
Lecture 5

Scientific Methodology



What is a scientific approach?

This question can be answered in a lot of 
different ways. We will try to do it by 
describing three somewhat different areas 
where we use science.
• Scientific attitude in every-day situations.
• Scientific methods in smaller research 

projects.
• Science in big scientific theories.



The scientific attitude
We can characterize the scientific method by the attitudes of 

scientists. According to Merton the following should be the 
attitudes. It is five principles gathered under the acronym 
CUDOS:

• Communalism - knowledge should be accessible for all 
people.

• Universalism - everyone should have the right to contribute.
• Disinterestedness - science should be objective and not 

ruled by special interests.
• Originality - the results should be new.
• Skepticism - scientists should be open to criticism.  



Science in every-day situations
What does it mean to have a scientific attitude to 
things? Some suggestions:

• You are objective. Especially, you base your 
judgements on observations and verified facts.

• You realize to what extent you and everyone else 
can be biased by your/their perspective.

• You are curious and want to know facts.
• You have some knowledge of scientific 

methodology and try to apply it.



What scientific methodology?
Here are some scientific methods that also can be used in "simpler" 
situations:

• The HD-method for finding hypothesis. Use the formula H & A => 
E. (Lecture 2)

• Maximum Likelihood. Try to find H such that  P(E | H) is maximal. 
• If you are more advanced: Use Baye's formula for computing        

P(H | E). (Lecture 3)
•  Realize that is A and B are correlated it doesn't have to mean 

that A is the cause of B. It can be the other way around, or 
neither. (Lecture 4)

• Use deduction.



Science in research projects

We identify three types of research projects:

• Exploratory research
• Testing-out research
• Problem-solving research 



Exploratory research
• This is research on a new problem about which little is known.

• The problem may come from any part of the discipline; it may be a 
theoretical research puzzle or have an empirical basis. 

• The research work will need to examine what theories and
concepts are appropriate, developing new ones if necessary, and 
whether existing methodologies can be used. 

• It obviously involves pushing out the frontiers of knowledge in the hope 
that something useful will be discovered.



Testing-out research

• ln this type of research we are trying to find the limits of a previously
proposed generalization. 

• This is often termed the ‘null hypothesis', which we are bringing evidence to 
‘overthrow’ - i.e. to show is inadequate.

• We can try to answer questions like: Does the theory apply at high 
temperatures? In new technology industries? With working-class parents? 
Before universal franchise was introduced? 

• In this way we are able to make an original contribution and improve (by 
specifying, modifying, clarifying) the important generalizations in our discipline.



Problem-solving research

• ln this type of research, we start from a particular problem in the real
world, and bring together all the intellectual resources that can be 
brought to bear on its solution.

•  The problem has to be defined and the method of solution has to be 
discovered.

•  The person working in this way may have to create and identify 
original problem solutions every step of the way. This will usually 
involve a variety of theories and methods, often ranging across

   more than one discipline since real-world problems are likely to 
   be ‘messy’ and not soluble within the narrow confines of 
   an academic discipline.



Science in an engineering project

The ordinary engineering process



The process with science "added" 



What is the scientific filter?

1. We must put our solution in a broader  
scientific context. We must give references 
to other solutions and similar problems.

2. We must prove scientifically that our 
solution is correct.

3. We must put our solution in form of a 
report following scientific standards.



General questions
• What do you want to do? What is your 

project?
• Why do you want to do it? Is it important? 

Is it interesting?
• How do you plan to do it? Which methods 

will you use?
• When do you plan to do it? How long time 

will it take?



The subject
• It should be clearly stated.
• It should be significant. For instance, it 

should not be just a repetition of something 
already done.

• It should have clearly stated boundaries.
• It should be such that relevant data can be 

obtained.
• It should be such that significant 

conclusions can be drawn.



The form of the project
• It can be in form of a question, for instance, 

is functional programming better than 
imperative programming?

• It can be in the form of an hypothesis, for 
instance, functional programming is better 
than imperative programming.



The importance of being right 

A famous mathematician once said that the 
most important thing is being right. You must 
have the talent for choosing hypotheses that 
are correct. You must have a sound intuition!



Scientific method in project work

We can characterize the project work by 
dividing it into four phases:

• Preparing Analysis
• Finding hypotheses
• Synthesis of partial results 
• Validation of results



Analysis

The goal is to get an understanding of the 
problem/project. This understanding can 
involve the following steps:

• Describe the problem.
• Decide on a measure of success. 
• Do studies on similar problems.
• Define goals.



Hypothesis

Here we have to be creative and try to find 
hypotheses and possible solutions to 
problems. This includes:

•State the hypothesis/solution clearly.
•Find consequences of the hyptothesis/
solution.

•Find criteria for judging if the hypothesis/
solution is true/works.



Synthesis

Here we test the hypothesis or implement and test 
the solution: 

• If we have a solution to a problem we implement 
the solution.

•Do experiments for testing if the consequences of 
the hypothesis are true or if the solution works.

•Analyze the results.



Validation

Here we evaluate the hypothesis/solution and the results 
of the experiments:

•Try to measure how well the experiments confirm/falsify 
the hypothesis or how well the solution works. 

•Try to decide if the hypothesis is true or if the solution 
works.

•Do documentation by writing a rapport or scientific paper.
•Submit your results for criticism from colleagues or 
independent referees.  



Deductive systems



Users of formal systems
• Mathematicians - use them to prove 

mathematical theorems.
• Computer scientists - use them to design 

algorithms that solve problems.
• Philosophers - use them to define and analyze 

things.



Mathematics and Formal Logic

What is the connection between Mathematics 
and Formal Logic? Here are some suggestions:



Formal Logic is a part of Mathematics

This would probably be 
what mathematicians 

think



Mathematics is a part of Formal Logic

This is what the pioneers in 
Formal Logic thought



Neither is a part of the other

Nowadays, this seems 
to be natural view



Three components of a deductive system

• Vocabulary 

• Deduction Rules

• Axioms



Vocabulary
We will look at some text from different 
disciplines all using formal syntax. It is normally 
rather easy to recognize the discipline.



Mathematics



Theoretical physics



Formal Logic



Computer Science



Chemistry



Mathematical Economics



Linguistics



Vocabularies
• In a deductive system the vocabulary is roughly 

the syntax of the language we use in the system.
• Less formally, we can say that the vocabulary 

defines the type of expressions you can expect to 
find in the system.

• For instance, in text on evolutionary theory you 
would expect to find words like natural selection 
and so on.

• In formal logic the vocabulary is defined in a very 
precise way. 



Deduction rules
• All deduction systems have some set of formal 

and informal rules which tells us what conclusions 
we can prove from other statements.

• In physics the rules are somewhat informal and 
established by praxis.

• In formal logic the deduction rules are where 
precisely defined.

• In mathematics it can happen that the deduction 
rules are implicitly understood. They can, 
however, be exactly stated (one would hope?) 



Axioms
• The main idea is that the axioms are basic truths 

(intuitive truths maybe). 
• Starting with axioms and using the deduction rules we 

create theorems.
• The axioms and theorems are the only truths in the 

system.
• In formal systems we divide the axioms into logical and 

non-logical axioms.
• In some systems with very strong deduction rules we 

have no logical axioms at all. Natural deduction is one 
example.



Do the axioms have to be true?

• The classic idea was that the axioms should be 
basic and fundamental truths.

• But later mathematicians realized that we could 
regard the axioms as assumptions and deduce 
consequences of these assumption. 

• And important example of this is Non-Euclidian 
Geometries, developed in the 19th century.



Methodology?
• It seems to be very hard to give prescriptions for how 

research with deductive methods should be done.
• Its not that hard to learn techniques for checking if 

proofs are correct. The difficult thing is to find good 
theorems and theories.

• This is essentially a creative activity. And there are 
no recipes for creativity.

• Or are there? The best way of learning how to find 
proofs is to imitate existing proofs.

• Some other tricks will be described in a later lecture.  



A case study: The Four-colour Theorem



The theorem

•Every (planar) map can be coloured with 
four colours. A colouring is required to be 
such that no neigbouring countries have the 
same colour.  

•This theorem was conjectured in 1852 and 
finally proved in 1976.



Is the theorem true?

•If we look at a map we notice that two thing can complicate matters: 
Islands and lakes.

•More generally we see that non-connected countries will give us 
problems.  

• It can be shown that if we allow non-connected countries we can find 
maps where the four-colour theorem is false.



A more exact formulation

•We require that the countries must be simply 
connected and have boundaries that are 
sufficiently simple.

•Furthermore, two countries meeting just in one 
point are not to be considered as neighbours.

•These complications make it natural to study 
the dual graph-form: Every planar graph can 
be coulored with four colours (in the normal 
node-colouring sense).



The dual graph



Method comments 1

• It is important to get an exact formulation of 
the problem as soon as possible.

•A problem can often be expressed in 
different forms. Even if the forms are 
equivalent, one of them can be easier to 
work with than the other.



True or false?
•When we face a 
conjecture we 
have to guess if it 
is true or not.

• If we think it is true 
we try to prove it.

• If we think it is 
false we try to find 
a counter-
example.

A counterexample?



A proof?

•Most people believed that the FC-Theorem was 
true. But how can we prove it?

•One attempt is to try to find an algorithm which 
actually colours any map with no more than four 
colours.

•But then we have to prove that the algorithm always 
manage to do this.

•We could try to find some more complicated 
existence-proof of a four-colouring.

•We could use mathematical induction.



 Kempe's "proof"
• In 1879 Sir Alfred 

Kempe managed to 
"prove" the FC-
Theorem.

• He had a very good idea 
which used induction.

• He observed that all 
maps must contain at 
least one country 
surrounded with no 
more than five countries. 



Details

• In the dual form we must have at 
least one node with degree no more 
than five.

• Remove the node and colour the rest 
of the graph with four colours.

• If, necessary, re-colour the graph so 
that no more than three colours are 
used around the start-node.

• Kempe "showed" that this can 
always be done. 

• So then we can colour our graph 
with four colours!



Not so!

• In fact, the re-colouring which Kempe 
described does not work.

•This error was undiscovered for ten years!
•The error was then spotted by Heawood.



Method comments 2

• If a proof is erroneous, it means that there is a 
counterexample.

•Counterexamples come in two forms:
•Global counterexample - An example which 
shows that the statement in the theorem is false.

•Local counterexample - An example which 
shows that a step in the proof is incorrect.

•Kempe's proof fell due to a local 
counterexample (of course).  



Algorithms

• We can apply the same reasoning to the correctness of 
algorithms.

• An algorithm takes an input and is supposed to deliver an 
output of a certain kind.

• An FC-algorithm take a plane graph as input and outputs a 
FC.

•  We can speak of two kinds of counterexamples against the 
correctness of the algorithm:

• Global counterexample - An example which gives output on 
the wrong form.

• Local counterexample - An example which makes a certain 
step in the algorithm impossible to perform.



Method comments 3
• Let us assume that we have a theorem of the 

form A => B. (For instance, A: A graph is plane  
B: The graph can be coloured with four colours.)

• We can weaken the theorem by replacing A or B 
with other statements. The weaker theorem can 
perhaps be proved.

• 1.  Assume  A' => A. Then A' => B is a    
weakened form of the theorem.

• 2. Assume  B => B'.  Then A => B'  is a 
weakened form of the theorem.







The Five-colour Theorem
• In 1890 Heawood used 

Kempe's technique and 
proved that every plane 
graph can be coloured 
with no more than five 
colours.

• It is obviously a 
weakening of the FC-
Theorem.

• Heawood's proof shows 
that an erroneous proof 
(Kempe's) can still be 
useful. 



Another weakening

•Even before Kempe's proof it was known 
that it is enough to prove the FC-Theorem 
for cubic maps.

•Cubic maps - Maps where all nodes have 
degree three.



A reduction
• Tait managed to show 

that if we can show 
that every cubic map 
has a Hamiltonian 
Cycle, then the FC-
Theorem must be true. 

• But it turned out that 
there are (global) 
counterexamples to 
this statement, i.e. the 
existence of 
Hamiltonian Cycles.



A new idea: Edge-colourings

•Given a graph we can colour its edges. We say 
that a colouring is correct if any edges with a 
common node is coloured with different colours. 

•Vizing's theorem: If N is the minimal number of 
colours needed to colour the graph G and D is the 
maximal node-degree in G, then N is either D or  
D+1.

•Tait showed that the FC-Theorem is true if and 
only if every plane bridgeless cubic graph can be 
edge-coloured with three colours.



Method comments 4

•We can speak about different problems. 
Informally we can say that Problem 2 is 
weaker than Problem 1 if a solution to Problem 
1 would give us a solution to Problem 2.

• In the same way is Problem 1 stronger than 
Problem 2.

•And if a solution to any of the problems would 
give us a solution to the other one, we say that 
the problems are equivalent.



A comparison with Complexity Theory 

• In complexity theory we have the notation ≤ 
where Problem 2 ≤ Problem 1 means that 
there is a polynomial time reduction from 
Problem 2 to Problem 1.

• In our more general discussion we do not 
have a formal definition of reductions in this 
sense.



What we have seen this far

• The problem of proving FCT for maps is equivalent to proving 
FCT to graphs.

• Heawood solved the weaker problem of proving that every 
plane graph can be 5-coloured.

• It was shown that FCT can be reduced to the (apparently 
weaker) problem of proving that every plane cubic map is 
three-colourable.

• Tait showed that FCT could be reduced to the problem of 
proving that every plane cubic graph has a Hamiltonian Cycle.

• Tait showed that FCT is equivalent to the problem of proving 
that every plane cubic graph can be edge-three-coloured.



Turning to harder problems

• It turned out that the FCT remained 
unproved despite all these promising 
approaches.

•What one could do then is to try to solve a 
harder problem.



Chromatic polynomials

•The mathematician Birkhoff tried to solve an 
apparently  harder problem. He wanted to 
decide in how many ways an arbitrary graph 
G can be coloured with x colours.

• It turns out that the answer is a polynomial 
P(G,x), a so called chromatic polynomial.

•Birkhoff tried to show that for all planar graphs 
G we have P(G,4) > 0. But he didn't succeed.



Other types of maps

•Instead of plane maps we can 
consider maps on other bodies.

•For instance, on a torus it is 
quite easy to show that seven 
colours always suffice but not 
six colours.

• In fact, we can show variants of 
the FCT for all bodies except 
for spheres (which are 
equivalent to planes).



Method comments 5

•We have seen several promising attempts to 
prove the FCT. Eventually, none of them 
gave a proof.

•Nevertheless we see that trying to solve a 
problem can lead to other interesting 
problems and solutions to them.



The proof of the Four-colour Theorem

• The path towards the proof of the FCT starts with a return to Kempe's 
failed proof from 1879. The proof uses ideas that Kempe had.

• The proof uses induction over the size of the graph. Then we observe 
that a planar graph must have a set of unavoidable  subgraphs.

• Then we prove that the subgraphs are reducable. This means that if 
the rest of the graph can be four-coloured, then this colouring can be 
extended to the subgraph with some minor changes to the original 
colouring.

• Kempe found the a simple unavoidable subgraph in form of a node 
with degree at most five. But he failed to prove that the subgraph is 
reducable (it is not).

• Appel and Haken had the idea that they should try to find more 
complicated unavoidable subgraphs. 



A computer proof

• Appel and Haken managed to find a set of 1936 
together unavoidable subgraph. (That means that in any 
planar graph at least one of the subgraphs must occur.)

• But in order to prove that the subgraphs were reducable 
they had to rely on a computer program to find the re-
colouring strategies.

• The proof became much debated and criticized. It 
opened for a discussion of what a proof really is or 
should be. 



Method comments 6

• So eventually the original idea by Kempe was 
triumphant. 

• But in 1890 there was probably no easy way to see this.
• It was when all other strategies had failed that the return 

to the original idea seemed attractive.
• So sometimes a failed proof can be resurrected. 



Paradoxes and impossibility theorems

• We will give a brief discussion of some 
problems and paradoxes related to deductive 
systems and mathematics.

• We will describe two great crisis in the history 
of logic and mathematics



Russell's paradox
• The first crisis was in 

the early 20th century.
• We will start with some 

history.



Frege and 
mathematical logic

• Gottlob Frege created the modern 
mathematical logic at the end of 
the 19th century. 

• He tried to construct all 
mathematics with logic. 

• The starting point was a 
formalized version of set theory. 

• Among other things Frege 
postulated that if P(x) is any 
predicate there always exists a set 
of all objects x such that P(x) is 
true:   



Bertrand Russell
•In the beginning of the 20th century 
Russell showed that Frege's axiom 
leads to contradictions. 

•If we define 

And  

What happens then? Is  

or  

true?



Some related paradoxes
• The liar paradox - 'I am lying'. True or false?
• Grelling paradox - Among English adjectives there 

are some, such as 'short', 'polysyllable', 'English', 
which apply to themselves. Let us call such adjectives 
autological; all others are heterological. Thus 'long', 
'monosyllable', 'green' are heterological. But what 
about 'heterological'? Is it heterological or not?

• Berry paradox - Consider the phrase  "The smallest 
positive integer not definable in under eleven words". 
There must be such an integer (why?). But this 
integer is definable in ten words!



Russel's solution
• Russell found that Frege's axiom must be restricted in some 

way.
• His idea was to block the possibility that a set could be a 

member of itself.
• In order to do that he developed the so called type theory of 

sets.
• Other solutions came soon. The paradox is not considered a 

problem any more.
• But a disturbing fact is that Frege was one of the greatest 

logicians ever and he felt that his axiom was (intuitively) 
obvious. If he could make such a mistake, can we ever be 
certain that we don't make similar logical mistakes? 



The ghost of self-reference  
• Frege's problem was that an unexpected self-

reference occurred. 
• An analysis of the other paradoxes seem to 

show that the also are the victims of self-
reference.

• Suggestion: All these paradoxes are in some 
sense caused by self-reference.

• So if we just somehow can block all self-
references there will be no paradoxes. Or ... ?



Gödel's Theorem



Gödel
• Kurt Gödel studied formal deductive 

systems of a special kind. 

• He showed that all formulas in such 
a system can be given a so called 
Gödel number. 

• He also showed that it is possible to 
construct a predicate that 
represents provability. 

• Then he showed that there are 
sentences that cannot be proved in 
the system but still, in some more 
general sense, are true.



More details

• The Gödel Sentence:

• Gödel's theorem can be stated in at least two different forms.
• One form is that a sufficiently strong and (efficiently) 

decidable formal system must contain 'true' sentences which 
cannot be proved inside the system.

• Another form is that such a system must contain sentences 
which cannot be proved or disproved inside the system.

• To make things more complicated, there is a Gödel's second 
incompleteness theorem which says that the system cannot 
be proved to be consistent with methods inside the system.  



Implications
• One thing Gödel's proof shows is that self-

reference cannot actually be blocked. It is in a 
certain sense unavoidable.

• It also shows that the powers of formal systems are 
limited.

• We could of course accept these facts.
• Or we could just give up the idea of using formal 

systems.
• There are however some related theorems which 

are even more disturbing.



Tarski
• Alfred Tarski showed that the 

definition of truth is much more 
complicated than expected. 

• The Tarski type of truth definition is 
like this: 'Snow is white' if and only if 
snow is white. 

• This type of definition requires a 
meta-level. Truth comes in layers, 
so to say. 

• And there is no way to define truth 
in any effectively decidable way.



Turing
• As we all know, Alan Turing 

defined the Turing Machine. 

• He proved that there are natural 
problems which cannot be 
solved in an 'mechanical' way. 

• An example is the halting 
problem. 

• Another is the problem of 
finding proofs in first order logic.


