
Introduction to Visualization and Computer Graphics

DH2320, Fall 2015

Prof. Dr. Tino Weinkauf

Geometric Modeling

Introduction

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Geometric Modeling: Introduction

ǒThere are many ways for creating graphical data.

ǒClassic way: Geometric Modeling

p0

p1

p2

p3

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Geometric Modeling: Introduction

ǒThere are many ways for

creating graphical data.

ǒOther approaches:

ǒ3D scanners

ǒPhotography for measuring

optical properties

ǒSimulations, e.g., for flow

data 3D Scanning

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Geometric Modeling: Introduction

ǒGeometric objects convey a part of the real or theoretical

world; often, something tangible

ǒThey are described by their geometric and topological

properties:

ǒGeometry describes the form and the position/orientation in a

coordinate system.

ǒTopology defines the fundamental structure that is invariant against

continuous transformations.

Different geometry

Same topology

Different geometry

Different topology

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Geometric Modeling: Introduction

ǒGeometric Modeling is the computer-aided design and

manipulation of geometric objects. (CAD)

ǒIt is the basis for:

ǒcomputation of geometric properties

ǒrendering of geometric objects

ǒphysics computations (if some physical attributes are given)

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Geometric Modeling: Introduction

ǒ3D models are geometric representations of 3D objects with

a certain level of abstraction.

ǒWe distinguish between three types of models:

ǒWire Frame Models

ǒdescribe an object using boundary lines

ǒSurface Models

ǒdescribe an object using boundary surfaces

ǒSolid Models

ǒdescribe an object as a solid

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Geometric Modeling: Introduction

Wire Frame Models

ǒ Describe an object using boundary

curves

ǒ No relationship between these

curves

ǒ Surfaces between them are not

defined

ǒ Properties:

ǒ simple, traditional

ǒ non-sense objects possible

ǒ visibility of curves cannot be decided

ǒ solid object intersection cannot be

computed

ǒ surfaces between the curves cannot

be computed automatically

ǒ not useable for CAD/CAM

non-sense objects (Ernst, 1987)

ambiguity of wire frame models

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Geometric Modeling: Introduction

Surface Models

ǒ Defines surfaces between boundary

curves

ǒ Describes the hull, but not the

interior of an object

ǒ Often implemented using polygons,

hull of a sphere or ellipsoid, free-

form surfaces, é

ǒ No relationship between the

surfaces

ǒ The interior between them is not

defined

ǒ Visibility computations: yes

Solid intersection comp.: no

ǒ Most often used type of model

polygonal surface

representation

parametric surface

representation

using 32 Bezier

patches

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Geometric Modeling: Introduction

Solid Models

ǒ Describe the 3D object

completely by covering the solid

ǒ For every point in 3D, we can

decide whether it is inside or

outside of the solid.

ǒ Visibility and intersection

computations are fully supported

ǒ Basis for creating solid objects

using computer-aided

manufacturing

solid model and a cut through it

(Werkbild Strässle, from Ockert, 1993)

visibility computation for lines using a solid model

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Geometric Modeling: Introduction

Chrome-cobalt disc with crowns for dental implants, manufactured using WorkNC CAM

Sescoi CAD/CAM
http://www.flickr.com/photos/cadcamzone/4679188766/. Licensed under CC BY-SA 2.0 via Commons -

https://commons.wikimedia.org/wiki/File:Disc_with_dental_implants_made_with_WorkNC.jpg#/media/File:Disc_with_dental_implants_made_with_WorkNC.jpg

Introduction to Visualization and Computer Graphics

DH2320, Fall 2015

Prof. Dr. Tino Weinkauf

Geometric Modeling

Bezier Curves, Splines and Surfaces

de Casteljau Algorithm

Bernstein Form

Bezier Splines

Tensor Product Surfaces

Total Degree Surfaces

Bezier Curves
de Casteljau algorithm

ÅPaul de Casteljau (1959) @ Citroën
ÅPierre Bezier (1963) @ Renault

Meine Zeit bei Citroën / My time at Citroën
see the PDF deCasteljau_de.pdf and deCasteljau_en.pdf in the download area of the webpage

Bezier curves

History:

ωBezier curves/splines developed by

ÁPaul de Casteljau at Citroën (1959)

ÁPierre Bézier at Renault (1963)

 for free-form parts in automotive design

ωToday: Standard tool for 2D curve editing

ωCubic 2D Bezier curves are everywhere:

ÁPostscript, PDF, Truetype (quadratic curves), Windows GDI...

ÁInkscape, Corel Draw, Adobe Illustrator, Powerpoint, ...

ωWidely used in 3D curve & surface modeling as well

All You See is Bezier Curves...

De Casteljau algorithm

Approximation setting:

Given: p0Σ ΧΣ pn

Wanted: smooth, approximating curve

De Casteljau algorithm

Linear interpolation

De Casteljau algorithm

Parabolas

Č planar curve, even if defined in R3

Example:

De Casteljau algorithm

Another parabola construction

given: 3 points b0, b1, b2

parabola x(t)

De Casteljau algorithm

Example

De Casteljau algorithm

De Casteljau Algorithm: Computes x (t) for given t

ωBisect control polygon in ratio t : (1 ς t)

ωConnect the new dots with lines (adjacent segments)

ωInterpolate again with the same ratio

ωIterate, until only one point is left

De Casteljau algorithm

Description of the de Casteljau algorithm

ωgiven: points

ωwanted: curve

ωgeometric construction of the point x(t) for given t:

ωThen, is the searched curve point x(t) at the
parameter value t

De Casteljau algorithm

bi
(r) = (1 - t) · bi

(r - 1) + t · bi +1
(r - 1)

b0
(0)

b1
(0)

b2
(0)

b3
(0)

repeated convex combination of control points

b0
(0)

b1
(0)

b2
(0)

b3
(0)

De Casteljau algorithm

bi
(r) = (1 - t) · bi

(r - 1) + t · bi +1
(r - 1)

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

repeated convex combination of control points

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

1- t

1- t

1- t

t

t

t

De Casteljau algorithm

bi
(r) = (1 - t) · bi

(r - 1) + t · bi +1
(r - 1)

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

b0
(2)

b1
(2)

repeated convex combination of control points

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

1- t

1- t

1- t

t

t

t

b0
(2)

b1
(2)

1- t

t

1- t

t

De Casteljau algorithm

bi
(r) = (1 - t) · bi

(r - 1) + t · bi +1
(r - 1)

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

b0
(2)

b1
(2)

b0
(3) = x(t)

repeated convex combination of control points

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

1- t

1- t

1- t

t

t

t

b0
(2)

b1
(2)

1- t

t

1- t

t b0
(3) = x(t)

1- t

t

de Casteljau scheme

De Casteljau algorithm

The intermediate coefficients bi
r(t) can be written in

a triangular matrix: the de Casteljau scheme:

De Casteljau algorithm

Algorithm:
for r = 1.. n do

 for i = 0.. n- r do

 bi
(r) = (1 - t) · bi

(r - 1) + t · bi +1
(r - 1)

 end for

end for

return b0
(n)

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

b0
(2)

b1
(2)

b0
(3) = x(t)

The whole algorithm consists only of
repeated linear interpolations.

De Casteljau algorithm

The polygon consisting of the points b0Σ ΧΣ bn is called
Bezier polygon. The points bi are called Bezier points.

The curve defined by the Bezier points b0Σ ΧΣ bn and the
de Casteljau algorithm is called Bezier curve.

The de Casteljau algorithm is numerically stable, since
only convex combinations are applied.

Complexity of the de Casteljau algorithm
ωO(n2) time

ωO(n) memory

ωwith n being the number of Bezier points

De Casteljau algorithm

Properties of Bezier curves:

ωgiven: Bezier points b0, é, bn

 Bezier curve x(t)

ωBezier curve is polynomial curve of degree n.

ωEnd point interpolation: x(0) = b0, x(1) = bn. The
remaining Bezier points are only generally approximated.

ωConvex hull property:

 Bezier curve is completely inside the convex hull of its
Bezier polygon.

De Casteljau algorithm

ÅVariation diminishing
no line intersects the Bezier curve more often than its Bezier
polygon.

Å Influence of Bezier points: global, but pseudo-local

ωglobal: moving a Bezier point changes the whole curve
progression

ωpseudo-local: bi has its maximal influence on x(t) at t = i /n.

ÅAffine invariance:
Bezier curve and Bezier polygon are invariant under affine
transformations

Å Invariance under affine parameter transformations

De Casteljau algorithm

ÅSymmetry:
The following two Bezier curves coincide, they are
only traversed in opposite directions:

Å Linear precision:
Bezier curve is line segment, if b0,é, bn are
collinear

Å Invariant under barycentric combinations

1- t

t

De Casteljau algorithm

Å First derivative of a Bezier curve

Å Endpoints:

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

b0
(2)

b1
(2)

b0
(3) = x(t)

de Casteljau scheme

ὀὸ ὲἪ Ἢ

-1

1

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

1- t

1- t

1- t

t

t

t

b0
(2)

b1
(2)

1- t

t

1- t

t

- 1

1

De Casteljau algorithm

ÅSecond derivative of a Bezier curve

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

b0
(2)

b1
(2)

b0
(3) = x(t)

de Casteljau scheme

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

1- t

1- t

1- t

t

t

t

b0
(2)

b1
(2)

- 1

1

- 1

1 ὀὸ ὲὲ ρ Ἢ ςἪ Ἢ

Bezier Curves
Bernstein form

Bernstein Basis

Bezier curves are algebraically defined using the
Bernstein basis:

ωBernstein basis of degree n:

{ })()(
1

)(
0 ,...,, n

n
nn BBBB=

()inin
i tt

i

n
tB

-
-öö

÷

õ
ææ
ç

å
= 1:)()(

n = 10 n = 2 (quad.)

B0

B1

B2

n = 3 (cubic)

B0

B1 B2

B3

Bernstein Basis

de Casteljau algorithm

curve basis function control point

Bernstein form
Ὢὸ ὄ ὸ Ἰ

Examples

The first three Bernstein bases:

()

() ()

() ()

() 3)3(
3

2)3(
2

2)3(
1

3)3(
0

2)2(
2

)2(
1

2)2(
0

)1(
1

)1(
0

)0(
0

:13:

13:1:

:12:1:

:1:

1:

tBttB

ttBtB

tBttBtB

tBtB

B

=-=

-=-=

=-=-=

=-=

=

n = 3 (cubic)

B0

B1 B2

B3

n = 1 (linear)

B0 B1

n = 2 (quad.)

B0

B1

B2

()inin
i tt

i

n
tB

-
-öö

÷

õ
ææ
ç

å
= 1:)()(

Bezier Curves in Bernstein form

Bezier Curves:

ω ä
=

=
n

i

n
ii Bt

0

)()(pf

p0

p1

p2

p3

p0

p1

p2

p3

n = 3 (cubic)

B0

B1 B2

B3

p0

p1

p2

p3

p0

p1
p2

p3

t Í [0..1]

Summary for Bezier Curves

Bezier curves and curve design:
ωThe rough form is specified by the position of the control

points

ωResult: smooth curve approximating the control points

ωComputation / Representation:
Áde Casteljau algorithm

ÁBernstein form

ωProblems:
Áhigh polynomial degree

Ámoving a control point can change the whole curve

Áinterpolation of points

Á" Bezier splines

Towards Bezier Splines

Approximation Interpolation

Towards Bezier Splines

Interpolation problem:

ω given:

 control points

 knot sequence

ωwanted:

 interpolating curve x(t), i.e., x(ti) = k i for i = 0, é, n

ωApproach:
"Joining" of n Bezier curves with certain intersection conditions

Towards Bezier Splines

The following issues arise when stitching together
Bezier curves:

Å Continuity

Å Degree

Å (Parameterization)

Bezier Splines
Parametric and Geometric Continuity

Continuity

Joining of curves - continuity

ωgiven: 2 curves

 x1(t) over [t0, t1]

 x2(t) over [t1, t2]

ω x1 and x2 are Cr continuous in t1, if they coincide in

 0th ς rth derivative vector in t1.

Continuity

C-1 continuity C0 continuity

C1 continuity C2 continuity

Continuity

Parametric Continuity Cr:

ωC0, C1, C2... continuity.

ωDoes a particle moving on this curve have a smooth
trajectory (position, velocity, acceleration,...)?

ωUseful for animation (object movement, camera paths)

ωDepends on parameterization

Geometric Continuity Gr:

ωIndependent of parameterization

ωIs the curve itself smooth?

ωMore relevant for modeling (curve design)

Bezier Splines

Local control: Bezier splines

ωConcatenate several curve segments

ωQuestion: Which constraints to place upon the control
points in order to get C-1, C0, C1, C2 continuity?

p0

p1

p2

p3

p0

p1

p2

p3

(i)

(i)

(i)

(i)

(i+1)

(i+1)

(i+1)

(i+1)

Bezier Spline Continuity

Rules for Bezier spline continuity:

ωC0 continuity:

ÁEach spline segment interpolates the first and last control point

ÁTherefore: Points of neighboring segments have to coincide for
C0 continuity.

p1
(i)

(i) p0

(i) p2

p3
(i)

p0
(i+1)

p1
(i+1)

p2
(i+1)

p3
(i+1)

Bezier Spline Continuity

Rules for Bezier spline continuity:

ωAdditional requirement for C1 continuity:

ÁTangent vectors are proportional to differences p1 ς p0, pn ς pn-1

ÁTherefore: These vectors must be identical for C1 continuity

p1
(i)

(i) p0

(i) p2

p3
(i)

p0
(i+1)

p1
(i+1)

p2
(i+1)

p3
(i+1)

Bezier Spline Continuity

Rules for Bezier spline continuity:

ωAdditional requirement for C2 continuity:

ÁἬ Ἤ

Continuity

C-1 continuity C0 continuity

G1 continuity C1 continuity

Bezier Splines
Choosing the degree

Choosing the Degree...

Candidates:

ωd = 0 (piecewise constant): not smooth

ωd = 1 (piecewise linear): not smooth enough

ωd = 2 (piecewise quadratic): constant 2nd
derivative, still too inflexible

ωd = 3 (piecewise cubic): degree of choice
for computer graphics applications

Cubic Splines

Cubic piecewise polynomials:

ωWe can attain C2 continuity without fixing the second
derivative throughout the curve

ωC2 continuity is perceptually important
ÁWe can see second order shading discontinuities

(esp.: reflective objects)

ÁMotion: continuous position, velocity & acceleration
Discontinuous acceleration noticeable (object/camera motion)

ωOne more argument for cubics:
ÁAmong all C2 curves that interpolate a set of points (and obey to

the same end conditions), a piecewise cubic curve has the least
ƛƴǘŜƎǊŀƭ ŀŎŎŜƭŜǊŀǘƛƻƴ όάǎƳƻƻǘƘŜǎǘ ŎǳǊǾŜ ȅƻǳ Ŏŀƴ ƎŜǘέύΦ

ïsee AdditionalMaterial /CubicsMinimizeAcceleration.pdf

Spline Surfaces

Spline Surfaces

Two different approaches

ωTensor product surfaces

ÁSimple construction

ÁEverything carries over
from curve case

ÁQuad patches

ÁDegree anisotropy

ωTotal degree surfaces

ÁNot as straightforward

ÁIsotropic degree

ÁTriangle patches

ÁάbŀǘǳǊŀƭέ ƎŜƴŜǊŀƭƛȊŀǘƛƻƴ of curves

Tensor Product Surfaces

Tensor Product Bezier Surfaces

Bezier curves:
repeated linear interpolation

bilinear interpolation:
repeated linear interpolation

repeated bilinear interpolation:
gives us tensor product Bezier surfaces
(example shows quadratic Bezier surface)

now a different setup:
4 points b00, b10, b11, b01

parameter area [0,1] ³ [0,1]

b00

b01

b10

b11

x(u,v)

De Casteljau Algorithm

De Casteljau algorithm for tensor product surfaces:

v

u b(0,0,0; 0,0,0)

b(1,1,1; 0,0,0)

b(0,0,0; 1,1,1)

b(1,1,1; 1,1,1)

b(u,u,u; v,v,v)

b(u,0,0; v,0,0)

b(u,0,0; v,1,1)

b(u,1,1; v,0,0)

b(u,1,1; v,1,1)

b(u,u,0; v,v,1)

b(u,u,0; v,v,0)

b(u,u,1; v,v,1)

b(u,u,1; v,v,0)

Tensor Product Surfaces

Tensor Product Surfaces:

ωά/ǳǊǾŜǎ ƻŦ /ǳǊǾŜǎέ

ωOrder does not matter

ä ä

ä ä

ää

= =

= =

= =

=

=

=

n

j

n

i
jiij

n

i

n

j
jiji

n

i

n

j
jiji

vbub

vbub

vbubvu

1 1
,

1 1
,

1 1
,

)()(

)()(

)()(),(

p

p

pf

Tensor Product Surfaces
Bezier Patches

Bezier Patches

Bezier Patches:

ωRemember endpoint interpolation:

ÁBoundary curves are Bezier
curves of the boundary
control points

d = 10 d = 3

B0

B1 B2

B3

Continuity Conditions

For C0 continuity:

ωBoundary control points must match

For C1 continuity:

ωDifference vectors must match at the boundary

