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Geometric Modeling: Introduction 

● There are many ways for creating graphical data. 

● Classic way: Geometric Modeling 
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Geometric Modeling: Introduction 

● There are many ways for 

creating graphical data. 

● Other approaches: 

● 3D scanners 

● Photography for measuring 

optical properties 

● Simulations, e.g., for flow 

data 3D Scanning 
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Geometric Modeling: Introduction 

● Geometric objects convey a part of the real or theoretical 

world; often, something tangible 

● They are described by their geometric and topological 

properties: 

● Geometry describes the form and the position/orientation in a 

coordinate system. 

● Topology defines the fundamental structure that is invariant against 

continuous transformations. 

 

Different geometry 

Same topology 

Different geometry 

Different topology 



Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015 

Geometric Modeling: Introduction 

● Geometric Modeling is the computer-aided design and 

manipulation of geometric objects. (CAD) 

● It is the basis for: 

● computation of geometric properties 

● rendering of geometric objects 

● physics computations (if some physical attributes are given) 
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Geometric Modeling: Introduction 

● 3D models are geometric representations of 3D objects with 

a certain level of abstraction. 

● We distinguish between three types of models: 

● Wire Frame Models 

● describe an object using boundary lines 

● Surface Models 

● describe an object using boundary surfaces 

● Solid Models 

● describe an object as a solid 
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Geometric Modeling: Introduction 

Wire Frame Models 

● Describe an object using boundary 

curves 

● No relationship between these 

curves 

● Surfaces between them are not 

defined 

● Properties: 

● simple, traditional 

● non-sense objects possible 

● visibility of curves cannot be decided 

● solid object intersection cannot be 

computed 

● surfaces between the curves cannot 

be computed automatically 

● not useable for CAD/CAM 

non-sense objects (Ernst, 1987) 

ambiguity of wire frame models 
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Geometric Modeling: Introduction 

Surface Models 

● Defines surfaces between boundary 

curves 

● Describes the hull, but not the 

interior of an object 

● Often implemented using polygons, 

hull of a sphere or ellipsoid, free-

form surfaces, … 

● No relationship between the 

surfaces 

● The interior between them is not 

defined 

● Visibility computations: yes 

Solid intersection comp.: no 

● Most often used type of model 

polygonal surface 

representation 

parametric surface 

representation 

using 32 Bezier 

patches 
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Geometric Modeling: Introduction 

Solid Models 

● Describe the 3D object 

completely by covering the solid 

● For every point in 3D, we can 

decide whether it is inside or 

outside of the solid. 

● Visibility and intersection 

computations are fully supported 

● Basis for creating solid objects 

using computer-aided 

manufacturing 

 

solid model and a cut through it 

(Werkbild Strässle, from Ockert, 1993) 

visibility computation for lines using a solid model 
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Geometric Modeling: Introduction 

Chrome-cobalt disc with crowns for dental implants, manufactured using WorkNC CAM 

Sescoi CAD/CAM 
http://www.flickr.com/photos/cadcamzone/4679188766/. Licensed under CC BY-SA 2.0 via Commons - 

https://commons.wikimedia.org/wiki/File:Disc_with_dental_implants_made_with_WorkNC.jpg#/media/File:Disc_with_dental_implants_made_with_WorkNC.jpg 
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Geometric Modeling 

Bezier Curves, Splines and Surfaces 

 
de Casteljau Algorithm 

Bernstein Form 

Bezier Splines 

Tensor Product Surfaces 

Total Degree Surfaces 



Bezier Curves 
de Casteljau algorithm 

• Paul de Casteljau (1959) @ Citroën 
• Pierre Bezier (1963) @ Renault 

Meine Zeit bei Citroën / My time at Citroën 
see the PDF deCasteljau_de.pdf and deCasteljau_en.pdf in the download area of the webpage 



Bezier curves 

History: 

• Bezier curves/splines developed by 

 Paul de Casteljau at Citroën (1959) 

 Pierre Bézier at Renault (1963) 

 for free-form parts in automotive design 

• Today: Standard tool for 2D curve editing 

• Cubic 2D Bezier curves are everywhere: 

 Postscript, PDF, Truetype (quadratic curves), Windows GDI... 

 Inkscape, Corel Draw, Adobe Illustrator, Powerpoint, ... 

• Widely used in 3D curve & surface modeling as well 



All You See is Bezier Curves... 



De Casteljau algorithm 

Approximation setting: 

Given: p0, …, pn 

Wanted: smooth, approximating curve 



De Casteljau algorithm 

Linear interpolation 



De Casteljau algorithm 

Parabolas 

 planar curve, even if defined in R3 

 

Example: 



De Casteljau algorithm 

Another parabola construction 

given: 3 points b0, b1, b2 

 

parabola x(t) 



De Casteljau algorithm 

Example 



De Casteljau algorithm 

De Casteljau Algorithm: Computes x (t) for given t 

• Bisect control polygon in ratio t : (1 – t) 

• Connect the new dots with lines (adjacent segments) 

• Interpolate again with the same ratio 

• Iterate, until only one point is left 



De Casteljau algorithm 

Description of the de Casteljau algorithm 

• given: points  

• wanted: curve 

 

• geometric construction of the point x(t) for given t: 

 

 

 

 

• Then,         is the searched curve point x(t) at the 
parameter value t 



De Casteljau algorithm 
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De Casteljau algorithm 

bi
(r) = (1-t)·bi
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De Casteljau algorithm 

bi
(r) = (1-t)·bi
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De Casteljau algorithm 

bi
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(r-1) + t·bi+1
(r-1)  

b0
(0) 

b1
(0) 

b2
(0) 

b3
(0) 

b0
(1) 

b1
(1) 

b2
(1) 

b0
(2) 

b1
(2) 

b0
(3) = x(t) 

repeated convex combination of control points 

b0
(0) 

b1
(0) 

b2
(0) 

b3
(0) 

b0
(1) 

b1
(1) 

b2
(1) 

1-t 

1-t 

1-t 

t 

t 

t 

b0
(2) 

b1
(2) 

1-t 

t 

1-t 

t b0
(3) = x(t) 

1-t 

t 

de Casteljau scheme 



De Casteljau algorithm 

The intermediate coefficients bi
r(t) can be written in 

a triangular matrix: the de Casteljau scheme: 



De Casteljau algorithm 

Algorithm: 
for r = 1..n do 

   for i = 0..n-r do 

      bi
(r) = (1-t)·bi

(r-1) + t·bi+1
(r-1)  

   end for 

end for 

return b0
(n) 
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The whole algorithm consists only of 
repeated linear interpolations. 



De Casteljau algorithm 

The polygon consisting of the points b0, …, bn is called 
Bezier polygon. The points bi are called Bezier points. 

The curve defined by the Bezier points b0, …, bn and the 
de Casteljau algorithm is called Bezier curve. 

The de Casteljau algorithm is numerically stable, since 
only convex combinations are applied. 

Complexity of the de Casteljau algorithm 
• O(n2) time 

• O(n) memory 

• with n being the number of Bezier points 



De Casteljau algorithm 

Properties of Bezier curves: 

• given: Bezier points b0, …, bn  

          Bezier curve x(t) 

• Bezier curve is polynomial curve of degree n. 

• End point interpolation: x(0) = b0, x(1) = bn. The 
remaining Bezier points are only generally approximated. 

• Convex hull property: 

 Bezier curve is completely inside the convex hull of its 
Bezier polygon. 



De Casteljau algorithm 

• Variation diminishing 
no line intersects the Bezier curve more often than its Bezier 
polygon. 

• Influence of Bezier points: global, but pseudo-local 

• global: moving a Bezier point changes the whole curve 
progression 

• pseudo-local: bi has its maximal influence on x(t) at t = i /n. 

• Affine invariance: 
Bezier curve and Bezier polygon are invariant under affine 
transformations 

• Invariance under affine parameter transformations 



De Casteljau algorithm 

• Symmetry: 
The following two Bezier curves coincide, they are 
only traversed in opposite directions: 

 

• Linear precision: 
Bezier curve is line segment, if b0,…, bn are 
collinear 

• Invariant under barycentric combinations  
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De Casteljau algorithm 

• First derivative of a Bezier curve 

• Endpoints:  
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De Casteljau algorithm 

• Second derivative of a Bezier curve 
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Bezier Curves 
Bernstein form 



Bernstein Basis 

Bezier curves are algebraically defined using the 
Bernstein basis: 

• Bernstein basis of degree n:  
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n = 10 n = 2 (quad.) 
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Bernstein Basis 

de Casteljau algorithm 

curve basis function control point 

Bernstein form 
𝑓 𝑡 = 𝐵𝑖

𝑛
𝑡   𝐩i

𝑛

𝑖=0

 



Examples 

The first three Bernstein bases: 
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Bezier Curves in Bernstein form 

Bezier Curves: 

•   
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t  [0..1] 



Summary for Bezier Curves 

Bezier curves and curve design: 
• The rough form is specified by the position of the control 

points 

• Result: smooth curve approximating the control points 

• Computation / Representation: 
 de Casteljau algorithm 

 Bernstein form 

 

• Problems: 
 high polynomial degree 

 moving a control point can change the whole curve 

 interpolation of points 

  Bezier splines 



Towards Bezier Splines 

Approximation Interpolation 



Towards Bezier Splines 

Interpolation problem: 

• given:  

     control points 

     knot sequence 

 

 

• wanted: 

 interpolating curve x(t), i.e., x(ti) = ki for i = 0, …, n 

 

• Approach: 
"Joining" of n Bezier curves with certain intersection conditions 



Towards Bezier Splines 

The following issues arise when stitching together 
Bezier curves: 

• Continuity 

• Degree 

• (Parameterization) 



Bezier Splines 
Parametric and Geometric Continuity 



Continuity 

Joining of curves - continuity 

• given: 2 curves 

  x1(t) over [t0, t1] 

  x2(t) over [t1, t2] 

 

•  x1 and x2 are Cr continuous in t1, if they coincide in  

    0th – rth derivative vector in t1. 

 



Continuity 

C-1 continuity C0 continuity 

C1 continuity C2 continuity 



Continuity 

Parametric Continuity Cr: 

• C0, C1, C2... continuity. 

• Does a particle moving on this curve have a smooth 
trajectory (position, velocity, acceleration,...)? 

• Useful for animation (object movement, camera paths) 

• Depends on parameterization 

Geometric Continuity Gr: 

• Independent of parameterization 

• Is the curve itself smooth? 

• More relevant for modeling (curve design) 



Bezier Splines 

Local control: Bezier splines 

• Concatenate several curve segments 

• Question: Which constraints to place upon the control 
points in order to get C-1, C0, C1, C2 continuity? 
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p3 
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Bezier Spline Continuity 

Rules for Bezier spline continuity: 

• C0 continuity: 

 Each spline segment interpolates the first and last control point 

 Therefore: Points of neighboring segments have to coincide for 
C0 continuity. 
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Bezier Spline Continuity 

Rules for Bezier spline continuity: 

• Additional requirement for C1 continuity: 

 Tangent vectors are proportional to differences p1 – p0, pn – pn-1 

 Therefore: These vectors must be identical for C1 continuity 
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Bezier Spline Continuity 

Rules for Bezier spline continuity: 

• Additional requirement for C2 continuity: 

 𝐝− = 𝐝+ 



Continuity 

C-1 continuity C0 continuity 

G1 continuity C1 continuity 



Bezier Splines 
Choosing the degree 



Choosing the Degree... 

Candidates: 

• d = 0 (piecewise constant): not smooth 

• d = 1 (piecewise linear): not smooth enough 

• d = 2 (piecewise quadratic): constant 2nd 
derivative, still too inflexible 

• d = 3 (piecewise cubic): degree of choice 
for computer graphics applications 



Cubic Splines 

Cubic piecewise polynomials: 

• We can attain C2 continuity without fixing the second 
derivative throughout the curve 

• C2 continuity is perceptually important 
 We can see second order shading discontinuities  

(esp.: reflective objects) 

 Motion: continuous position, velocity & acceleration 
Discontinuous acceleration noticeable (object/camera motion) 

• One more argument for cubics: 
 Among all C2 curves that interpolate a set of points (and obey to 

the same end conditions), a piecewise cubic curve has the least 
integral acceleration (“smoothest curve you can get”). 

– see AdditionalMaterial/CubicsMinimizeAcceleration.pdf 



Spline Surfaces 



Spline Surfaces 

Two different approaches 

• Tensor product surfaces 

 Simple construction 

 Everything carries over 
from curve case 

 Quad patches 

 Degree anisotropy 

• Total degree surfaces 

 Not as straightforward 

 Isotropic degree 

 Triangle patches 

 “Natural” generalization of curves 



Tensor Product Surfaces 



Tensor Product Bezier Surfaces 

Bezier curves: 
repeated linear interpolation 

bilinear interpolation: 
repeated linear interpolation 

repeated bilinear interpolation: 
gives us tensor product Bezier surfaces 
(example shows quadratic Bezier surface) 

now a different setup: 
4 points b00, b10, b11, b01 

parameter area [0,1]  [0,1] 

b00 

b01 

b10 

b11 

x(u,v) 



De Casteljau Algorithm 

De Casteljau algorithm for tensor product surfaces: 

v 

u b(0,0,0; 0,0,0) 

b(1,1,1; 0,0,0) 

b(0,0,0; 1,1,1) 

b(1,1,1; 1,1,1) 

b(u,u,u; v,v,v) 

b(u,0,0; v,0,0) 

b(u,0,0; v,1,1) 

b(u,1,1; v,0,0) 

b(u,1,1; v,1,1) 

b(u,u,0; v,v,1) 

b(u,u,0; v,v,0) 

b(u,u,1; v,v,1) 

b(u,u,1; v,v,0) 



Tensor Product Surfaces 

Tensor Product Surfaces: 

 

 

 

• “Curves of Curves” 

• Order does not matter 
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Tensor Product Surfaces 
Bezier Patches 



Bezier Patches 

Bezier Patches: 

• Remember endpoint interpolation: 

 Boundary curves are Bezier 
curves of the boundary 
control points 

d = 10 d = 3 

B0 

B1 B2 

B3 



Continuity Conditions 

For C0 continuity: 

• Boundary control points must match 

For C1 continuity: 

• Difference vectors must match at the boundary 



C0 Continuity 



C1 Continuity 



C1 Continuity 



Total Degree Surfaces 



Spline Surfaces 

Two different approaches 

• Tensor product surfaces 

 Simple construction 

 Everything carries over 
from curve case 

 Quad patches 

 Degree anisotropy 

• Total degree surfaces 

 Not as straightforward 

 Isotropic degree 

 Triangle patches 

 “Natural” generalization of curves 



Bezier Triangles 

Alternative surface definition: Bezier triangles 

• Constructed according to given 
total degree 

 Completely symmetric: 
No degree anisotropy 

• Can be derived using a triangular 
de Casteljau algorithm 

 Barycentric interpolation 



Barycentric Coordinates 

Barycentric Coordinates: 

• Planar case: 
Barycentric combinations of 3 points 

 
 

• Area formulation: 
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Example 

Cubic Bezier Triangle: c 

a b 
p(a,a,a) p(b,a,a) p(b,b,a) p(b,b,b) 

p(c,a,a) p(c,b,b) 

p(c,c,b) 

p(c,c,c) 

p(c,c,a) 

p(a,b,c) 



De Casteljau Algorithm 
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Continuity 

We need to assemble Bezier triangles continuously: 

• What are the conditions for C0, C1 continuity? 

• As an example, we will look at the quadratic case... 



Continuity 

Situation: 

 

 

• Two Bezier triangles meet along a common edge. 

 Parametrization: T1 = {a, b, c}, T2 = {c, b, d} 

 Polynomial surfaces F(T1), G(T2) 

 Control points: 

– F(T1):  f(a, a),  f(a, b), f(b, b),  f(a, c),  f(c, c), f(b, c) 

– G(T2): g(d, d), g(d, b), g(b, b), g(d, c), g(c, c), g(b, c) 
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Continuity 

Situation: 
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a F 
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f(a, c) 
f(c, c) 

f(b, c) 
g(d, d) 

g(b, d) 

g(b, b) 

g(c, d) 

g(c, c) 

g(b, c) 



Continuity 

C0 Continuity: 

• The points on the boundary 
have to agree: 
f(b, b) = g(b, b) 
f(b, c) = g(b, c) 
f(c, c) = g(c, c) 
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Continuity 

C1 Continuity: 

• We need C0 continuity. 

In addition: 

• Points at hatched 
quadrilaterals are coplanar 

• Hatched quadrilaterals are 
an affine image of the same 
parameter quadrilateral 

 



Curves on Surfaces, trimmed NURBS 

Quad patch problem: 

• All of our shapes are parameterized over rectangular or 
triangular regions 

• General boundary curves are hard to create 

• Topology fixed to a disc (or cylinder, torus) 

• No holes in the middle 

• Assembling complicated shapes is painful 

 Lots of pieces 

 Continuity conditions for assembling pieces become complicated 

 Cannot use C2 B-Splines continuity along boundaries when using 
multiple pieces 



Curves on Surfaces, trimmed NURBS 

Consequence: 

• We need more control over the parameter domain 

• One solution is trimming using curves on surfaces (CONS) 

• Standard tool in CAD: trimmed NURBS 

Basic idea: 

• Specify a curve in the parameter domain that 
encapsulates one (or more) pieces of area 

• Tessellate the parameter domain accordingly to cut out 
the trimmed piece (rendering) 



Curves-on-Surfaces (CONS) 



Curves-on-Surfaces (CONS) 



Curves-on-Surfaces (CONS) 



Summary 

• Bezier Curves 

• de Casteljau algorithm 

• Bernstein form 

• Bezier Splines 

• Bezier Tensor Product Surfaces 

• Bezier Total Degree Surfaces 


