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Geometric Modeling: Introduction 

ǒThere are many ways for creating graphical data. 

ǒClassic way: Geometric Modeling 
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Geometric Modeling: Introduction 

ǒThere are many ways for 

creating graphical data. 

ǒOther approaches: 

ǒ3D scanners 

ǒPhotography for measuring 

optical properties 

ǒSimulations, e.g., for flow 

data 3D Scanning 
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Geometric Modeling: Introduction 

ǒGeometric objects convey a part of the real or theoretical 

world; often, something tangible 

ǒThey are described by their geometric and topological 

properties: 

ǒGeometry describes the form and the position/orientation in a 

coordinate system. 

ǒTopology defines the fundamental structure that is invariant against 

continuous transformations. 

 

Different geometry 

Same topology 

Different geometry 

Different topology 
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Geometric Modeling: Introduction 

ǒGeometric Modeling is the computer-aided design and 

manipulation of geometric objects. (CAD) 

ǒIt is the basis for: 

ǒcomputation of geometric properties 

ǒrendering of geometric objects 

ǒphysics computations (if some physical attributes are given) 
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Geometric Modeling: Introduction 

ǒ3D models are geometric representations of 3D objects with 

a certain level of abstraction. 

ǒWe distinguish between three types of models: 

ǒWire Frame Models 

ǒdescribe an object using boundary lines 

ǒSurface Models 

ǒdescribe an object using boundary surfaces 

ǒSolid Models 

ǒdescribe an object as a solid 
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Geometric Modeling: Introduction 

Wire Frame Models 

ǒ Describe an object using boundary 

curves 

ǒ No relationship between these 

curves 

ǒ Surfaces between them are not 

defined 

ǒ Properties: 

ǒ simple, traditional 

ǒ non-sense objects possible 

ǒ visibility of curves cannot be decided 

ǒ solid object intersection cannot be 

computed 

ǒ surfaces between the curves cannot 

be computed automatically 

ǒ not useable for CAD/CAM 

non-sense objects (Ernst, 1987) 

ambiguity of wire frame models 
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Geometric Modeling: Introduction 

Surface Models 

ǒ Defines surfaces between boundary 

curves 

ǒ Describes the hull, but not the 

interior of an object 

ǒ Often implemented using polygons, 

hull of a sphere or ellipsoid, free-

form surfaces, é 

ǒ No relationship between the 

surfaces 

ǒ The interior between them is not 

defined 

ǒ Visibility computations: yes 

Solid intersection comp.: no 

ǒ Most often used type of model 

polygonal surface 

representation 

parametric surface 

representation 

using 32 Bezier 

patches 
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Geometric Modeling: Introduction 

Solid Models 

ǒ Describe the 3D object 

completely by covering the solid 

ǒ For every point in 3D, we can 

decide whether it is inside or 

outside of the solid. 

ǒ Visibility and intersection 

computations are fully supported 

ǒ Basis for creating solid objects 

using computer-aided 

manufacturing 

 

solid model and a cut through it 

(Werkbild Strässle, from Ockert, 1993) 

visibility computation for lines using a solid model 
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Geometric Modeling: Introduction 

Chrome-cobalt disc with crowns for dental implants, manufactured using WorkNC CAM 

Sescoi CAD/CAM 
http://www.flickr.com/photos/cadcamzone/4679188766/. Licensed under CC BY-SA 2.0 via Commons - 

https://commons.wikimedia.org/wiki/File:Disc_with_dental_implants_made_with_WorkNC.jpg#/media/File:Disc_with_dental_implants_made_with_WorkNC.jpg 
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Geometric Modeling 

Bezier Curves, Splines and Surfaces 

 
de Casteljau Algorithm 

Bernstein Form 

Bezier Splines 

Tensor Product Surfaces 

Total Degree Surfaces 



Bezier Curves 
de Casteljau algorithm 

ÅPaul de Casteljau (1959) @ Citroën 
ÅPierre Bezier (1963) @ Renault 

Meine Zeit bei Citroën / My time at Citroën 
see the PDF deCasteljau_de.pdf and deCasteljau_en.pdf in the download area of the webpage 



Bezier curves 

History: 

ωBezier curves/splines developed by 

ÁPaul de Casteljau at Citroën (1959) 

ÁPierre Bézier at Renault (1963) 

 for free-form parts in automotive design 

ωToday: Standard tool for 2D curve editing 

ωCubic 2D Bezier curves are everywhere: 

ÁPostscript, PDF, Truetype (quadratic curves), Windows GDI... 

ÁInkscape, Corel Draw, Adobe Illustrator, Powerpoint, ... 

ωWidely used in 3D curve & surface modeling as well 



All You See is Bezier Curves... 



De Casteljau algorithm 

Approximation setting: 

Given: p0Σ ΧΣ pn 

Wanted: smooth, approximating curve 



De Casteljau algorithm 

Linear interpolation 



De Casteljau algorithm 

Parabolas 

Č planar curve, even if defined in R3 

 

Example: 



De Casteljau algorithm 

Another parabola construction 

given: 3 points b0, b1, b2 

 

parabola x(t) 



De Casteljau algorithm 

Example 



De Casteljau algorithm 

De Casteljau Algorithm: Computes x (t) for given t 

ωBisect control polygon in ratio t : (1 ς t) 

ωConnect the new dots with lines (adjacent segments) 

ωInterpolate again with the same ratio 

ωIterate, until only one point is left 



De Casteljau algorithm 

Description of the de Casteljau algorithm 

ωgiven: points  

ωwanted: curve 

 

ωgeometric construction of the point x(t) for given t: 

 

 

 

 

ωThen,         is the searched curve point x(t) at the 
parameter value t 



De Casteljau algorithm 

bi
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De Casteljau algorithm 

bi
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De Casteljau algorithm 
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De Casteljau algorithm 

bi
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De Casteljau algorithm 

The intermediate coefficients bi
r(t) can be written in 

a triangular matrix: the de Casteljau scheme: 



De Casteljau algorithm 

Algorithm: 
for  r  = 1.. n do 

   for  i  = 0.. n- r  do 

      bi
( r )  = (1 - t ) · bi

( r - 1)  + t  · bi +1
( r - 1)   

   end for  

end for  

return  b0
( n)  
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The whole algorithm consists only of 
repeated linear interpolations. 



De Casteljau algorithm 

The polygon consisting of the points b0Σ ΧΣ bn is called 
Bezier polygon. The points bi are called Bezier points. 

The curve defined by the Bezier points b0Σ ΧΣ bn and the 
de Casteljau algorithm is called Bezier curve. 

The de Casteljau algorithm is numerically stable, since 
only convex combinations are applied. 

Complexity of the de Casteljau algorithm 
ωO(n2) time 

ωO(n) memory 

ωwith n being the number of Bezier points 



De Casteljau algorithm 

Properties of Bezier curves: 

ωgiven: Bezier points b0, é, bn  

          Bezier curve x(t) 

ωBezier curve is polynomial curve of degree n. 

ωEnd point interpolation: x(0) = b0, x(1) = bn. The 
remaining Bezier points are only generally approximated. 

ωConvex hull property: 

 Bezier curve is completely inside the convex hull of its 
Bezier polygon. 



De Casteljau algorithm 

ÅVariation diminishing 
no line intersects the Bezier curve more often than its Bezier 
polygon. 

Å Influence of Bezier points: global, but pseudo-local 

ωglobal: moving a Bezier point changes the whole curve 
progression 

ωpseudo-local: bi has its maximal influence on x(t) at t = i /n. 

ÅAffine invariance: 
Bezier curve and Bezier polygon are invariant under affine 
transformations 

Å Invariance under affine parameter transformations 



De Casteljau algorithm 

ÅSymmetry: 
The following two Bezier curves coincide, they are 
only traversed in opposite directions: 

 

Å Linear precision: 
Bezier curve is line segment, if b0,é, bn are 
collinear 

Å Invariant under barycentric combinations  
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De Casteljau algorithm 

Å First derivative of a Bezier curve 

Å Endpoints:  
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De Casteljau algorithm 

ÅSecond derivative of a Bezier curve 
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Bezier Curves 
Bernstein form 



Bernstein Basis 

Bezier curves are algebraically defined using the 
Bernstein basis: 

ωBernstein basis of degree n:  

 
 

 

{ })()(
1

)(
0 ,...,, n

n
nn BBBB=

( )inin
i tt

i

n
tB

-
-öö

÷

õ
ææ
ç

å
= 1:)()(

n = 10 n = 2 (quad.) 

B0 

B1 

B2 

n = 3 (cubic) 

B0 

B1 B2 

B3 



Bernstein Basis 

de Casteljau algorithm 

curve basis function control point 

Bernstein form 
Ὢὸ ὄ ὸ  Ἰ 



Examples 

The first three Bernstein bases: 
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Bezier Curves in Bernstein form 

Bezier Curves: 
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t Í [0..1] 



Summary for Bezier Curves 

Bezier curves and curve design: 
ωThe rough form is specified by the position of the control 

points 

ωResult: smooth curve approximating the control points 

ωComputation / Representation: 
Áde Casteljau algorithm 

ÁBernstein form 

 

ωProblems: 
Áhigh polynomial degree 

Ámoving a control point can change the whole curve 

Áinterpolation of points 

Á" Bezier splines 



Towards Bezier Splines 

Approximation Interpolation 



Towards Bezier Splines 

Interpolation problem: 

ω given:  

     control points 

     knot sequence 

 

 

ωwanted: 

 interpolating curve x(t), i.e., x(ti) = k i for i = 0, é, n 

 

ωApproach: 
"Joining" of n Bezier curves with certain intersection conditions 



Towards Bezier Splines 

The following issues arise when stitching together 
Bezier curves: 

Å Continuity 

Å Degree 

Å (Parameterization) 



Bezier Splines 
Parametric and Geometric Continuity 



Continuity 

Joining of curves - continuity 

ωgiven: 2 curves 

  x1(t) over [t0, t1] 

  x2(t) over [t1, t2] 

 

ω x1 and x2 are Cr continuous in t1, if they coincide in  

    0th ς rth derivative vector in t1. 

 



Continuity 

C-1 continuity C0 continuity 

C1 continuity C2 continuity 



Continuity 

Parametric Continuity Cr: 

ωC0, C1, C2... continuity. 

ωDoes a particle moving on this curve have a smooth 
trajectory (position, velocity, acceleration,...)? 

ωUseful for animation (object movement, camera paths) 

ωDepends on parameterization 

Geometric Continuity Gr: 

ωIndependent of parameterization 

ωIs the curve itself smooth? 

ωMore relevant for modeling (curve design) 



Bezier Splines 

Local control: Bezier splines 

ωConcatenate several curve segments 

ωQuestion: Which constraints to place upon the control 
points in order to get C-1, C0, C1, C2 continuity? 

p0 

p1 

p2 

p3 

p0 

p1 

p2 

p3 

(i) 

(i) 
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(i) 

(i+1) 
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Bezier Spline Continuity 

Rules for Bezier spline continuity: 

ωC0 continuity: 

ÁEach spline segment interpolates the first and last control point 

ÁTherefore: Points of neighboring segments have to coincide for 
C0 continuity. 
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Bezier Spline Continuity 

Rules for Bezier spline continuity: 

ωAdditional requirement for C1 continuity: 

ÁTangent vectors are proportional to differences p1 ς p0, pn ς pn-1 

ÁTherefore: These vectors must be identical for C1 continuity 

p1 
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(i) p0 

(i) p2 

p3 
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p1 
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Bezier Spline Continuity 

Rules for Bezier spline continuity: 

ωAdditional requirement for C2 continuity: 

ÁἬ Ἤ  



Continuity 

C-1 continuity C0 continuity 

G1 continuity C1 continuity 



Bezier Splines 
Choosing the degree 



Choosing the Degree... 

Candidates: 

ωd = 0 (piecewise constant): not smooth 

ωd = 1 (piecewise linear): not smooth enough 

ωd = 2 (piecewise quadratic): constant 2nd 
derivative, still too inflexible 

ωd = 3 (piecewise cubic): degree of choice 
for computer graphics applications 



Cubic Splines 

Cubic piecewise polynomials: 

ωWe can attain C2 continuity without fixing the second 
derivative throughout the curve 

ωC2 continuity is perceptually important 
ÁWe can see second order shading discontinuities  

(esp.: reflective objects) 

ÁMotion: continuous position, velocity & acceleration 
Discontinuous acceleration noticeable (object/camera motion) 

ωOne more argument for cubics: 
ÁAmong all C2 curves that interpolate a set of points (and obey to 

the same end conditions), a piecewise cubic curve has the least 
ƛƴǘŜƎǊŀƭ ŀŎŎŜƭŜǊŀǘƛƻƴ όάǎƳƻƻǘƘŜǎǘ ŎǳǊǾŜ ȅƻǳ Ŏŀƴ ƎŜǘέύΦ 

ïsee AdditionalMaterial /CubicsMinimizeAcceleration.pdf  



Spline Surfaces 



Spline Surfaces 

Two different approaches 

ωTensor product surfaces 

ÁSimple construction 

ÁEverything carries over 
from curve case 

ÁQuad patches 

ÁDegree anisotropy 

ωTotal degree surfaces 

ÁNot as straightforward 

ÁIsotropic degree 

ÁTriangle patches 

ÁάbŀǘǳǊŀƭέ ƎŜƴŜǊŀƭƛȊŀǘƛƻƴ of curves 



Tensor Product Surfaces 



Tensor Product Bezier Surfaces 

Bezier curves: 
repeated linear interpolation 

bilinear interpolation: 
repeated linear interpolation 

repeated bilinear interpolation: 
gives us tensor product Bezier surfaces 
(example shows quadratic Bezier surface) 

now a different setup: 
4 points b00, b10, b11, b01 

parameter area [0,1] ³ [0,1] 

b00 

b01 

b10 

b11 

x(u,v) 



De Casteljau Algorithm 

De Casteljau algorithm for tensor product surfaces: 

v 

u b(0,0,0; 0,0,0) 

b(1,1,1; 0,0,0) 

b(0,0,0; 1,1,1) 

b(1,1,1; 1,1,1) 

b(u,u,u; v,v,v) 

b(u,0,0; v,0,0) 

b(u,0,0; v,1,1) 

b(u,1,1; v,0,0) 

b(u,1,1; v,1,1) 

b(u,u,0; v,v,1) 

b(u,u,0; v,v,0) 

b(u,u,1; v,v,1) 

b(u,u,1; v,v,0) 



Tensor Product Surfaces 

Tensor Product Surfaces: 
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Tensor Product Surfaces 
Bezier Patches 



Bezier Patches 

Bezier Patches: 

ωRemember endpoint interpolation: 

ÁBoundary curves are Bezier 
curves of the boundary 
control points 

d = 10 d = 3 

B0 

B1 B2 

B3 



Continuity Conditions 

For C0 continuity: 

ωBoundary control points must match 

For C1 continuity: 

ωDifference vectors must match at the boundary 


