[D2212 Network Programming with Java
Lecture 5

Java 1/0.
Overview of New I/O (NIO)

Leif Lindback, Vladimir Vlassov
KTH/ICT/SCS
HT 2015

Outline

e Javal/O

— /O using Streams
— Types of streams

— Standard streams

— Accessing files

— File channels

* Overview of New 1/O
— Buffers
— Channels
— Selectors

Lecture 5: Java I/0O. Overview of New [/O

I/O 1n Java

* Package java.io

* I/O sources and destinations:

— standard input, standard output, standard err

— Files, streams of TCP socket and URL connections
* Input and output streams

— Java provides different types of stream APIs, e.g. byte streams,
character streams, object streams, etc.

— Different stream reading and writing primitives, e.g. read/write, print
— Basic streams: byte streams
— Other streams are built on top of byte streams

Lecture 5: Java I/O. Overview of New /O 3

I/O 1n Java (cont’d)

* For example:

try {
BufferedReader r = new BufferedReader (

new InputStreamReader
(socket.getInputStream()));

String str;

if ((str = r.readlLine()) == null){
s.close(); return;

} else {
... process the line read

}

} catch (IOException e) {
System.out.println(“0BS, “ + e.toString());}

}

Lecture 5: Java I/O. Overview of New /O

Streams

* Streams pass data from/to programs.

— Input can be performed by different types of input
streams, €.g. byte input stream, character input stream
(reader)

— Output can be performed by different types of output
streams, €.g. byte output stream, character output
stream (writer)

— If a stream handles characters on the program side,
then 1t 1s called a reader or a writer.

Lecture 5: Java I/O. Overview of New /O

Streams

A source can be: A destination can be:

| Program |

File — aSstream — — > a stream
Socket input sfream String

Reader atray
InputStregm Object
PipedoutpdtStream €har

array int

short

Lecture 5: Java I/O. Overview of New /O

File

Socket output stream
Writer
OutputStream
PipedInputStrea
array

DatalnputStream Example

try {
DatalInputStream indata =

new DataInputStream (new FileInputStream
(“f1.txt"));

int no;

while (true) {
no = indata.readInt();
System.out.println(“No ” + no);

}
} catch (EOFException reachedEndOfFile) {
try {
indata.close();
} catch (IOException ioe) {
ioe.printStackTrace();
}
} catch (FileNotFoundException e) {
System.err.println (“file f1.txt is mising”);
} catch (IOException e) {
e.printStackTrace();
}

Lecture 5: Java I/O. Overview of New /O

Some Types of Streams

ObjectOutputStream
Objects < > Serialized

ObjectInputStream

DataOutputStream
Typed Binary
data representation

DatalInputStream

Lecture 5: Java I/O. Overview of New /O

Types of Streams (cont’d)

» FileOutputStream—o
File of byt
/ijj:::;FileInputStream/””’ e OTOYIE
bytes <
y“*ByteArrayOutputStre?:rm\\,
Byte array

ByteArrayInputStre

 3 Text file
< (default encoding)

////ﬂ FileWritEF-\\\\\\\\\‘

_— FileReader

AL

characters %
\<:::j OutputStreamWriter—_

Bytes
InputStreamReader/////

Lecture 5: Java I/O. Overview of New /O 9

Standard Streams

* Static fields in the Jjava.lang.System

class:

- public static final PrintStream err;
* The “standard” error output stream;

- public static final PrintStream out;
* The “standard” output stream;
- public static final InputStream in;

* The “standard” input stream.
— All the streams are already open and ready to

supply/accept data
System.out.println(“your output “ + result);

Lecture 5: Java I/O. Overview of New /O

10

Files (Java . 10 package)

* F1ile class supports platform-independent usage of file- and directory names.

— Instances of this class represent the name of a file or a directory on the host file
system.

* Some constructors:
File(String path)
File(String dir, String fileName)
File(File dir, String fileName)

* Some interesting methods of File:
public boolean exists();
public boolean isDirectory();
public boolean isFile();
public long length();
public String[] list();
public String[] list(FileNameFilter f);
public boolean mkdir();
public boolean renameTo(File dest);
public boolean createNewFile()

Lecture 5: Java I/O. Overview of New /O 11

File Streams

* Used to access files (for reading and writing) as a
continues stream of bytes or characters

* FileInputStreamand FileOutputStream
— for reading and writing bytes to the file

* FileReader and FileWriter
— for reading and writing character files

* Provide read and write methods

* (Can be created by constructors given a file name or an

objectof File

FileInputStream inf = new
FileInputStream(filename);

Lecture 5: Java I/O. Overview of New /O 12

File Descriptor

* FileDescriptor classis a platform-independent
representation of a handle of an open file or an open
socket.

* Objects of this class

— are returned by getFD() of FileInputStream,
FileOutputStream,RandomAcessFile,..

— passed to (used by) FileInputStream,

FileOutputStream,FileReader,FileWriter,..

Lecture 5: Java I/O. Overview of New /O

13

Random Access File

* RandomAccessFile class —provides an API similar
to the file APl in C

— Instances of this class represent the file opened in a given mode,
e.g.
* "r" —for reading only
* “rw" - for reading and writing

— Methods of this class provide means for reading from file, writing
into file and changing current file access position.

— All methods (including constructors) of this class may throw
IOException.

— Contains object of the FileDescriptor class as a handle of
the file.

Lecture 5: Java I/O. Overview of New /O 14

An Overview of New 1/O

Use of the new I/0 API when performing
course programming assignments 1s
optional

New /0 (java.nlo. *..)

* New I/O APIs introduced in JDK v 1.4
* NIO APIs sumpliments java.io

— provides a new I/O model based on channels, buffers
and selectors

— enables non-blocking scalable I/O

— allows improving performance of distributed
applications (mostly for the server side)

Lecture 5: Java I/0O. Overview of New [/O

16

Features in NIO APIs

Buffers for data of primitive types, e.g. char, int
Channels, a new primitive I/O abstraction

A multiplexed, non-blocking I/0 facility
(selectors, selection keys, selectable channels) for
writing scalable servers

Character-set encoders and decoders

A pattern-matching facility based on Perl-style
regular expressions (java.util)

A file interface that supports locks and memory
mapping

Lecture 5: Java I/0O. Overview of New [/O 17

NIO Packages

java.nio Buffers, which are used throughout the NIO APIs.

java.nio.channels | Channels and selectors.

java.nio.charset Character encodings.

java.nio.channels. | Service-provider classes for channels.
spi

java.nio.charset.s | Service-provider classes for charsets.
pi

java.util.regex Classes for matching character sequences against patterns
specified by regular expressions.

Lecture 5: Java I/0. Overview of New /O 18

NIO Programming Abstractions

Buffers

— Containers for data

— Can be filled, drained, flipped, rewind, etc.

— Can be written/read to/from a channel
Channels of various types

— Represent connections to entities capable of performing 1/0
operations, e.g. pipes, files and sockets

— Can be selected when ready to perform I/O operation

Selectors and selection keys

— together with selectable channels define a multiplexed,
non-blocking I/O facility. Used to select channels ready for I/O

Charsets and their associated decoders and encoders
— translate between bytes and Unicode characters

Lecture 5: Java I/0O. Overview of New [/O

19

Buffers

Buffer 1s a container for a fixed amount of data of a specific primitive
type; Used by channels
— content (data)
— capacity
* size of buffer; set when the buffer is created; cannot be changed
— limit
* the index of the first element that should not be read or written; limit < capacity
— position
* the index of the next element to be read or written
— mark
* the index to which its position will be reset when the reset method is invoked
— Buffer invariant: 0 < mark < position < limit < capacity

1

position = 0 lirnit = 4 capaclty = 8

Lecture 5: Java I/0O. Overview of New [/O 20

Buffer Classes

Buffer Superclass for other buffers;
clear, flip, rewind, mark/reset
ByteBuffer provides views as other buffers, e.g. IntBuffer
get/put, compact, views; allocate, wrap
Subclass of the ByteBuffer
MappedByteBuffer | A byte buffer mapped to a file
CharBuffer absolute (index-based) and relative (position-based) get/put,
DoubleBuffer compact, allocate, wrap
FloatBuffer
IntBuffer
LongBuffer

Lecture 5: Java I/0O. Overview of New [/O

21

Some Buffer’s methods

static . Allocates a new direct byte buffer. With direct ByteBuffer,

allocateDirect | JVM avoid intermediate buffering when performing native I/O

0) operations directly upon the direct buffer.

static allocate a buffer of a given capacity

allocate()

clear() clear the buffer, i.e. prepare the buffer for writing data into it by
channel-reads or relative puts (limit = capacity; position = 0)

flip() prepare the buffer for reading data from it by channel-writes or
relative gets (limit = position; position = 0)

rewind() prepare the buffer for re-reading data from it (position = 0)

mark() set this buffer's mark at its position (mark = position)

reset() reset this buffer's position to the previously-marked position

(position = mark)

Lecture 5: Java I/0. Overview of New /O 22

Some Buffer’s methods (cont’d)

static wrap a given array into a buffer; returns the buffer.
wrap)
get/put absolute (index-based) and relative (position-based) get/put data

from/into the buffer; position = position —/+ 1;

asIntBuffer (|create aview of this byte buffer as a other primitive type buffer, e.g.

) as an IntBuffer, as a CharBuffer, etc.

asCharBuffer

).

slice() create a new buffer that shares part of this buffer's content starting

at this buffer's position.

duplicate() creates a new byte buffer that shares the this buffer's content.

compact() copy data between position and limit to the beginning of the buffer;
position is set to the number of data items copied.

boolean check whether there are any elements between the current position

hasRemaining | and the limit.
() Lecture 5: Java I/O. Overview of New [/O 23

Creating Buffers

* Allocation
— Create an empty buffer on top of a backing Java array

Bytebuffer buf1l = ByteBuffer.allocate(100);
IntBuffer buf2 = intBuffer.allocate(100);

* Direct allocation (only ByteBuffer)

— Direct buffers (using DMA)

ByteBuffer buf3 =
ByteBuffer.allocateDirect(100);
* Wrapping

— Wrap a buffer around existing data array
byte[] data = “Some data”.getBytes("“UTF-8");
ByteBuffer buf4 = ByteBuffer.wrap(data);
char[] text = “Some text”.toCharArray();
CharBuffer buf5 = CharBuffer.wrap(text);

Lecture 5: Java I/0O. Overview of New [/O 24

Filling/Draining Buffers

Filling using wrap or put

String s = "Some String”;

CharBuffer buf1 = CharBuffer.wrap(s);

CharBuffer buf2 = CharBuffer.allocate(s.length());

// put reversed s in to buf2

for (int i = s.length() - 1; i >= 0; i--) {
buf2.put(s.charAt(i)); // relative put

} // position in buf2 should be 11 after the loop

Draining using get

buf2.flip(); // limit = position; position = 0
String r = "";
while (buf2. hasRemalnlng())
r += buf2.get();
}

Lecture 5: Java I/0O. Overview of New [/O

25

Reading/Writing Buffers from/to
Channels

* Reading from a channel to a buffer

while (buf.hasRemaining() &&
channel.read(buf) != -1) {

// process the buffer’s content

}

* Writing to a channel from a buffer

while (buf.hasRemaining() && channel.write(buf) !=
-1)

Lecture 5: Java I/0O. Overview of New [/O 26

Channels

* Channels represent connections to various 1/O
sources, such as pipes, sockets, files, datagrams;

operate with buffers and I/O sources: move (read/write)
data blocks into / out of buffers from / to the I/O
sources;

can be open or closed;

can be blocking/non-blocking, selectable (socket, pipe),
interruptible (file);

enable non-blocking I/0 operations

Lecture 5: Java I/0O. Overview of New [/O 27

Channels versus Streams

Channels (new 1/0) Streams (traditional 1/0)
Write/read data to/from buffers; Write data onto output streams and
similar to buffered streams; reading data from input streams

buffers can be directly allocated in
memory — efficient implementation

Block-based: a streams of blocks Byte-based: a continues stream of
from/to buffers bytes

Bi-directional: tend to support both Uni-directional: input streams and
reading and writing on the same output streams

object (source, buffer)

Lecture 5: Java I/0. Overview of New /O 28

Some Channel Classes

* For TCP connections

- SocketChannel
- ServerSocketChannel

* For UDP communication
- DatagramChannel

* For file access
- FileChannel

Lecture 5: Java I/0O. Overview of New [/O

29

FileChannel

* java.nlio.channels.FileChannel

— A channel for reading, writing, mapping, and manipulating a
file.

— Similar to RandomAccessFile
* Can be mapped to a buffer in the main memory
- MappedByteBuffer ()

* Has a current position within its file which can be both
queried and modified.

* The file itself contains a variable-length sequence of bytes
that can be read and written and whose current size can be
queried.

Lecture 5: Java I/O. Overview of New /O

30

Some methods of FileChannel

read (dst, pos) |Read or write at an absolute position in a file without
write (src, affecting the channel's position.

pos)

MappedByteBuffe |Map aregion ofa file directly into memory.
rQ)

force() Force out file updates to the underlying storage device,
in order to ensure that data are not lost in the event of a
system crash.

transferTo() Bytes can be transferred from a file to some other
transferFrom() channel, and vice versa, in a way that can be optimized
by many OSs into a very fast transfer directly to or from
the file system cache.

Lecture 5: Java I/0. Overview of New /O 31

FileChannel Example

import java.io.*;
import java.nio.*;
import java.nio.channels.?*;
public class FileChannelTest {
public static void main(String[] args) {
String filename = (args.length > 0)? args[0]
"C:\\Documents and Settings\\vlad-adm\\My Documents\\test.txt"
try {
FileInputStream inf = new FileInputStream(filename);
FileChannel channel = inf.getChannel();
MappedByteBuffer buffer =channel.map(FileChannel.MapMode.READ_
0, channel.size());
WritableByteChannel out = Channels.newChannel(System.out);
while (buffer.hasRemaining() && out.write(buffer) I= -1) {
System.out.println("Writing the file " + filename);
}
channel.close();
} catch (IOException e) {
e.printStackTrace();
System.exit(0);

}

Lecture 5: Java I/0O. Overview of New [/O 32

import java.io.*; Using transfer method

import java.nio.channels.*;

public class FileTrasferTest {
public static void main(String[] args) {

String srcname = (args.length > 0)? args[0]
"C:\\Documents and Settings\\vlad-adm\\My Documents\\test.txt"

try {
FileInputStream inf = new FileInputStream(srcname);
FileChannel src = inf.getChannel();
WritableByteChannel dst = Channels.newChannel(System.out);
src.transferTo(0, src.size(), dst);

} catch (IOException e) {
e.printStackTrace();
System.exit(0);

Lecture 5: Java I/0O. Overview of New [/O 33

SocketChannel

* Aselectable channel for stream-oriented connecting sockets.
— Reads from and writes to a TCP socket.
— Uses ByteBuf fer forreading and writing
— Does not have public constructors

* Each SocketChannel is associated with a peer Socket
object

— Binding, closing, and manipulation of socket options must be done
through the associated Socket object

SocketChannel channel = SocketChannel.open();
channel.configureBlocking(false);

channel.connect(new InetSocketAddress(host,
port)),

Lecture 5: Java I/0O. Overview of New [/O 34

import java. 10 10excepe1OCKEtChannel Example |

import Java nio.channels.*,;
import java.net.*;
public class ChannelTest {
public static void main(String[] args) {

String host = (args.length > 0)? args[0] : "www.sun.com";
int port = (args.length > 1) ? Integer.parseInt(args[1]) : 80;
try {

SocketChannel channel = SocketChannel.open();
channel.configureBlocking(false);
channel.connect(new InetSocketAddress(host, port));
//can do something here while connecting
while (!channel.finishConnect()) {
System.out.println("Connecting to " + host + " on port " + |
// can do something here while connecting
}
System.out.println("Connected to " + host + " on port " + port
// communication with the server via channel
channel.close();
} catch (IOException e) {
e.printStackTrace();
System.exit(0);
}

} Lecture 5: Java I/0O. Overview of New [/O 35

import java.io.IOException;
import java.nio.¥*;
import java.nio channels.*; :[E)(Elrllt)lfz :Z
import java.net.*; +
public class HTTPC11ent {
public static final String GET_REQUEST = "GET /index.html HTTP/1.0\
public static void main(String[] args) {
String host = (args.length > 0) ? args[0] : "www.sun.com";
int port = (args.length > 1) ? Integer.parselInt(args[1]) : 80;
WritableByteChannel out = Channels.newChannel(System. out);
try {
SocketChannel channel = SocketChannel.open(new InetSocketAddr
host, port));
ByteBuffer buf = ByteBuffer.wrap(GET_REQUEST.getBytes());
channel.write(buf);
buf = ByteBuffer.allocate(1024);
while (buf.hasRemaining() && channel.read(buf) != -1) {
buf.flip();
out.write(buf);
buf.clear();

}

} catch (IOException e) {
e.printStackTrace();
System.exit(0);

¥

} Lecture 5: Java I/0O. Overview of New [/O 36

ServerSocketChannel

* Aselectable channel for stream-oriented listening sockets.
— Abstraction for listening network sockets.
— Listens a port for TCP connections.

— Does not have public constructors

 EachServerSocketChannel is associated with a peer ServerSocket object

— Binding and the manipulation of socket options must be done through the associated
ServerSocket object;

* acceptonaready ServerSocketChannel returns
SocketChannel

ServerSocketChannel serverChannel = ServerSocketChannel.open();

ServerSocket socket = serverChannel.socket();

socket.bind(new InetSocketAddress(port));

serverChannel.configureBlocking(false);

selector = Selector.open();

serverChannel.register(selector, SelectionKey.OP_ACCEPT),;

Lecture 5: Java I/0O. Overview of New [/O 37

Selectors

* Selector 1s an object used to select a channel ready
to communicate (to perform an operation)
— Used to operate with several non-blocking channels

— Allows readiness selection

* Ability to choose a selectable channel that is ready for some of
network operation, e.g. accept, write, read, connect

Lecture 5: Java I/0O. Overview of New [/O 38

Selectable Channels

* Selectable channels include:
- DatagramChannel
- Pipe.SinkChannel
- Pipe.SourceChannel
- ServerSocketChannel
- SocketChannel

* Channels are registered with a selector for specific
operations, €.g. accept, read, write

* Registration 1s represented by a selection key

Lecture 5: Java I/0O. Overview of New [/O 39

Selection Keys

A selector operates with set of selection keys

Selection key 1s a token representing the
registration of a channel with a selector

The selector maintains three sets of keys
— Key set contains the keys with registered channels;

— Selected-key set contains the keys with channels ready
for at least one of the operations;

— Cancelled-key set contains cancelled keys whose
channels have not yet been deregistered.

— The last two sets are sub-sets of the Key set.

Lecture 5: Java I/0O. Overview of New [/O 40

Use of Selectors

Create a selector
Selector selector = Selector.open();

Configure a channel to be non-blocking
channel.configureBlocking(false);

Register a channel with the selector for specified operations
(accept, connect, read, write)

ServerSocketChannel serverChannel =
ServerSocketChannel.open();

ServerSocket serverSocket =
serverChannel.socket();

serverSocket.bind(new InetSocketAddress(port));
serverChannel.configureBlocking(false);

serverChannel.register(selector,
SelectionKey.OP_ACCEPT);

— Register as many channels as you have/need

Lecture 5: Java I/0O. Overview of New [/O 41

Use of Selectors (cont’d)

* select () on the selector to perform the
selection of keys with ready channels
— Selects a set of keys whose channels are ready for I/0.

* selectNow() —non-blocking select: returns
zero 1f not channels are ready

* selectedKeys () on the selector to get the
selected-key set

* Iterate over the selected-key set and handle the
channels ready for different I/O operations, e.g.
read, write, accept

Lecture 5: Java I/0O. Overview of New [/O 42

SelectionKey

Upon registration, each of the registered channels is assigned a
selection key.

SelectionKey clientKey = clientChannel.register(selector,
SelectionKey.OP_READ | SelectionKey.OP_WRITE);

Selection key allows attaching of a single arbitrary object to it

* Associate application data (e.g. buffer, state) with the key (channel)
ByteBuffer buffer = ByteBuffer.allocate(1024);
clientKey.attach(buffer);

Get the channel and attachment from the key

SocketChannel clientChannel = (SocketChannel)
key.channel();

ByteBuffer buffer = (ByteBuffer) key.attachment();

Lecture 5: Java I/0O. Overview of New [/O 43

while (true) {
selector.select();
Iterator<SelectionKey> keys = selector.selectedKeys().iterator();
while (keys.hasNext()) {
SelectionKey key = keys.next();
keys.remove();
try {
if (key.isAcceptable()) { // accept connection and register i
ServerSocketChannel server = (ServerSocketChannel)key.channel(
SocketChannel channel = server.accept();
channel.configureBlocking(false);
channel.register(selector,
SelectionKey.OP_READ | SelectionKey.OP_WRITE,
ByteBuffer.allocate(1024));
} else if (key.isWritable()) {// write buffer to channel
SocketChannel channel = (SocketChannel) key.channel();
ByteBuffer buffer = key.attachment();
buffer.flip();
channel.write(buffer);
buffer.compact();
} else if (key.isReadable()) {// read from a channel in to a k
SocketChannel channel = (SocketChannel) key.channel();
ByteBuffer buffer = key.attachment();
channel.read(buffer);

}
} catch

	Java I/O. Overview of New I/O (NIO)
	Outline
	I/O in Java
	I/O in Java (cont’d)
	Streams
	Slide 6
	DataInputStream Example
	Some Types of Streams
	Types of Streams (cont’d)
	Standard Streams
	Files (java.io package)
	File Streams
	File Descriptor
	Random Access File
	An Overview of New I/O
	New I/0 (java.nio.*...)
	Features in NIO APIs
	NIO Packages
	NIO Programming Abstractions
	Buffers
	Buffer Classes
	Some Buffer’s methods
	Some Buffer’s methods (cont’d)
	Creating Buffers
	Filling/Draining Buffers
	Reading/Writing Buffers from/to Channels
	Channels
	Channels versus Streams
	Some Channel Classes
	FileChannel
	Some methods of FileChannel
	FileChannel Example
	Using transfer method
	SocketChannel
	SocketChannel Example 1
	Example 2
	ServerSocketChannel
	Selectors
	Selectable Channels
	Selection Keys
	Use of Selectors
	Use of Selectors (cont’d)
	SelectionKey
	PowerPoint Presentation

