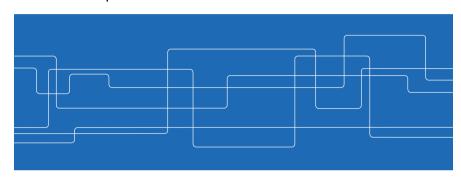


DD2434 Machine Learning, Advanced Course Lecture 1: Introduction

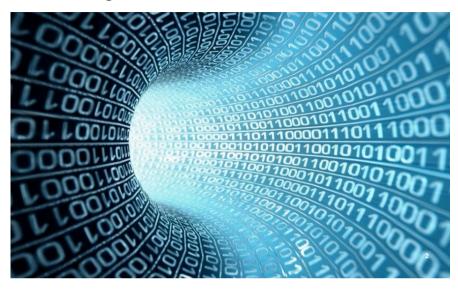
Hedvig Kjellström hedvig@kth.se https://www.kth.se/social/course/DD2434/



Making sense of signals (RGB-D video): Hand Tracking from MSR Cambridge

https://www.youtube.com/watch?v=A-xXrMpOHyc

Big Data

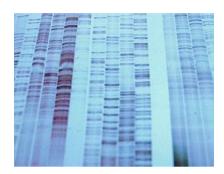


Predicting future events knowing the history: Botten Ada from Linköping U

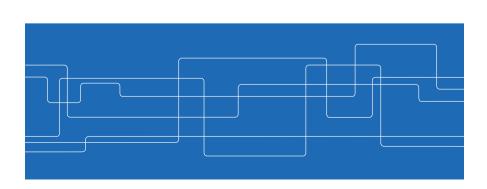
http://bottenada.se

Learning to see suddle patterns in huge amounts of data: Cancer Therapy based on DNA Sequencing from IBM

https://www.youtube.com/watch?v=0M1DMdc1mQ0



Course Preliminaries



Today

Check the homepage at least 2 times / week! Or set it to send you emails!

Course preliminaries

All info at https://www.kth.se/social/course/DD2434/

Ask questions through the News forum!

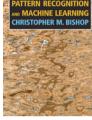
Buy the book by Chris Bishop:

The three teachers

Carl Henrik Ek Jens Lagergren

Hedvig Kjellström

Introduction to Machine Learning (Bishop 1)



۰

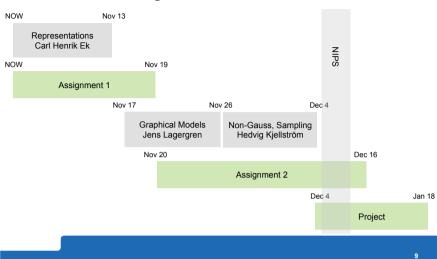
Learning outcomes

Upon completion of the course, the student should be able to

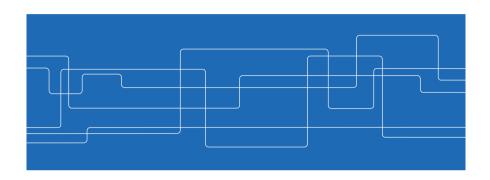
- 1. explain, derive, and implement a number of models for supervised, unsupervised learning,
- 2. explain how various models and algorithms relate to one another,
- 3. describe the strengths and weaknesses of various models and algorithms,
- select an appropriate model or approach for a new machine learning task.

Course organization

Assignments, detailed schedule with reading, etc, on the homepage



The Three Teachers



Carl Henrik Ek

Assistant Professor of Computer Science at CSC / CVAP

Research area: Robotics and Machine Learning

Responsible for

Lectures 2-5 Practicals 1-3

Assignment 1

Jens Lagergren

Professor of Computer Science at KTH / Science for Life Laboratory Research area: Bio-informatics

Responsible for

Lectures 6-9

Practicals 4-5

Assignment 2, first half

Hedvig Kjellström

Associate Professor of Computer Science at CSC / CVAP Research area: Robotics and Computer Vision

Responsible for

Entire course

Lectures 1, 10-13

Practical 6

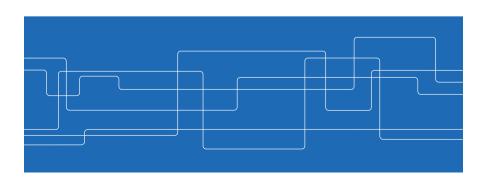
Assignment 2, second half

1:

Introduction to Machine Learning

Bishop Chapter 1

Reference manual to Probability Theory Concepts: Bishop Chapter 2



Hedvig Kjellström: My research

Machine learning applied to Robotics and Computer Vision: Automatic perception of human activity in video

Object affordances, object-action complexes "automatic understanding of how objects are used in human activities what happens to them during the activity"

Human non-verbal communication
"automatic understanding and modeling of non-verbal signals – face expressions, body motion - both conscious and unconscious"

Multi-modality and context in activity recognition "using several modalities – vision, sound, touch etc – to better understand human activity"

More about my research:

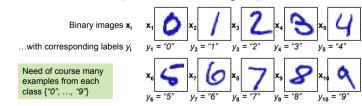
Master project proposals:

14

Example: Handwritten digit recognition

How would you do it?

- Expert system where rules about connectivity, topological structure of digits etc are manually defined - for noisy data such systems are generally outperformed by:
- 2. Classifier (SVM, ANN, Boosting etc) trained with



Supervised/Predictive Learning

Data (training set):
$$\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$$

features/attributes

response variable

Task: Learn mapping X

y can be discrete – classification or continuous – regression

If observable features **X** are noisy and incomplete, the mapping incorporates decision making under uncertainty

Probability theory nice principled tool

Probabilistic formulation: Model function
$$y=f(\mathbf{x})$$
 as $p(y=1|\mathbf{x},\mathcal{D})$, $p(y=2|\mathbf{x},\mathcal{D})$, etc...

Best
$$y \equiv \max_{\hat{y} \in \hat{f}(\mathbf{x}) = \arg\max_{c=1}^{C} p(y=c|\mathbf{x}, \mathcal{D})$$

17

Unsupervised/Descriptive Learning

Data (training set): $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^N$

Task: discover patterns in ${\mathcal D}$

Under-specified problem – what patterns? How measure error?

Probabilistic formulation: Density estimation Models of the form $p(\mathbf{x}_i|\theta)$

Use \mathcal{D} to maximize the probability $p(\mathbf{x}_i|\theta)$ of seeing each \mathbf{x}_i given the model θ

Unsupervised learning is more similar to how humans and animals learn!

Practical advantage: No labeling of data required!

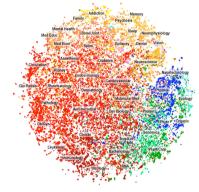
Example: Finding representative groups of biomedical articles

How would you do it?

- Expert system where a biomedical expert defined the groups, or if the data is big and constantly changing:
- Clustering algorithm (kmeans etc) trained with

The more dimensions in the space spanned by **x**, the more training data needed.

Text documents in bag-of-word representation **x**_i



- 18

Reinforcement Learning

Will not be discussed in this course

Data, Models, Algorithms

Machine Learning problems are characterized by three different aspects

Data: analysis and preprocessing of data, e.g. sensor observations

Not discussed here – Computer Vision and Speech courses

Model: Select a suitable model of the system producing the data E.g. graphical models, see Lectures 6-8, 11

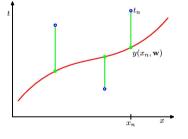
Algorithm: Algorithm for fitting the model to the data, i.e. adjusting the parameters of the model to best explain the data

21

Example: Polynomial Curve Fitting

Algorithm: Find parameters **w** by minimizing the sum of squared errors:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$



OK, we have now found the optimal parameters **w**, but how should we find the optimal polynomial order *M*?

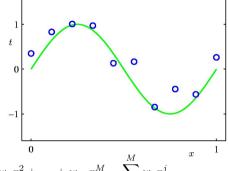
Example: Polynomial Curve Fitting

Data:

Measurements $\langle x_i, t_i \rangle$

Model:

Measurements are sampled from a process $y(x, \mathbf{w})$ which is a polynomial:

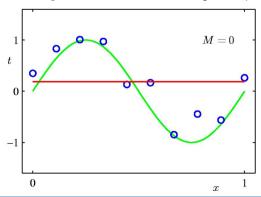


$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$

22

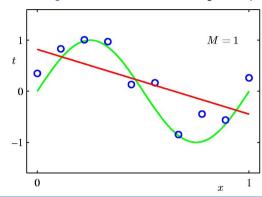
0th order polynomial

Underfitting the data: Not flexible enough to explain data



1st order polynomial

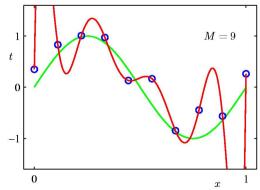
Underfitting the data: Not flexible enough to explain data



25

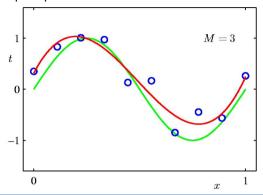
9th order polynomial

Overfitting the data: Model fits training data perfectly but not novel data – it is much more flexible than the true process



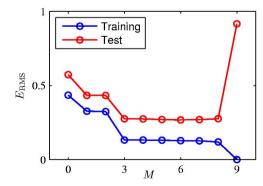
3rd order polynomial

About the right flexibility to imitate the underlying model despite spurious variations in the data



- 2

Here we saw that M=3 was better than 1 or 9 for this data. But how find the right model flexibility in general? Discuss with your neighbor for 5 mins

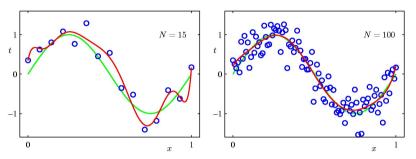


Use separate datasets for testing and training to detect overfitting

Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^\star)/N}$

Need more data!

10 data points to fit 10 parameters is not enough **9**th order polynomial works well with more data



But we should use the existing data as efficiently as possible!

2

Regularization

Basic idea:

Goodness measure should not only depend on data Give reward to small parameter settings – known to be plausible according to Occam's razor

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Ridge regression

Later in the course:

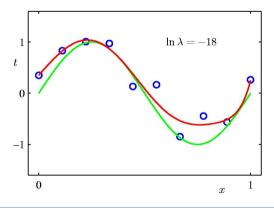
Bayesian formulation – put priors on model parameters

...so let us go back to N = 10What happens to the parameters w?

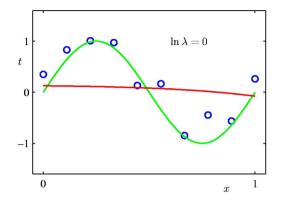
	M=0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}	Quite unrealistic with such high coefficients in a polynomial			640042.26
w_6^{\star}	coemcient	s in a polyno	-1061800.52	
w_7^\star	How could knowledge of this be included in the model? Discuss			1042400.18
w_8^\star				-557682.99
w_9^{\star}	with your neighbor for 5 mins			125201.43

30

Regularization: $\ln \lambda = -18$



Regularization: $\ln \lambda = 0$



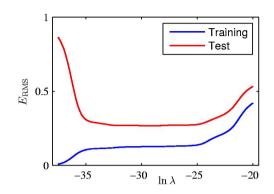
Back to an underfitting model!

33

This is also confirmed when inspecting w

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^\star	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^\star	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^\star	125201.43	72.68	0.01

Regularization: E_{RMS} vs $\ln \lambda$



34

Basic concept:

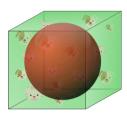
Model selection

Saw that there is an optimal choice of M, \mathbf{w} , λ in our curve-fitting example

How find the best parameters in a principled manner? Discuss with your neighbor for 5 mins

S-fold cross-validation, S=4:

Basic concept: Curse of Dimensionality



$$\frac{\mathrm{2D}}{\mathrm{cube/sphere}} = \frac{\pi}{2^2}$$

$$\frac{\mathrm{3D}}{\mathrm{cube/sphere}} = \frac{4\pi}{2^3 * 3}$$

 $\mathsf{8D} = \frac{\pi^4}{2^8*2}$

Adressed by using **lower-dimensional models** and/or **more data**

3

What is next?

Check the homepage at least 2 times / week! Or set it to send you emails!

We use the homepage a lot: links to video lectures, readings for lectures, lecture slides, questions answered through the News forum

https://www.kth.se/social/course/DD2434/

Next on the schedule Wed 4 Nov 10:15-12:00 M1 Lecture 2: Regression Carl Henrik Ek

Readings: Bishop 6.4

Assignment 1 published today, deadline November 19

39

Basic concept: No Free Lunch Theorem

Do not believe the preachers...

There is no universally best model! All models contain assumptions that work well in one domain but not in another.