DD2434 - Advanced Machine Learning Gaussian Processes

Carl Henrik Ek {chek}@csc.kth.se

Royal Institute of Technology

November 5th, 2015

Last Lecture

- General Probabilistic Modelling
 - Probabilistic objects
 - Marginalisation
- Kernels
 - Dual linear regression
 - Implications for modelling

Introduction

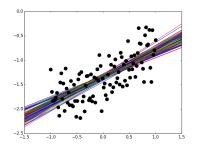
Recap

Kernels

Gaussian Processes

Ek

- Two variates
 - ▶ Input data $\mathbf{x}_i \in \mathbb{R}^q$
 - lacksquare Output data $\mathbf{y}_i \in \mathbb{R}^D$
- Relationship: $f: \mathbf{X} \to \mathbf{Y}$



=K

Uncertainty

- We are uncertain in our data
- This means we cannot trust
 - our observations
 - the mapping that we learn
 - the predictions that we make under the mapping

Uncertainty

- Uncertainty in outputs y_i
 - $Addative noise y_i = Wx_i + \epsilon$
 - Gaussian distributed noise $\epsilon \propto \mathcal{N}(0, \sigma^2)$
- Likelihood

Uncertainty in prediction

- Posterior
 - conditional distribution
 - after the relevant information has been taken into account
- What is relevant
 - our belief: prior $p(\mathbf{W})$
 - the observations: likelihood $p(\mathbf{Y}|\mathbf{W}, \mathbf{X})$

$$p(\mathbf{Y}|\mathbf{W}, \mathbf{X}) = \prod_{i}^{N} p(\mathbf{y}_{i}|\mathbf{W}, \mathbf{x}_{i})$$
(1)

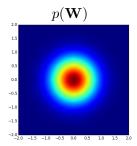
Structure

- Do the variables co-vary?
- Are there (in-)dependency structures that I can exploit?

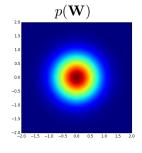
:K

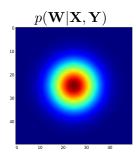
Toolbox

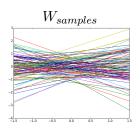
- 1. Formulate prediction error likelihood
 - ▶ Does the likelihood have structure?
- 2. Formulate belief of model in prior
 - Does the prior have structure
- 3. Reach the posterior by combining likelihood and prior
- **4.** Choose model based on evidence $p(\mathcal{D}|\mathcal{M})$

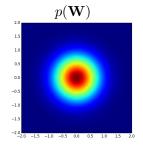


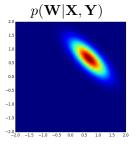
KTH

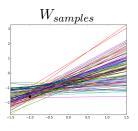


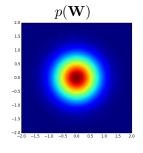


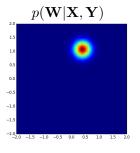


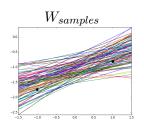


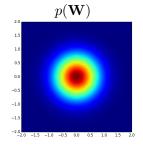


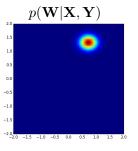


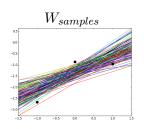


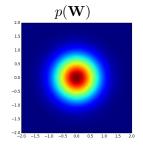


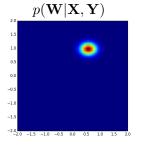


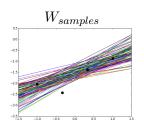


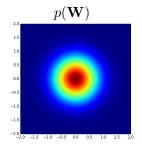


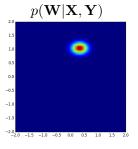


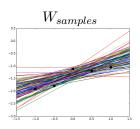


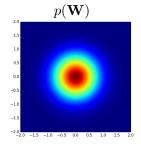


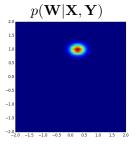


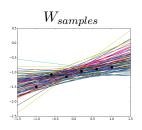


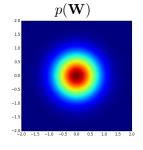


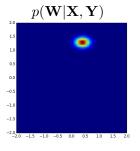


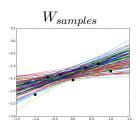


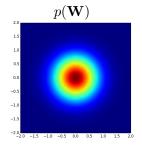


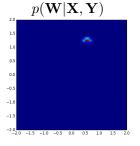


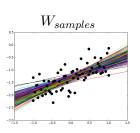


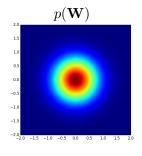


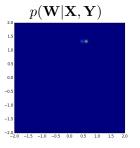


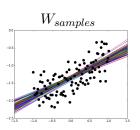












Conditional¹

$$p(\mathbf{X}|\mathbf{Y}) = \frac{p(\mathbf{Y}|\mathbf{X})p(\mathbf{X})}{p(\mathbf{Y})}$$
 (2)

Conjugate Distributions

- The posterior and the prior are in the same family
- Relationship with all **three** terms

¹Wikipedia, Bishop 2006, p. 2.4.2

Marginal

$$p(\mathbf{Y}|\mathbf{X}) = \int p(\mathbf{Y}|\mathbf{W}, \mathbf{X})p(\mathbf{W})d\mathbf{W}$$
 (3)

- Average according to belief and how well the model fits the observations
- "Pushes" uncertain belief in parameters (in this case) through to the observations
- Gaussian marginal is Gaussian

Dual Linear Regression²

$$[\mathbf{K}]_{ij} = \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j \tag{4}$$

$$J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^{\mathsf{T}}\mathbf{K}\mathbf{K}\mathbf{a} - \mathbf{a}\mathbf{K}\mathbf{y} + \frac{1}{2}\mathbf{y}^{\mathsf{T}}\mathbf{y} + \frac{\lambda}{2}\mathbf{a}^{\mathsf{T}}\mathbf{K}\mathbf{a}$$
 (5)

$$\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y} \tag{6}$$

²Bishop 2006, p. 6.1.

$$[\mathbf{K}]_{ij} = \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j \tag{7}$$

$$J(\mathbf{a}) = \frac{1}{2} \mathbf{a}^{\mathsf{T}} \mathbf{K} \mathbf{K} \mathbf{a} - \mathbf{a} \mathbf{K} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{y} + \frac{\lambda}{2} \mathbf{a}^{\mathsf{T}} \mathbf{K} \mathbf{a}$$
(8)

$$\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y} \tag{9}$$

$$\mathbf{y}(\mathbf{x}_i) = \mathbf{w}\mathbf{x}_i = \mathbf{a}^{\mathrm{T}}\mathbf{X}\mathbf{x}_i = k(\mathbf{x}_i, \mathbf{X})^{\mathrm{T}}(\mathbf{K} + \lambda \mathbf{I})^{-1}\mathbf{y}$$
(10)

²Bishop 2006, p. 6.1.

Kernel Functions

A function such that

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x}_j) = \tag{11}$$

$$= ||\phi(\mathbf{x}_i)||||\phi(\mathbf{x}_j)||\cos(\theta)$$
 (12)

• If we have $k(\cdot, \cdot)$ we *never* have to know the mapping $\phi(\cdot)$

- Kernels allows for *implicit* feature mappings
 - ▶ We do **NOT** need to know the feature space
 - Example: The space can have infinite dimensionality
 - ▶ The mapping can be non-linear but the problem is remains linear!
 - ▶ Allows for putting weird things like, strings (DNA) in a vector space

- Kernels allows for *implicit* feature mappings
 - ► We do **NOT** need to know the feature space
 - Example: The space can have infinite dimensionality
 - ▶ The mapping can be non-linear but the problem is remains linear!
 - ▶ Allows for putting weird things like, strings (DNA) in a vector space

- Kernels allows for *implicit* feature mappings
 - ► We do **NOT** need to know the feature space
 - Example: The space can have infinite dimensionality
 - ▶ The mapping can be non-linear but the problem is remains linear!
 - ▶ Allows for putting weird things like, strings (DNA) in a vector space

- Kernels allows for *implicit* feature mappings
 - ▶ We do **NOT** need to know the feature space
 - Example: The space can have infinite dimensionality
 - ► The mapping can be non-linear but the problem is remains linear!
 - ▶ Allows for putting weird things like, strings (DNA) in a vector space

This Lecture

- Kernel Methods
 - Implicit feature spaces
 - Building kernels
- Gaussian Processes
 - Priors over the space of functions
 - Learning parameters of kernels

Introduction

Recap

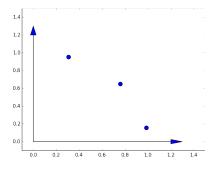
Kernels

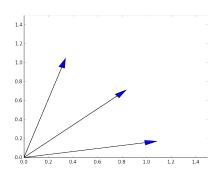
Gaussian Processes

$$\sigma(\mathbf{X}, \mathbf{Y}) = \mathbb{E}\left[(\mathbf{X} - \mathbb{E}[\mathbf{X}])^{\mathrm{T}} (\mathbf{Y} - \mathbb{E}[\mathbf{Y}]) \right] =$$

$$= \mathbb{E}[\mathbf{X}^{\mathrm{T}} \mathbf{Y}] - \mathbb{E}[\mathbf{X}]^{\mathrm{T}} \mathbb{E}[\mathbf{Y}] = \{\mathbb{E}[\mathbf{X}] = \mathbb{E}[\mathbf{Y}] = \mathbf{0}\} =$$

$$= \mathbb{E}[\mathbf{X}^{\mathrm{T}} \mathbf{Y}]$$
(13)





$$\sigma(\mathbf{X}, \mathbf{Y}) = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \end{bmatrix} \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \\ y_{31} & y_{32} \end{bmatrix} = (14)$$

$$= \begin{bmatrix} x_{11}y_{11} + x_{21}y_{21} + x_{31}y_{31} & x_{11}y_{12} + x_{21}y_{22} + x_{31}y_{32} \\ x_{12}y_{11} + x_{22}y_{21} + x_{32}y_{31} & x_{12}y_{12} + x_{22}y_{22} + x_{32}y_{32} \end{bmatrix}$$

$$\sigma(\mathbf{X}, \mathbf{Y}) = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \end{bmatrix} \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \\ y_{31} & y_{32} \end{bmatrix} = (15)$$

$$= \begin{bmatrix} x_{11}y_{11} + x_{21}y_{21} + x_{31}y_{31} & x_{11}y_{12} + x_{21}y_{22} + x_{31}y_{32} \\ x_{12}y_{11} + x_{22}y_{21} + x_{32}y_{31} & x_{12}y_{12} + x_{22}y_{22} + x_{32}y_{32} \end{bmatrix}$$

$$\sigma(\mathbf{X}^{\mathsf{T}}, \mathbf{Y}^{\mathsf{T}}) = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \end{bmatrix} \begin{bmatrix} y_{11} & y_{21} & y_{31} \\ y_{12} & y_{22} & y_{32} \end{bmatrix} = (16)$$

$$= \begin{bmatrix} x_{11}y_{11} + x_{12}y_{12} & x_{11}y_{21} + x_{12}y_{22} & x_{11}y_{31} + x_{12}y_{32} \\ x_{21}y_{11} + x_{22}y_{12} & x_{21}y_{21} + x_{22}y_{22} & x_{21}y_{31} + x_{22}y_{32} \\ x_{31}y_{11} + x_{32}y_{12} & x_{31}y_{21} + x_{32}y_{22} & x_{31}y_{31} + x_{32}y_{32} \end{bmatrix}$$

ΞK

Kernels and covariances

- Covariance between columns: $\mathbf{X}^{T}\mathbf{Y}$ (data-dimensions)
- Covariance between rows: XY^T (data-points)
- Kernels: $k(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^{\mathrm{T}} \phi(\mathbf{y})$
 - Kernel functions are covariances between data-points
- A kernel function describes the co-variance of the *data* points
- Specific class of functions

- Covariance between columns: $\mathbf{X}^{T}\mathbf{Y}$ (data-dimensions)
- Covariance between rows: $\mathbf{X}\mathbf{Y}^{\mathrm{T}}$ (data-points)
- Kernels: $k(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^{\mathrm{T}} \phi(\mathbf{y})$
 - Kernel functions are covariances between data-points
- A kernel function describes the co-variance of the *data* points
- Specific class of functions

- Covariance between columns: X^TY (data-dimensions)
- Covariance between rows: **XY**^T (data-points)
- Kernels: $k(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^{\mathrm{T}} \phi(\mathbf{y})$
 - Kernel functions are covariances between data-points
- A kernel function describes the co-variance of the data points
- Specific class of functions

- Covariance between columns: X^TY (data-dimensions)
- Covariance between rows: **XY**^T (data-points)
- Kernels: $k(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^{\mathrm{T}} \phi(\mathbf{y})$
 - Kernel functions are covariances between data-points
- A kernel function describes the co-variance of the *data* points
- Specific class of functions

- Covariance between columns: $\mathbf{X}^{T}\mathbf{Y}$ (data-dimensions)
- Covariance between rows: **XY**^T (data-points)
- Kernels: $k(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^{\mathrm{T}} \phi(\mathbf{y})$
 - Kernel functions are covariances between data-points
- A kernel function describes the co-variance of the *data* points
- Specific class of functions

- Covariance between columns: $\mathbf{X}^{T}\mathbf{Y}$ (data-dimensions)
- Covariance between rows: **XY**^T (data-points)
- Kernels: $k(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^{\mathrm{T}} \phi(\mathbf{y})$
 - Kernel functions are covariances between data-points
- A kernel function describes the co-variance of the *data* points
- Specific class of functions

$$k(\mathbf{x}_i, \mathbf{x}_j) = \sigma^2 e^{-\frac{1}{2\ell^2} (\mathbf{x}_i - \mathbf{x}_j)^{\mathsf{T}} (\mathbf{x}_i - \mathbf{x}_j)}$$
(17)

Squared Exponential

- How does the data vary along the dimensions spanned by the data
- RBF, Squared Exponential, Exponentiated Quadratic
- Co-variance smoothly decays with distance

Recap Kernels Gaussian Processes References

Building Kernels

Expression	Conditions
$k(\boldsymbol{x},\boldsymbol{z})=ck_1(\boldsymbol{x},\boldsymbol{z})$	c - any non negative real constant.
$k(\boldsymbol{x},\boldsymbol{z})=f(\boldsymbol{x})k_1(\boldsymbol{x},\boldsymbol{z})f(\boldsymbol{z})$	f - any real-valued function.
$k(\boldsymbol{x},\boldsymbol{z})=q(k_1(\boldsymbol{x},\boldsymbol{z}))$	q - any polynomial with non-negative coefficients.
$k(\boldsymbol{x}, \boldsymbol{z}) = \exp(k_1(\boldsymbol{x}, \boldsymbol{z}))$	
$k(\boldsymbol{x},\boldsymbol{z}) = k_1(\boldsymbol{x},\boldsymbol{z}) + k_2(\boldsymbol{x},\boldsymbol{z})$	
$k(\boldsymbol{x},\boldsymbol{z})=k_1(\boldsymbol{x},\boldsymbol{z})k_2(\boldsymbol{x},\boldsymbol{z})$	
$k(\mathbf{x}, \mathbf{z}) = k_3(\phi(\mathbf{x}), \phi(\mathbf{z}))$	k_3 - valid kernel in the space mapped by ϕ .
$k(\mathbf{x}, \mathbf{z}) = \langle \mathbf{A}\mathbf{x}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{A}\mathbf{z} \rangle$	A - symmetric psd matrix.
$k(\boldsymbol{x},\boldsymbol{z}) = k_a(\boldsymbol{x}_a,\boldsymbol{z}_a) + k_b(\boldsymbol{x}_b,\boldsymbol{z}_b)$	\mathbf{x}_a and \mathbf{x}_b - non-necessarily disjoint partitions of \mathbf{x} ;
$k(\mathbf{x},\mathbf{z})=k_a(\mathbf{x}_a,\mathbf{z}_a)k_b(\mathbf{x}_b,\mathbf{z}_b)$	k_a and k_b - valid kernels on their respective spaces.

Εk

troduction Recap **Kernels** Gaussian Processes Reference

Summary

- Defines inner products in *some* space
 - We don't need to know the space its implicitly defined by the kernel function
- Defines co-variance between data-points

luction Recap Kernels Gaussian Processes Reference

Summary

- Defines inner products in *some* space
 - We don't need to know the space, its implicitly defined by the kernel function
 - Defines co-variance between data-points

Recap Kernels Gaussian Processes References

Summary

- Defines inner products in *some* space
- We don't need to know the space, its implicitly defined by the kernel function
- Defines co-variance between *data-points*

Introduction

Recap

Kernels

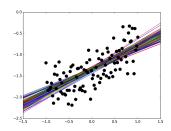
Gaussian Processes

ΕK

Recap Kernels Gaussian Processes References

What have you seen up till now?

- Probabilistic modelling
 - likelihood, prior, posterior
 - marginalisation
- Implicit feature spaces
 - kernel functions
- We have assumed the form of the mapping without uncertainty

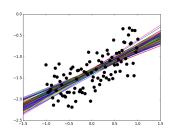


ΕK

Recap Kernels Gaussian Processes References

What have you seen up till now?

- Probabilistic modelling
 - likelihood, prior, posterior
 - marginalisation
- Implicit feature spaces
 - kernel functions
- We have assumed the form of the mapping without uncertainty



- General Regression

Outline

- General Regression
- Introduce uncertainty in mapping
- prior over the space of functions

Outline

- General Regression
- Introduce uncertainty in mapping
- prior over the space of functions

Regression

Regression model,

$$\mathbf{y}_i = f(\mathbf{x}_i) + \boldsymbol{\epsilon} \tag{18}$$

$$\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$
 (19)

Introduce f_i as instansiation of function,

$$f_i = f(\mathbf{x}_i), \tag{20}$$

as a new random variable.

Regression

Model,

$$p(\mathbf{Y}, \mathbf{f}, \mathbf{X}, \boldsymbol{\theta}) = p(\mathbf{Y}|\mathbf{f})p(\mathbf{f}|\mathbf{X}, \boldsymbol{\theta})p(\mathbf{X})p(\boldsymbol{\theta})$$
(21)

Want to "push" X through a mapping f of which we are uncertain,

$$p(\mathbf{f}|\mathbf{X}, \boldsymbol{\theta}),$$
 (22)

prior over instansiations of function.

3

2

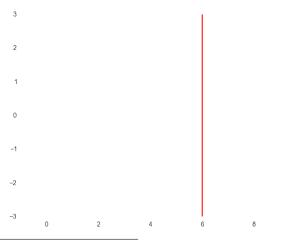
-1

-2

-3

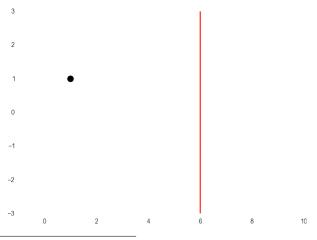
10

³Lecture7/gp_basics.py

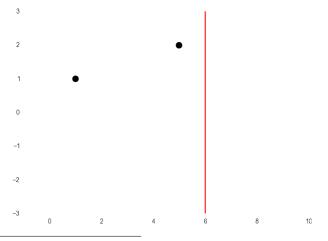


 3 Lecture7/gp_basics.py

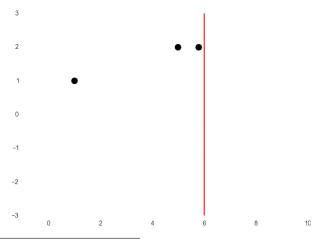
10



 3 Lecture7/gp_basics.py



 3 Lecture7/gp_basics.py



 3 Lecture7/gp_basics.py

Gaussian Distribution

Joint Distribution,

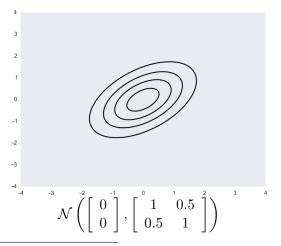
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma(x_1, x_1) & \sigma(x_1, x_2) \\ \sigma(x_2, x_1) & \sigma(x_2, x_2) \end{bmatrix} \right). \tag{23}$$

$$x_2|x_1 \sim \mathcal{N}\left(\mu_2 + \sigma(x_1, x_2)\sigma(x_1, x_1)^{-1}(x_1 - \mu_1), \sigma(x_2, x_2) - \sigma(x_2, x_1)\sigma(x_1, x_1)^{-1}\sigma(x_1, x_2)\right)$$
 (24)

ΕK

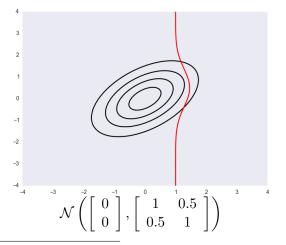
$$\mathcal{N}\left(\left[\begin{array}{c}0\\0\end{array}\right],\left[\begin{array}{cc}1&0.5\\0.5&1\end{array}\right]\right)\tag{25}$$

⁴Lecture7/conditional_gaussian.py



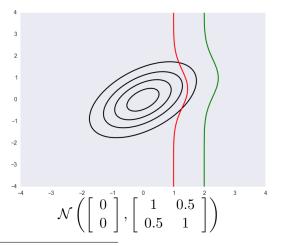
(26)

⁴Lecture7/conditional_gaussian.py



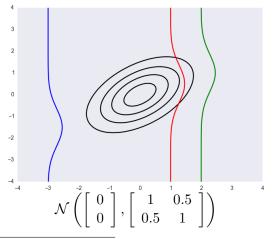
(27)

⁴Lecture7/conditional_gaussian.py



(28)

⁴Lecture7/conditional_gaussian.py



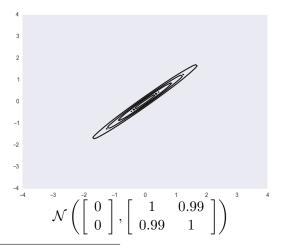
⁴Lecture7/conditional_gaussian.py

Ek

(29)

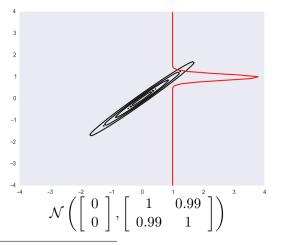
$$\mathcal{N}\left(\left[\begin{array}{c}0\\0\end{array}\right], \left[\begin{array}{cc}1&0.99\\0.99&1\end{array}\right]\right) \tag{30}$$

⁴Lecture7/conditional_gaussian.py



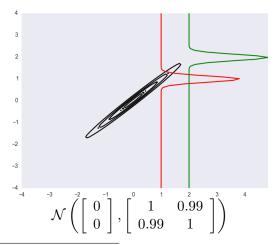
⁽³¹⁾

⁴Lecture7/conditional_gaussian.py



(32)

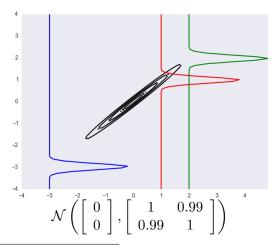
⁴Lecture7/conditional_gaussian.py



⁴Lecture7/conditional_gaussian.py

Ek

(33)

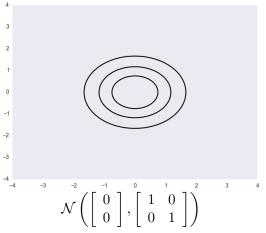


(34)

⁴Lecture7/conditional_gaussian.py

$$\mathcal{N}\left(\left[\begin{array}{c}0\\0\end{array}\right],\left[\begin{array}{c}1&0\\0&1\end{array}\right]\right) \tag{35}$$

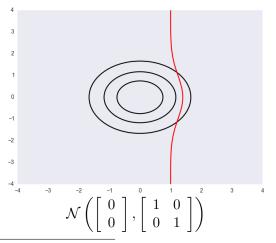
⁴Lecture7/conditional_gaussian.py



(36)

⁴Lecture7/conditional_gaussian.py

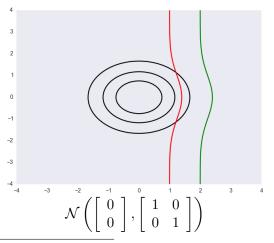
The Gaussian Conditional⁴



(37)

⁴Lecture7/conditional_gaussian.py

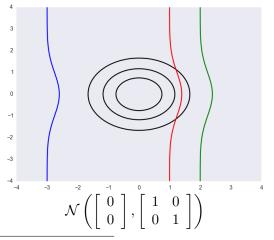
The Gaussian Conditional⁴



(38)

⁴Lecture7/conditional_gaussian.py

The Gaussian Conditional⁴

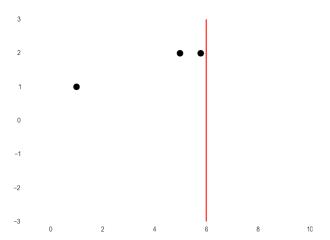


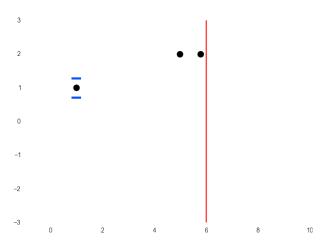
(39)

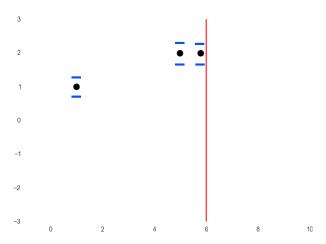
⁴Lecture7/conditional_gaussian.py

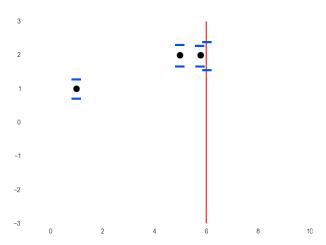
eureka!

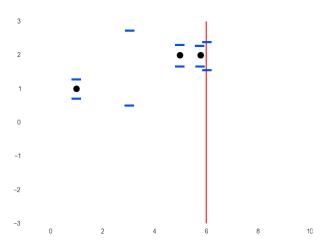
Ek KT⊦

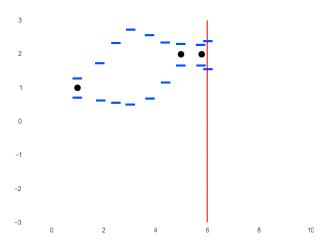


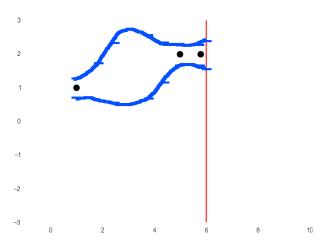




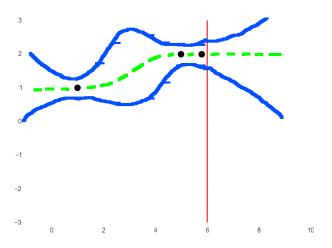




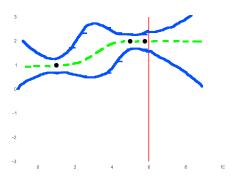




KTH

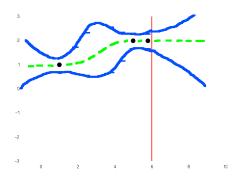


кт



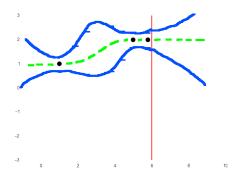
If all instansiations of the function is jointly Gaussian such that the co-variance structure depends on how much information an observation provides for the other we will get the curve above.

KTH KTH



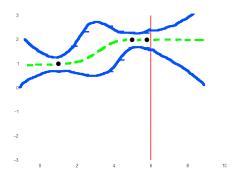
Row space

- Co-variance between each point!
- Co-variance function is a kernel:
- We can do all this in induced space, i.e. allow for any function!



Row space

- Co-variance between each point!
- Co-variance function is a kernel!
- We can do all this in induced space, i.e. allow for any function!



Row space

- Co-variance between each point!
- Co-variance function is a kernel!
- We can do all this in induced space, i.e. allow for any function!

$$p(\mathbf{f}|\mathbf{X}, \boldsymbol{\theta}) \sim \mathcal{GP}(\mu(\mathbf{X}), k(\mathbf{X}, \mathbf{X}))$$
 (40)

Defenition

A Gaussian Process is an infinite collection of random variables who **any** subset is jointly gaussian. The process is specified by a mean function $\mu(\cdot)$ and a co-variance function $k(\cdot,\cdot)$

$$f \sim \mathcal{GP}(\mu(\cdot), k(\cdot, \cdot)) \tag{41}$$

⁵Bishop 2006, p. 6.4.2

uction Recap Kernels Gaussian Processes References

Gaussian Processes⁵

$$p(\mathbf{f}|\mathbf{X}, \boldsymbol{\theta}) \sim \mathcal{GP}(\mu(\mathbf{X}), k(\mathbf{X}, \mathbf{X}))$$
 (42)

$$\mathbf{y}_i = f_i + \boldsymbol{\epsilon} \tag{43}$$

$$\boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{I}) \tag{44}$$

$$p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) = \int p(\mathbf{Y}|\mathbf{f})p(\mathbf{f}|\mathbf{X}, \boldsymbol{\theta})df$$
 (45)

Connection to Distribution

 \mathcal{GP} is infinite, but we only observe finite amount of data. This means conditioning on a subset of the data, the \mathcal{GP} is a just a Gaussian distribution, which is self-conjugate.

ΕK

⁵Bishop 2006, p. 6.4.2

Recap Kernels Gaussian Processes References

Gaussian Processes⁵

The mean function

- Function of only the input location
- What do I expect the function value to be only accounting for the input location
- We will assume this to be constant

The co-variance function

- Function of **two** input locations
- How should the information from other locations with known function value observations effect my estimate
- Encodes the behavior of the function

⁵Bishop 2006, p. 6.4.2

Recap Kernels Gaussian Processes References

Gaussian Processes⁵

The mean function

- Function of only the input location
- What do I expect the function value to be only accounting for the input location
- We will assume this to be constant

The co-variance function

- Function of **two** input locations
- How should the information from other locations with known function value observations effect my estimate
- Encodes the behavior of the function

⁵Bishop 2006, p. 6.4.2

Recap Kernels Gaussian Processes References

Gaussian Processes⁵

The mean function

- Function of only the input location
- What do I expect the function value to be only accounting for the input location
- We will assume this to be constant

The co-variance function

- Function of **two** input locations
- How should the information from other locations with known function value observations effect my estimate
- Encodes the behavior of the function

⁵Bishop 2006, p. 6.4.2

The Prior

$$p(f|\mathbf{X}, \boldsymbol{\theta}) = \mathcal{GP}(\mu(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$
(46)

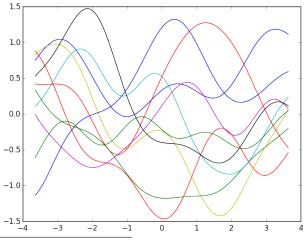
$$\mu(\mathbf{x}) = \mathbf{0} \tag{47}$$

$$k(\mathbf{x}_i, \mathbf{x}_j) = \sigma^2 e^{-\frac{1}{2\ell^2} (\mathbf{x}_i - \mathbf{x}_j)^{\mathrm{T}} (\mathbf{x}_i - \mathbf{x}_j)}$$
(48)

⁵Bishop 2006, p. 6.4.2

troduction Recap Kernels **Gaussian Processes** Reference

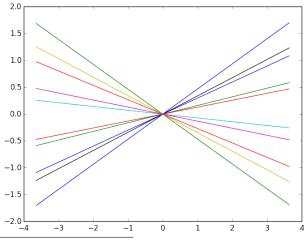
Gaussian Processes⁵



⁵Bishop 2006, p. 6.4.2

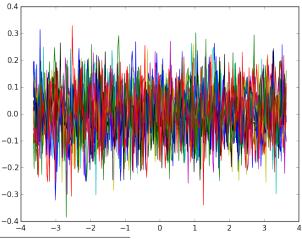
troduction Recap Kernels Gaussian Processes Reference:

Gaussian Processes⁵



⁵Bishop 2006, p. 6.4.2

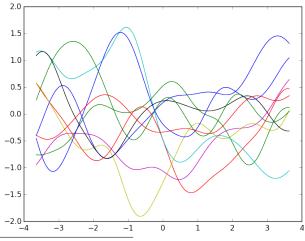
oduction Recap Kernels Gaussian Processes Reference



⁵Bishop 2006, p. 6.4.2

troduction Recap Kernels Gaussian Processes Reference

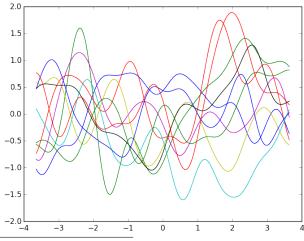
Gaussian Processes⁵



⁵Bishop 2006, p. 6.4.2

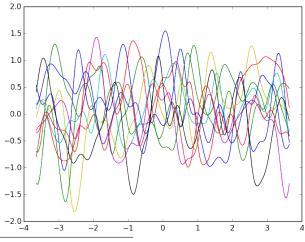
troduction Recap Kernels Gaussian Processes Reference

Gaussian Processes⁵



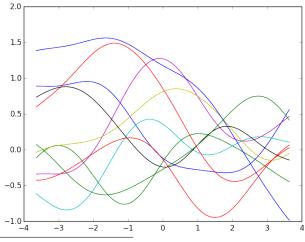
⁵Bishop 2006, p. 6.4.2

roduction Recap Kernels Gaussian Processes Reference

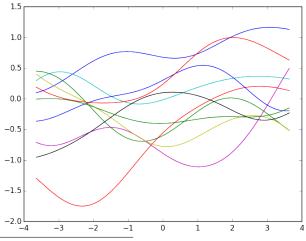


⁵Bishop 2006, p. 6.4.2

troduction Recap Kernels **Gaussian Processes** Reference

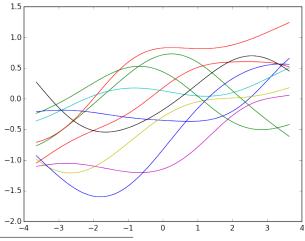


⁵Bishop 2006, p. 6.4.2



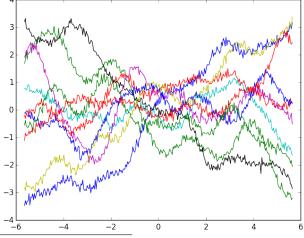
⁵Bishop 2006, p. 6.4.2

troduction Recap Kernels Gaussian Processes References

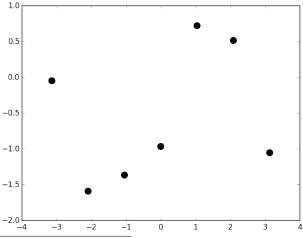


⁵Bishop 2006, p. 6.4.2

troduction Recap Kernels Gaussian Processes Reference



⁵Bishop 2006, p. 6.4.2



⁵Bishop 2006, p. 6.4.2

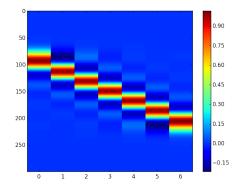
EK

The (predictive) Posterior

$$\begin{bmatrix} \mathbf{f} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} k(\mathbf{X}, \mathbf{X}) & k(\mathbf{X}, \mathbf{x}_*) \\ k(\mathbf{x}_*, \mathbf{X}) & k(\mathbf{x}_*, \mathbf{x}_*) \end{bmatrix} \right)$$
(49)
$$p(f_* | \mathbf{x}_*, \mathbf{X}, \mathbf{f}, \boldsymbol{\theta}) = \mathcal{N}(k(\mathbf{x}_*, \mathbf{X})^T K(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f},$$

$$k(\mathbf{x}_*, \mathbf{x}_*) - k(\mathbf{x}_*, \mathbf{X})^T K(\mathbf{X}, \mathbf{X})^{-1} K(\mathbf{X}, \mathbf{x}_*))$$
(50)

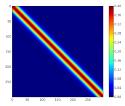
⁵Bishop 2006, p. 6.4.2



$$k(\mathbf{x}_*, \mathbf{X})^{\mathrm{T}} K(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f}$$
 (51)

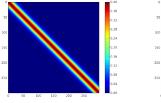
ΕK

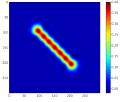
⁵Bishop 2006, p. 6.4.2



$$k(\mathbf{x}_*, \mathbf{x}_*) - k(\mathbf{x}_*, \mathbf{X})^{\mathsf{T}} K(\mathbf{X}, \mathbf{X})^{-1} K(\mathbf{X}, \mathbf{x}_*)$$
 (52)

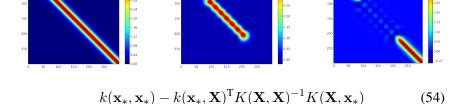
⁵Bishop 2006, p. 6.4.2



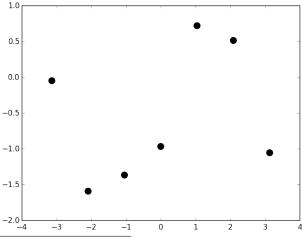


$$k(\mathbf{x}_*, \mathbf{x}_*) - k(\mathbf{x}_*, \mathbf{X})^{\mathrm{T}} K(\mathbf{X}, \mathbf{X})^{-1} K(\mathbf{X}, \mathbf{x}_*)$$
 (53)

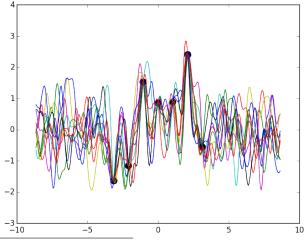
⁵Bishop 2006, p. 6.4.2



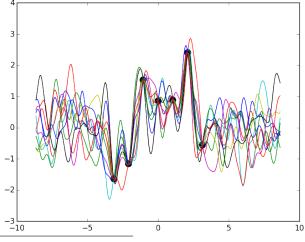
⁵Bishop 2006, p. 6.4.2



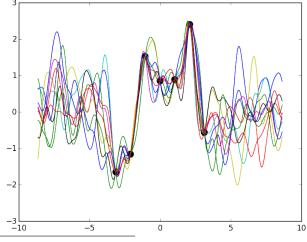
Gaussian Processes⁵



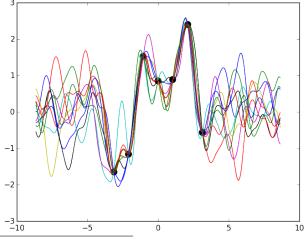
Gaussian Processes⁵



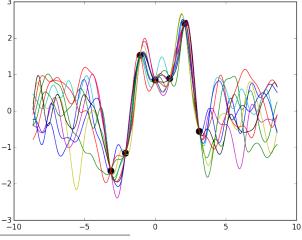
Gaussian Processes⁵

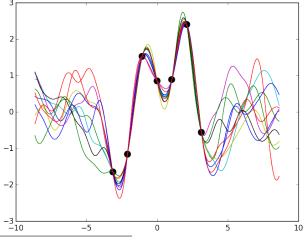


Gaussian Processes⁵

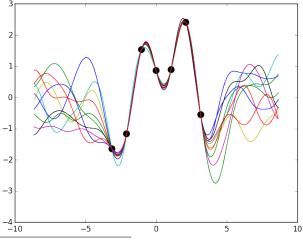


Gaussian Processes⁵

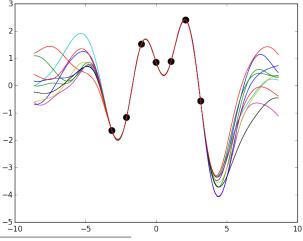




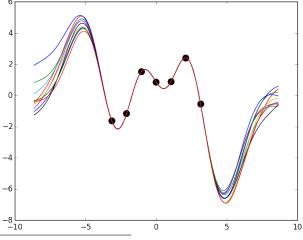
⁵Bishop 2006, p. 6.4.2



⁵Bishop 2006, p. 6.4.2

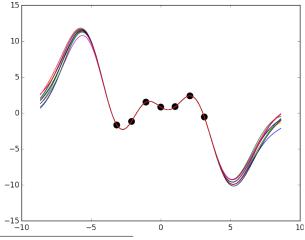


⁵Bishop 2006, p. 6.4.2



⁵Bishop 2006, p. 6.4.2

Gaussian Processes⁵



Summary

- \mathcal{GP} is a prior over function realisations
- Introduce new random variable as the output of the mapping
- Joint distribution of any observations Gaussian
- Posterior (predictive) distribution is conditional Gaussian

⁵Bishop 2006, p. 6.4.2

Co-variances in practice

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I} & k(\mathbf{X}, \mathbf{x}_*) \\ k(\mathbf{x}_*, \mathbf{X}) & k(\mathbf{x}_*, \mathbf{x}_*) \end{bmatrix} \right)$$
(55)

- The conditional distribution passes exactly through the data
 - noise-free observations
- Construct covariance functions by rules for building kernels

$$k(\mathbf{x}_i, \mathbf{x}_j) = \lambda_1 k_{\text{SE}}(\mathbf{x}_i, \mathbf{x}_j) + \lambda_2 k_{\text{lin}}(\mathbf{x}_i, \mathbf{x}_j) + \lambda_3 k_{\text{white}}(\mathbf{x}_i, \mathbf{x}_j)$$

=K

Co-variances in practice

Periodic kernel.

$$k(\mathbf{x}_i, \mathbf{x}_j) = \sigma^2 e^{-\frac{2}{\ell^2} \sin^2\left(\pi \frac{|\mathbf{x}_i - \mathbf{x}_j|}{p}\right)}$$
(56)

Periodic functions

- \bullet ℓ lengthscale
- p period of function

=K

Recap Kernels Gaussian Processes References

Co-variances in practice

$$k_{\text{lin}}(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j) \tag{57}$$

$$k(\mathbf{x}_i, \mathbf{x}_j) = \frac{2}{\pi} \sin^{-1} \left(\frac{2\mathbf{x}_i^{\mathsf{T}} \Sigma \mathbf{x}_j}{\sqrt{(1 + 2\mathbf{x}_i^{\mathsf{T}} \Sigma \mathbf{x}_i)(1 + 2\mathbf{x}_j^{\mathsf{T}} \Sigma \mathbf{x}_j)}} \right)$$
(58)

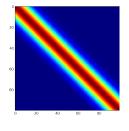
$$\mathbf{x}_i = [1, x_{1i}, \dots, x_{qi}]^{\mathrm{T}} \tag{59}$$

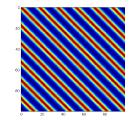
"Computation with Infinite Neural Networks", Williams

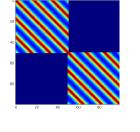
Non-stationary functions

- Non-stationary co-variance
- Functions that have different behaviour in different parts of domain

Co-variances in practice







$$[\mathbf{K}]_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$$

(60)

⁶/Lecture7/covariance.py

Co-variances in practice

Summary

- Covariance functions encodes your *preference* in function behavior
- Choosing the right co-variance is very important
- Ask yourself what do you know about the variations in the data

ΕK

Assignment

You should now be able to do Task 2.2 of the Assignment

ik KTH

Hyper-parameters

- Prior has parameters
 - referred to as hyper-parameters
 - ► SE have lengthscale and variance
- Learning in $\mathcal{GP}s$ implies inferring hyper-parameters from the model

⁶Bishop 2006, p. 6.4.3

$$p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) = \int p(\mathbf{Y}|\mathbf{f})p(\mathbf{f}|\mathbf{X}, \boldsymbol{\theta})df$$
 (61)

Marginal Likelihood

- We are not interested in **f** directly
- Marginalise out f!
- Gaussian marginal is gaussian

⁶Bishop 2006, p. 6.4.3

$$p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) = \int p(\mathbf{Y}|\mathbf{f})p(\mathbf{f}|\mathbf{X}, \boldsymbol{\theta})df$$
 (62)

Marginal Likelihood

- We are not interested in f directly
- Marginalise out f!
- Gaussian marginal is gaussian

⁶Bishop 2006, p. 6.4.3

$$p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) = \int p(\mathbf{Y}|\mathbf{f})p(\mathbf{f}|\mathbf{X}, \boldsymbol{\theta})df$$
 (63)

Marginal Likelihood

- We are not interested in **f** directly
- Marginalise out f!
- Gaussian marginal is gaussian

⁶Bishop 2006, p. 6.4.3

Learning

$$\hat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}} p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) \tag{64}$$

- How is this different to a normal ML estimate?
- Lots of exponentials in objective implies working in log-space
 - ➤ Logarithm monotonic function ⇒ does not alter the location of extreme points of a function
 - Minimisation of negative log() rather than maximisation of log() purely practical

⁶Bishop 2006, p. 6.4.3

Learning

$$\hat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}} p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta})$$
 (65)

- How is this different to a normal ML estimate?
- Lots of exponentials in objective implies working in log-space

Minimisation of negative log() rather than maximisation of log() purely practical

⁶Bishop 2006, p. 6.4.3

Learning

$$\hat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}} p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) \tag{66}$$

- How is this different to a normal ML estimate?
- Lots of exponentials in objective implies working in log-space
 - ► Logarithm monotonic function ⇒ does not alter the location of extreme points of a function
 - Minimisation of negative log() rather than maximisation of log() purely practical

⁶Bishop 2006, p. 6.4.3

Learning

$$\hat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}} p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) \tag{67}$$

- How is this different to a normal ML estimate?
- Lots of exponentials in objective implies working in log-space
 - ▶ Logarithm monotonic function ⇒ does not alter the location of extreme points of a function
 - Minimisation of negative log() rather than maximisation of log() purely practical

⁶Bishop 2006, p. 6.4.3

Learning

$$\hat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}} p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta})$$
 (68)

- How is this different to a normal ML estimate?
- Lots of exponentials in objective implies working in log-space
 - ▶ Logarithm monotonic function ⇒ does not alter the location of extreme points of a function
 - Minimisation of negative log() rather than maximisation of log() purely practical

⁶Bishop 2006, p. 6.4.3

$$\operatorname{argmax}_{\boldsymbol{\theta}} p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) = \operatorname{argmin}_{\boldsymbol{\theta}} - \log \left(p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) \right) = \operatorname{argmin}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})$$
(69)

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log|\mathbf{K}| + \frac{N}{2} \log(2\pi)$$
 (70)

- Can be minimised using gradient based methods
- Data-fit: $\frac{1}{2}\mathbf{y}^{\mathrm{T}}\mathbf{K}^{-1}\mathbf{y}$
- Complexity: $\frac{1}{2}\log|\mathbf{K}|$

⁶Bishop 2006, p. 6.4.3

$$\operatorname{argmax}_{\boldsymbol{\theta}} p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) = \operatorname{argmin}_{\boldsymbol{\theta}} - \log \left(p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) \right) = \operatorname{argmin}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})$$
(71)

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log|\mathbf{K}| + \frac{N}{2} \log(2\pi)$$
 (72)

- Can be minimised using gradient based methods
- Data-fit: $\frac{1}{2}\mathbf{y}^{\mathsf{T}}\mathbf{K}^{-1}\mathbf{y}$
- Complexity: $\frac{1}{2}\log|\mathbf{K}|$

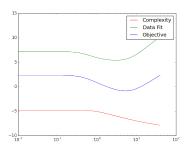
⁶Bishop 2006, p. 6.4.3

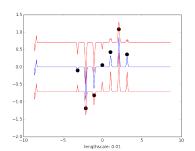
$$\operatorname{argmax}_{\boldsymbol{\theta}} p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) = \operatorname{argmin}_{\boldsymbol{\theta}} - \log \left(p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) \right) = \operatorname{argmin}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})$$
(73)

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log|\mathbf{K}| + \frac{N}{2} \log(2\pi)$$
 (74)

- Can be minimised using gradient based methods
- Data-fit: $\frac{1}{2}\mathbf{y}^{\mathrm{T}}\mathbf{K}^{-1}\mathbf{y}$
- Complexity: $\frac{1}{2}\log|\mathbf{K}|$

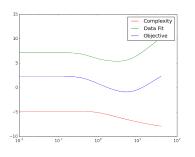
⁶Bishop 2006, p. 6.4.3

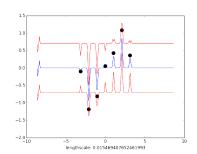




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

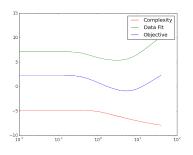
⁶Bishop 2006, p. 6.4.3

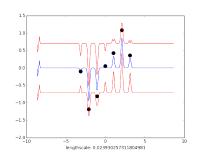




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

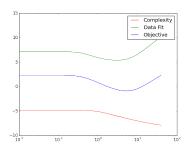
⁶Bishop 2006, p. 6.4.3

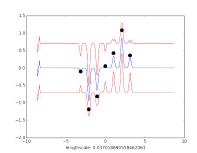




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

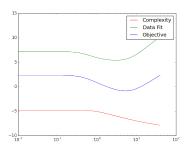
⁶Bishop 2006, p. 6.4.3

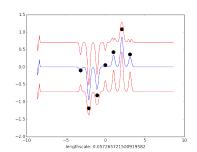




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

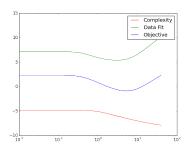
⁶Bishop 2006, p. 6.4.3

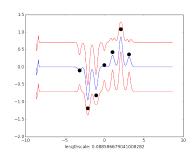




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

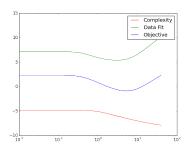
⁶Bishop 2006, p. 6.4.3

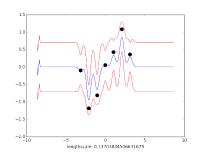




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

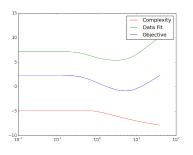
⁶Bishop 2006, p. 6.4.3

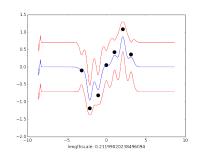




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

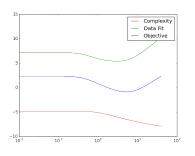
⁶Bishop 2006, p. 6.4.3

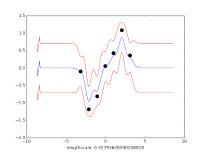




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

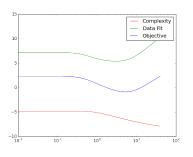
⁶Bishop 2006, p. 6.4.3

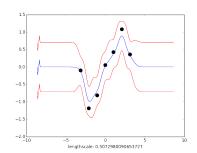




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

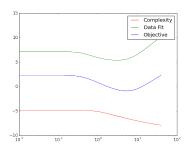
⁶Bishop 2006, p. 6.4.3

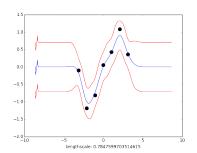




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

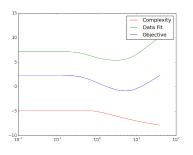
⁶Bishop 2006, p. 6.4.3

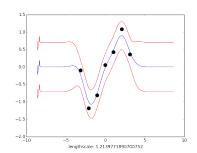




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

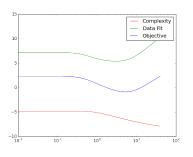
⁶Bishop 2006, p. 6.4.3

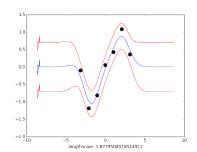




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

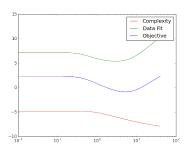
⁶Bishop 2006, p. 6.4.3

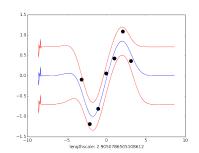




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

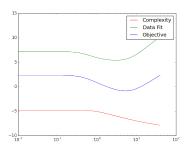
⁶Bishop 2006, p. 6.4.3

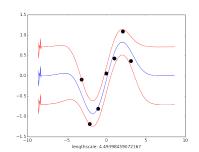




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log|\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

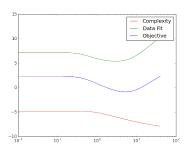
⁶Bishop 2006, p. 6.4.3

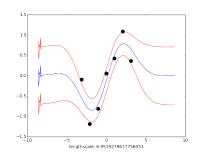




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

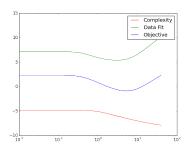
⁶Bishop 2006, p. 6.4.3

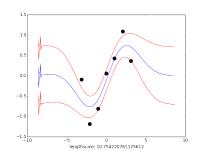




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

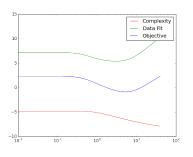
⁶Bishop 2006, p. 6.4.3

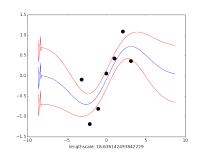




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log|\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

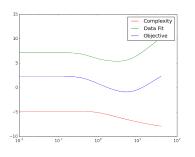
⁶Bishop 2006, p. 6.4.3

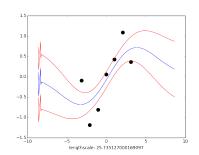




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log|\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

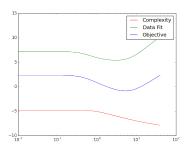
⁶Bishop 2006, p. 6.4.3

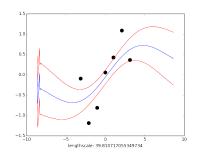




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

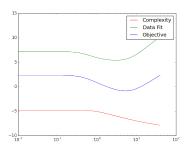
⁶Bishop 2006, p. 6.4.3

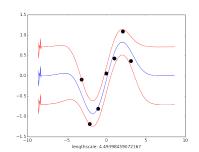




$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

⁶Bishop 2006, p. 6.4.3





$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} + \frac{1}{2} \log |\mathbf{K}| + \frac{N}{2} \log(2\pi)$$

⁶Bishop 2006, p. 6.4.3

- Kernels are covariance functions of data-points
- Gaussian processes are priors over functions
- \mathcal{GP} 's allows us to average over *all* possible functions
- Nothing different compared to Lecture 2, just a different prior!

Ek

- Kernels are covariance functions of data-points
- Gaussian processes are priors over functions
- \mathcal{GP} 's allows us to average over *all* possible functions
- Nothing different compared to Lecture 2, just a different prior!

Ek

- Kernels are covariance functions of data-points
- Gaussian processes are priors over functions
- \mathcal{GP} 's allows us to average over *all* possible functions
- Nothing different compared to Lecture 2, just a different prior!

- Kernels are covariance functions of data-points
- Gaussian processes are priors over functions
- \mathcal{GP} 's allows us to average over *all* possible functions
- Nothing different compared to Lecture 2, just a different prior!

Recap Kernels Gaussian Processes References

Next Time

Practical 1

- November 6th 15-17 V1
- My best friend the Gaussian
 - derive Gaussian identities
- Complete assignment Task 2.1 and 2.2

lecap Kernels Gaussian Processes References

Next Time

Practical 1

- November 6th 15-17 V1
- My best friend the Gaussian
 - derive Gaussian identities
- Complete assignment Task 2.1 and 2.2

tion Recap Kernels Gaussian Processes References

References I

