
Networking with Sockets

Leif Lindbäck, Vladimir Vlassov

KTH/ICT/SCS

HT 2015

ID2212 Network Programming with Java
Lecture 4

Outline

• Review
– Client-server architecture

– Berkley Socket API in C

• Socket API in Java
– Client Socket – connecting socket

– Socket for Servers – listening socket

– UDP sockets

– Multicast

Lecture 4: Networking with Sockets 2

Lecture 4: Networking with Sockets 3

Review: Client-Server
Architecture

• The most commonly used model for distributed
applications
– Can be applied for a particular request-response interaction

• The client is the entity (process) accessing the remote
resource and the server provides access to the resource.

• Request / response protocols

ClientClient

ServerServer

ServerServer
fork()fork()

connection request

requests / responses

Lecture 4: Networking with Sockets 4

Review: Sockets

• Socket is an end-point of a virtual network connection
between processes – much like a full-duplex channel
– A socket address: IP address and a port number

– A transport protocol used for communication over a socket

• TCP socket - stream-based, connection-oriented

• UDP socket - datagram-based, connectionless

• Sockets, a.k.a. Berkeley sockets, were introduced in
1981 as the Unix BSD 4.2 generic API for inter-process
communication

• Earlier, a part of the kernel (BSD Unix)

• Now, a library (Solaris, MS-DOS, Windows, OS/2, MacOS)

Lecture 4: Networking with Sockets 5

Ports
• Port is an entry point to a process that resides on a host.

• 65,535 logical ports with integer numbers 1 - 65,535

• A port can be allocated to a particular service:
• A server listens the port for incoming requests

• A client connects to the port and requests the service

• The server replies via the port.

• Ports with numbers 1-1023 are reserved for well-known
services.
– A list of services and allocated ports is stored in

• /etc/services (Unix)
• C:\Windows\services (Windows95)

• C:\WINNT\system32\drivers\etc\services (WindowsNT)

• C:\WINDOWS\system32\drivers\etc (Windows XP)

Lecture 4: Networking with Sockets 6

The Berkeley Socket API for the
Client-Server Architecture

socket()

bind()

listen()

accept()

write()

read()

close()

read()

write()

close()

0.1/PTTH lmth.xedni/ TEG

HTTP/1.0 200 OK … </html>

socket()

connect()

accept()

Connection
is established Start a thread

Client Server

Lecture 4: Networking with Sockets 7

Sockets in java.net
• Two classes of TCP sockets

• Socket – connecting socket, a.k.a. client socket
– Used to connect to another (remove) TCP socket specified by

an IP address and a port number.

– A connected TCP socket provides two sequenced byte streams,
input and output streams, used to communicate with the
remote process by reads and writes.

• ServerSocket – listening socket, a.k.a. server
socket
– Used to listen for connection requests, to accept connection

and create a Socket object connected to the requester.

Lecture 4: Networking with Sockets 8

Sockets in java.net (cont’d)

• Two classes of UDP sockets:

• DatagramSocket
– used for sending and/or receiving datagrams

represented by objects of the DatagramPacket
class.

• MulticastSocket
– is a subclass of DatagramSocket with

capabilities for joining multicast groups on the
Internet.

– A multicast group is identified by an IP address of
class D (multicast address (224-239.x.x.x)

Lecture 4: Networking with Sockets 9

java.net.InetAddress

InetAddress ip1 = null;
InetAddress ip2 = null;
InetAddress localIP = null;
InetAddress[] ips = null;
try {
 localIP = InetAddress.getLocalHost();
 ip1 = InetAddress.getByName("kth.se");
 ip2 =

InetAddress.getByName("130.237.214.1");
 ips = InetAddress.getAllByName("kth.se");
} catch (UnknownHostException e) {
 e.printStackTrace();
}

● Represents an IP address of a node on the Internet.
● Does not have public constructors.
● Getting an IP address:

Client Sockets – Connecting
Sockets

java.net.Socket

Lecture 4: Networking with Sockets 10

Remote hostRemote host

RemoteRemote
portport

Process B

socket

Local hostLocal host

LocalLocal
 portport

Process A

socket
Lecture 4: Networking with Sockets 11

OutputStream

InputStream

InputStream

OutputStream

java.net.Socket

• Implements a connecting TCP socket that
provides connection to a specified host on a
specified port.
– When connected, provides input and output byte

streams

Lecture 4: Networking with Sockets 12

Socket Constructors
Socket(…)Socket(…)

(String remoteHost, int remotePort)(String remoteHost, int remotePort)

(InetAddress remoteAddr, int remotePort)(InetAddress remoteAddr, int remotePort)

(String remoteHost, int remotePort, (String remoteHost, int remotePort,
 InetAddress localAddr, int localPort)InetAddress localAddr, int localPort)

(InetAddress remoteAddr, int remotePort,(InetAddress remoteAddr, int remotePort,
 InetAddress localAddr, int localPort)InetAddress localAddr, int localPort)

()()

(SocketImpl socketImplementation)(SocketImpl socketImplementation)

Lecture 4: Networking with Sockets 13

Socket’s Attributes

• setSoLinger(boolean, int)
– Enable/disable SO_LINGER with the specified

linger time (linger on close if data are present).
– Note: Use netstat utility to check open connection.

• setSoTimeout(int)
– Enable/disable SO_TIMEOUT with the specified

time-out, in milliseconds.

• setTcpNoDelay(boolean)
– Enable/disable TCP_NODELAY (disable/enable

Nagle’s algorithm).

Lecture 4: Networking with Sockets 14

Communicating via a TCP Socket

• Steps:
– Establish a socket connection to the specified host on

the specified port by create a connected Socket
object.

– Set socket’s attributes.
– Get an input stream of the socket connection for

reading data.
– Get an output stream of the connection for writing

data.
– Communicate via the input and output streams by

reads and writes according to an application specific
communication protocol.

– Close the socket connection.

Lecture 4: Networking with Sockets 15

Example: A Code Fragment from a
HTTP Client try

 try {
 Socket socket = new Socket(host, port); // create a connected

socket
 socket.setSoTimeout(10000); // set 10 sec timeout
 // Create output stream
 PrintWriter wr = new PrintWriter(socket.getOutputStream());
 wr.println("GET " + file + " HTTP/1.0"); // send GET request
 wr.println();

 wr.flush();
 BufferedReader rd = new BufferedReader(new
 InputStreamReader(socket.getInputStream())); // input

stream
 String str;
 while ((str = rd.readLine()) != null) // receive and print

response
 System.out.println(str);
 socket.close(); // close connection
 } catch (IOException e) {
 System.err.println(e);
 }

Lecture 4: Networking with Sockets 16

SocketSocket

PrintWriterPrintWriter

OutputStreamOutputStream

Socket socket = new Socket(host, port);
PrintWriter wr =

new PrintWriter(socket.getOutputStream());
wr.println("GET " + file + " HTTP/1.0");
wr.println();
wr.flush();

Communication in the HTTP Client

HTTP request “GET /index.html HTTP/1.0”

Lecture 4: Networking with Sockets 17

SocketSocket
InputStreamInputStream

BufferedReaderBufferedReader

InputStreamReaderInputStreamReader

println

String strString str

readLine

Reply: “HTTP/1.1 200 OK
Date: Mon, 15 Nov 1999 11:23:29 GMT …”

BufferedReader rd =
 new BufferedReader(new InputStreamReader(
 socket.getInputStream()));
String str;
while ((str = rd.readLine()) != null)
 System.out.println(str);
socket.close();

System.outSystem.out

The Httpc Client (cont)

Lecture 4: Networking with Sockets 20

Parsing Textual Data by Tokenizers

• java.io.StreamTokenizer supports splitting
a character stream into “tokens”.
StreamTokenizer rd = new StreamTokenizer (

 new BufferedReader(
new InputStreamReader(
socket.getInputStream())));

• java.util.StringTokenizer supports
splitting a string into “tokens”.

– StringTokenizer(String)
– Can be used to parse a text from the input stream

accumulated into a StringBuffer object.

Lecture 4: Networking with Sockets 21

Example: Usage of Stream Tokenizer

try {
 Socket socket = new Socket(host, port);
 socket.setSoTimeout(10000);
 PrintWriter wr = new PrintWriter(socket.getOutputStream());
 wr.println("GET " + file + " HTTP/1.0“);
 wr.println();
 wr.flush();
 StreamTokenizer rd = new StreamTokenizer(new BufferedReader (

new
 InputStreamReader(socket.getInputStream())));
 int num = 0, word = 0, i = 0;
 while (rd.nextToken() != StreamTokenizer.TT_EOF)
 switch (rd.ttype) {
 case StreamTokenizer.TT_NUMBER: num++; break;
 case StreamTokenizer.TT_WORD: word++;
 if (++i % 5 == 0) System.out.println(rd.sval);
 else System.out.print(rd.sval + " ");
 }
 System.out.println();
 System.out.println("NUM = " + num);
 System.out.println("WORD = " + word);
 socket.close();
 } catch (IOException e) {
 System.err.println(e);
 }

Sockets for Servers – listening sockets

java.net.ServerSocket

Lecture 4: Networking with Sockets 23

Lecture 4: Networking with Sockets 24

java.net.ServerSocket
• Implements a listening TCP socket, a.k.a. server socket

– should be bound to some known local port (and known local IP
address)

– used to listen and accept connections from clients.

(int port)
A port of 0 creates a socket on any free port.

(int port, int backlog,
 InetAddress bindLocalAddress)

(int port, int backlog)
Here backlog is the maximum allowed length of queue of
pending connection requests.

ServerSocket(…)

Lecture 4: Networking with Sockets 25

Accepting Connections

// create a server socket bound to the port 8080
ServerSocket serverSocket = new ServerSocket(8080);
while (true) {

try {
// wait for a client connection request
Socket clientSocket = serverSocket.accept();
// communicate with a client via clientSocket
…
// close the socket and wait for another
connection

clientSocket.close();
} catch (SocketException e) { e.printStackTrace(); }

}

Socket clientSocket = serverSocket.accept();
● Blocks the current thread until a client connects
● Returns a connected Socket of the accepted connection.
● For example:

Lecture 4: Networking with Sockets 26

Handling Connections

• The server uses a Socket object to
communicate with a connected client
– The connection should be closed when service is

done.

• The server shall handle the connection in a
separate thread.
– When a client connects, constructs a handler thread

with the Socket object as a parameter of the
handler constructor.

– Starts the handler thread.
– The parent thread continues waiting for the next

connection requests.

Lecture 4: Networking with Sockets 27

Fragment of a Multithreaded Server
ServerSocket serversocket = new ServerSocket(8080);
while (true) {

try {
Socket socket = serversocket.accept();
Handler handler = new Handler(socket);
handler.setPriority(handler.getPriority() + 1);
handler.start();

}
catch (SocketException e) { e.printStackTrace(); }

}
. . .

}

class Handler extends Thread {
private Socket socket;
Handler(Socket socket) throws IOException { // thread

constructor
this.socket = socket;

 ... }
public void run() { // communicate with the client via

the socket
...

}
}

Lecture 4: Networking with Sockets 28

Working with Files. Status of a
File

• Very often a server accesses files and/or databases.
• java.io.File allows obtaining the status of a file or

directory:
String basedir =

“/afs/it.kth.se/misc/info/www/documents“;
File file = new File(basedir, “index.html”);

• Useful methods
– Get the status of the file:

exists() , length() , lastModified() , canRead() ,
canWrite() , getPath()

– Get a list of files in the directory:
 list() , list(FilenameFilter)

– Manipulate a file, directory:
mkdir() , delete() , renameTo(File)

Lecture 4: Networking with Sockets 29

Two APIs to Access Files. See
java.io

• Sequential-access file:
– FileInputStream and FileOutputStream

– represent a file as a byte streams that can be wrapped by any
specialized stream:

DataInputStream in = new DataInputStream (new
FileInputStream(“base.tsv“));

– FileReader and FileWriter are used to access text
files.

• Random-access file (similar to file API in C):
– An object of RandomAccessFile allows reading (or

writing) data of various types from (or to) a file.

Lecture 4: Networking with Sockets 32

A Simple HTTP Server

● Accepts GET requests and POST requests. Assumes that only a POST
request can request the execution of a CGI program.

● The example illustrates how to start the execution of an external
program (process) and communicate with the program via standard
input and output streams. The example also illustrates how to access a
file.

Lecture 4: Networking with Sockets 33

Data flow in HTTP server,
 GET Request

InputStreamInputStreamSocket OutputStreamOutputStream

FileFile namename

//afs/it.kth.se/misc/info/www/documents/index.htmlafs/it.kth.se/misc/info/www/documents/index.html

BufferedReaderBufferedReader

StringTokenizerStringTokenizer

GET /index.html HTTP/1.0GET /index.html HTTP/1.0

InputStreamReaderInputStreamReader

11

PrintWriterPrintWriter

headerheader
error messageserror messages

methodmethod
versionversion

3344

FileInputStreamFileInputStream

bufbuf

22

Lecture 4: Networking with Sockets 34

Connection Failures

• Connection failures are signaled via exceptions
thrown by methods of socket APIs (constructors,
connect, accept, read, write, bind, etc.)

• Exceptions that indicate errors in the underlying
protocol, such as a TCP error, are indicated by
SocketException and its subclasses:
– BindException

• on failed attempt to bind a socket to a local address and port.

– ConnectException ,
NoRouteToHostException
• on failed attempt to connect a socket to a remote address and

port.

Lecture 4: Networking with Sockets 35

(cont’d) Connection Failures

• The client can get exceptions
– UnknownHostException

• The IP address of a host could not be determined (getters of
InetAddress)

– IOException
• while creating the socket (Socket constructors) and

communicating via the socket connection (getInputStream,
getOutputStream, read/write, etc.)

• The server can get exceptions
– IOException

• opening a server socket (ServerSocket constructors)
• waiting for a connection and accepting the connection in accept()
• closing the socket by close()

Lecture 4: Networking with Sockets 36

JSSE (Java Secure Socket Extension)

• A set of Java packages that enable secure Internet
communications.
– Implements a Java version of SSL (Secure Sockets Layer) and TLS

(Transport Layer Security) protocols
– Includes functionality for data encryption, server authentication,

message integrity, and optional client authentication.
– javax.net.ssl
– javax.net
– java.security.cert
– com.sun.net.ssl

• JSSE on the Web:
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.ht

ml
http://download.oracle.com/javase/8/docs/technotes/guides/security/

UDP Sockets. Multicast

java.net.DatagramSocket
java.net.DatagramPacket
java.net.MulticastSocket

Lecture 4: Networking with Sockets 37

Lecture 4: Networking with Sockets 38

UDP Sockets

• The java.net.DatagramSocket class
– represents a UDP socket for sending and receiving datagrams

– objects of the java.net.DatagramPacket class

• Sending datagrams:
DatagramSocket ds = new

DatagramSocket();
byte buf[] = new byte[256];
// fill buf with data to be sent
…
// create a datagram
DatagramPacket dp = new

DatagramPacket(
buf, buf.length,
InetAddress.getByName(“dest.host.co
m“),
4711);

// send the datagram via the UDP
socket

ds.send(dp);

• Receiving datagrams:
DatagramSocket ds = new

 DatagramSocket(4711);
byte b[] = new byte[256];
DatagramPacket dp = new DatagramPacket(b,

b.length);
/* Set timeout – the amount of time (in

milliseconds) that receive() waits for
datagram before throwing an
InterruptedIOException. With the time
out of 0, receive() never times out.

*/
ds.setSoTimeout(timeout)
ds.receive(dp); // receive a datagram
byte[] data = dp.getData(); // get data
InetAddress source = dp.getAddress(); //

source
int port = dp.getPort(); // source port

Lecture 4: Networking with Sockets 39

IP Multicast

• IP multicast is communication within a multicast group
identified by a multicast IP address of the D class:

224-239.x.x.x
• A multicast group is a set of computers sharing the same

multicast address.
– ~80 of multicast addresses are permanently assigned by the

IANA (Internet Assigned Number Authority).

• To receive datagrams directed to a multicast group, a
computer joins the group (gets its IP address)
– Informs a default router about its interest in receiving UDP

packets directed to the group’s IP address

Lecture 4: Networking with Sockets 40

IP Multicast (cont’d)

• Multicast is based on sending UDP datagrams
to a multicast group.

• An IP header of a UDP packet includes the
field TTL (Time-To-Live) that specifies the
number of routers that the packet can pass
through (in the range 0-255).

Lecture 4: Networking with Sockets 41

MBONE. Videoconferencing on the
Internet

• MBONE (Multicast Backbone on the Internet) is the
range of Class D addresses beginning with 224.2.x.x

– Mbone is a part of the Internet formed of routers supporting
the IP multicast extension.

– Mbone is used for audio and video broadcasts over the
Internet.

• The MBONE programs should be announced on
224.2.127.254 (port 9875).

Lecture 4: Networking with Sockets 42

Multicast with Java

• MulticastSocket is a subclass of
DatagramSocket that represents a UDP
socket with capabilities for joining multicast
groups on the Internet.

• Communicating with a multicast group
– Construct a multicast socket

– Join a multicast group (for receiving)

– Send/receive data to/from the multicast group

– Leave the group

Lecture 4: Networking with Sockets 43

Receiving from a Multicast Group
try {

MulticastSocket ms = new MulticastSocket(9875);

 ms.joinGroup(InetAddress.getByName("224.2.127.254"));
 byte b[] = new byte[256];
 DatagramPacket dp = new DatagramPacket(b, b.length);

 while (true) {

 ms.receive(dp);

 String s =

 new String(dp.getData(),0,dp.getLength());

 System.out.println(s);

}

} catch (Exception se) {

se.printStackTrace();

}

Lecture 4: Networking with Sockets 44

Sending to a Multicast Group
InetAddress iaddr =
 InetAddress.getByName(“224.17.17.17”);
DatagramPacket dp = new DatagramPacket(data,

 data.length, iaddr, port);
try {

MulticastSocket ms = new MulticastSocket();
ms.setTimeToLive(16); // set TTL to 16
ms.joinGroup(iaddr); // not necessary for sending
ms.send(dp);
ms.leaveGroup(iaddr); // not necessary for
sending
ms.close();

} catch (SocketException se) {
se.printStackTrace();

} catch (IOException ioe) {
ioe.printStackTrace();

}

Lecture 4: Networking with Sockets 45

Implication for A Course Project

• Client-Server interaction using TCP
– Client side:

• Host and port of a server should be command line arguments
• Do not bind a client socket to a fixed local port number
• Do not forget to flush the socket output stream when sending a

request
• Remember that read from a socket input stream is blocking
• Should set timeout for a socket and properly handle exceptions
• Take into account long communication latency: User interface

should be responsive, use multithreading: a thread for the user
interface, a thread for the network interface.

• A Client may create and listen a server socket (e.g. for callbacks).
It should do this in a separate “server” thread

Lecture 4: Networking with Sockets 46

Implication for the Course Project
(cont’d)

• Client Server interaction using TCP
– Server side:

• A server port should be a command line argument

• A server should be scalable, i.e. it should be able to handle
multiple requests simultaneously by using multithreading

• Two approaches to multithreading:

– (1) create a new thread for each client connected;

– (2) assign a thread to a client from a pool of threads

• While communicating with a client, do not forget to set
timeout to a TCP socket, and flush output stream when
needed

Lecture 4: Networking with Sockets 47

Implication for the Course Project
(cont’d)

• Communication using UDP
– The same UDP socket can be used for both, sending

and receiving

– A TCP socket and a UDP socket may be bound to
the same port number

– Sending a datagram, set a proper TTL

– Remember that receive is a blocking call
• Set timeout and handle exceptions properly

– You may get source address (IP address and port)
from a datagram received

Lecture 4: Networking with Sockets 48

Implication for the Course Project
(cont’d)

• Problem with request-response interaction
using UDP:
– if receive is interrupted because of timeout, you

may treat this as there is no response to the sent
request and send a new request. However, next
receive may receive a response on the old
request rather than the one sent recently.

– Your application should be able to handle this
situation.

Lecture 4: Networking with Sockets 49

Implication for the Course Project
(cont’d)

• Communication with a multicast group
– A multicast address(es) and port(s) should be command line

arguments.
– To send to a multicast group, it is not needed to join the group

• You may use DatagramSocket for sending to the group

– Responses to one member of a group should be sent directly to
the member (to it’s IP) rather than to the entire group

– When your application waits for a response from the multicast
group, it should be able to handle two extreme cases
• No response
• Too many responses

– You should also solve the problem of receiving old responses
(see previous slide).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

