channels are ready for I/O.

• selectNow() – non-blocking select: returns
zero if not channels are ready

• selectedKeys() on the selector to get the
selected-key set

• Iterate over the selected-key set and handle the
channels ready for different I/O operations, e.g.
read, write, accept

42Lecture 5: Java I/O. Overview of New I/O

SelectionKey
• Upon registration, each of the registered channels is assigned a

selection key.
SelectionKey clientKey = clientChannel.register(selector,

SelectionKey.OP_READ | SelectionKey.OP_WRITE);

• Selection key allows attaching of a single arbitrary object to it
• Associate application data (e.g. buffer, state) with the key (channel)

ByteBuffer buffer = ByteBuffer.allocate(1024);
clientKey.attach(buffer);

• Get the channel and attachment from the key
SocketChannel clientChannel = (SocketChannel)

key.channel();
ByteBuffer buffer = (ByteBuffer) key.attachment();

Lecture 5: Java I/O. Overview of New I/O 43

Lecture 5: Java I/O. Overview of New I/O 44

while (true) {
selector.select();
Iterator<SelectionKey> keys = selector.selectedKeys().iterator();
while (keys.hasNext()) {

SelectionKey key = keys.next();
keys.remove();
try {

 if (key.isAcceptable()) { // accept connection and register it
 ServerSocketChannel server = (ServerSocketChannel)key.channel();
 SocketChannel channel = server.accept();
 channel.configureBlocking(false);

channel.register(selector,
SelectionKey.OP_READ | SelectionKey.OP_WRITE,
ByteBuffer.allocate(1024));

 } else if (key.isWritable()) {// write buffer to channel
SocketChannel channel = (SocketChannel) key.channel();

 ByteBuffer buffer = key.attachment();
buffer.flip();

 channel.write(buffer);
buffer.compact();

 } else if (key.isReadable()) {// read from a channel in to a buffer
 SocketChannel channel = (SocketChannel) key.channel();

 ByteBuffer buffer = key.attachment();
 channel.read(buffer);

}
} catch . . .

	Java I/O. Overview of New I/O (NIO)
	Outline
	I/O in Java
	I/O in Java (cont’d)
	Streams
	Slide 6
	DataInputStream Example
	Some Types of Streams
	Types of Streams (cont’d)
	Standard Streams
	Files (java.io package)
	File Streams
	File Descriptor
	Random Access File
	An Overview of New I/O
	New I/0 (java.nio.*...)
	Features in NIO APIs
	NIO Packages
	NIO Programming Abstractions
	Buffers
	Buffer Classes
	Some Buffer’s methods
	Some Buffer’s methods (cont’d)
	Creating Buffers
	Filling/Draining Buffers
	Reading/Writing Buffers from/to Channels
	Channels
	Channels versus Streams
	Some Channel Classes
	FileChannel
	Some methods of FileChannel
	FileChannel Example
	Using transfer method
	SocketChannel
	SocketChannel Example 1
	Example 2
	ServerSocketChannel
	Selectors
	Selectable Channels
	Selection Keys
	Use of Selectors
	Use of Selectors (cont’d)
	SelectionKey
	PowerPoint Presentation

