
Distributed Objects.
Java IDL (CORBA) and Java RMI

Leif Lindbäck, Vladimir Vlassov

KTH/ICT/SCS

HT 2015

ID2212 Network Programming with Java
Lecture 6

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 2

Outline

• Revisited: Distributed Computing
– Architectures

– Implementation Approaches

• Basics of a Distributed Object Architecture

• Java IDL (CORBA)

• Java RMI: Remote Method Invocation

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 3

Review:
Architectures of Distributed Applications
• Two-tier architecture: Clients and Servers

• Three-tier architecture:
– First tier: clients with GUI

– Middle tier: business logic

– Third tier: System services (databases)

• Peer-to-peer architecture: Equal peers

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 4

Existing Implementation Approaches

• Message passing via sockets

• RPC: Remote Procedure Calls
• Distributed objects (RMI)

– DCOM: Distributed Component Object Model
(Microsoft, homogeneous implementation)

– CORBA: Common Object Request Broker Architecture
(OMG, heterogeneous)

– Java RMI (Oracle, homogeneous)
– Enterprise Java Beans (EJB) – Distributed component

architecture for building integrated enterprise services

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 5

Motivation for RPC and RMI

• Message passing over socket connections is
somewhat low level for distributed applications
– Typically, client/server interaction is based on a

request/response protocol
– Requests are typically mapped to procedures or method

invocations on objects located on the server

• A better approach for client/server applications is
to use
– Remote Procedure Calls

• Rendezvous (like in ADA, Concurrent C)

– Remote Method Invocation – in OO environment

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 6

Remote Method Invocation (RMI)

• Remote method invocation (RMI) is the
mechanism to invoke a method in a remote object
– the object-oriented analog of RPC in an distributed OO

environment, e.g. OMG CORBA, Java RMI, DCOM
– RPC allows calling procedures over a network
– RMI invokes object's methods over a network

• Location transparency: invoke a method on a stub
like on a local object (via stack)

• Location awareness: the stub makes remote call
across a network and returns a result via stack

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 7

Remote Method Invocation
a {
 m(x) {
 return x*5
 }
}

r = a.m(x);

a { // stub
 m(x) {
 1. Marshal x
 2. Send Msg w/ a, m, x

a_skeleton { // skeleton
 m() {
 3. Receive Msg
 4. Unmarshal x
 5. result = a.m(x)
 6. Marshal result
 7. Send Msg w/ result
 }
}

U
p

c
a
l
l

 8. Receive Msg w/ result
 9. Unmarshal result
 10. Return result
 }
}

Network

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 8

Parameter Passing

• Parameters are passed in an RMI message and not via a
local stack
– data of primitive types are passed by values

– objects are passed either by values (replication) or by references

• Objects can be heterogeneous
– different implementation languages

– different target virtual machines and operation systems

• Different representations of primitive types
– convert data representation across different implementation

• Composite Types (e.g., structures, objects)
– need to be flattened and reconstructed (marshal / unmarshal)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 9

Marshaling/Unmarshaling

• Marshaling:
– done by client (i.e., caller)

– packing the parameters into a message

– flatten structures

– perform representation conversions if necessary

– also done by server (i.e., callee) for results

• Unmarshaling:
– done by receiver of message to extract parameters or

results

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 10

Stubs and Skeletons

• Encapsulate marshaling and communication
– Enable application code in both client and server to treat call as

local

• Stub is a proxy for the real object on the client
– represents the real object as a local object on the client
– contains information to locate the real object
– implements original interface with the same method signatures but

the methods perform remote calls to the real object

• Skeleton is on the server
– receives, unmarshals parameters
– calls original routine on the real object
– marshals and sends result (data, acknowledgment or exception) to

the client

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 11

Synchronous versus Asynchronous
Invocation

• Void methods do not require a result to be sent to the caller

• Asynchronous invocation
– The method locally invoked on the stub immediately returns and the

calling thread proceeds as soon as the request is on its way to the
remote object

– The request is executed by the underlying layer in a separate thread

– Problem: exceptions

• Synchronous invocation
– The calling thread is suspended waiting for the remote invocation to

complete (for the invoked method to return)

– The calling thread proceeds as soon as it gets acknowledgement
from the remote object

Locating Objects
• How does the caller get a reference to the remote object, i.e. stub?
• One approach is to use a distributed Naming Service:

– Associate a unique name with a remote object and bind the name to the
object at the Naming Service.

• The name must be unique in current context.
• The record typically includes name, class name, object reference
• The object reference contains location information.

– The object name is used by the client to lookup the Naming Service for
the object reference (stub).

– Problem of the primary reference: How does the client locate the Naming
Service? – configuration issues

• Another way to get a reference to a remote object is to get it as a
parameter or a return in remote method invocation

• Third way: to make a reference (IOR: Interoperable Object
Reference) and store/send it in a file

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 12

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 13

a = new ClassA();

a {
 m(x) { return x*5 };
 }

Use of the Naming Service

a_skeleton { // skeleton
 m() {
 ...
 }
}

Naming
service
Naming
service

Naming.rebind(a, “nameA”);

Network

a = (ClassA)
 Naming.lookup(“nameA”);

r = a.m(x);

a { // stub
 m(x) {
 …
 }
}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 14

network

a = new ClassA();
Naming.rebind(a, “nameA”);

a_skeleton {
 getB(){ up-call;
send b } }

Remote Reference in Return

a = (ClassA)
 Naming.lookup(“nameA”);

a { // stub
 getB() { … } }

2

1

// get reference to B
b = a.getB(); 3 b {

 p(S)() { return S*S; } }

b_skeleton {
 p(){ ... } }

4

b { // stub
 p(S) { … } }

5

a {
 getB() {
 return new ClassB(); } }

Naming
service
Naming
service

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 15

Separate Interface from Implementation.
Interface Definition Language (IDL)

• A remote object is remotely accessed via its
remote interfaces.

• Objects can be heterogeneous
– different implementation languages
– different target virtual machines and operation systems

• Separate interface definition from implementation:
– Implementation may change, as long as the interface is

respected

• Interface Definition Language (IDL)
– Describe interface for RMI

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 16

Generating Stubs and Skeleton.
IDL Mappings

• Where do Stubs and Skeletons come from?
– writing (un)marshaling code is bug prone

– communication code has many details

– structure of code is very mechanical

• Answer:
– Stubs and Skeletons can be generated from IDL definitions

• Mapping from IDL to OO-language
– generates code for Stubs and Skeletons

– IDL to Java, C++, Smalltalk, COBOL, Ada

– Allows cross language invocations

Java IDL (CORBA)

Reference implementation of OMG
CORBA in Java for Java

org.omg.CORBA

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 18

Four Components of OMA
(Object Management Architecture)

• By the Object Management Group (OMG) consortium that
operates since 1989. See: http://www.omg.org

1. Object Model (Glossary of terms)
– Concepts: class, object, attribute, method, inheritance, etc.

– UML (Unified Modeling Language) is a standard for object modeling.
• See: UML modeling with IBM Rational software:

http://www-306.ibm.com/software/rational/uml/

2. CORBA (Common Object Request Broker Architecture)
– A mechanism for communication between objects

– Specification, related APIs and tools

– Object Request Broker (ORB) is implementation of CORBA

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 19

Four Components of OMA (cont)
3. CORBA Services

– Horizontal services common for any objects: Naming, Security, Life Cycle,
Transactions, Events, etc.

4. CORBA Facilities
– High level functionality for integrating objects

• User interface: drag-and-drop, compound documents

• System Management

• Task Management / Workflow

– Vertical services supporting particular industries
• Finance, Oil and Gas Exploration, Telecommunications (TMN/TINA-C) , 10

other
– TMN is Telecommunications Management Network;

– TINA-C is Telecommunications Information Networking Architecture Consortium

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 20

The Architecture of CORBA
ImplementationImplementation

repositoryrepository

Object implementationsObject implementations
(Servants)(Servants)

Object implementationsObject implementations
(Servants)(Servants)

StaticStatic
 SkeletonsSkeletons

ORBORB
InterfaceInterface

DynamicDynamic
SkeletonsSkeletons

Basic Object Adapter (BOA)Basic Object Adapter (BOA)
or Portable Object Adapter (POA)or Portable Object Adapter (POA)

ORB

CallerCallerCallerCaller

StaticStatic
StubsStubs

ORBORB
InterfaceInterface

InterfaceInterface
RepositoryRepository

DynamicDynamic
InvocationInvocation
InterfaceInterface

IIOPIIOP

ORB

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 21

CORBA Anatomy

• ORB: Object Request Broker
– makes it possible for CORBA objects to communicate with each

other by connecting objects making requests (clients) with objects
servicing requests (servants).

• BOA: Basic Object Adapter
– accepts call requests (as a meta-call),
– instantiates objects,
– initiates up-calls on skeletons,
– manages the Implementation Repository,
– different ORB vendors have completely different implementation of

BOA

• POA: Portable Object Adapter
– like BOA but portable between different ORB products

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 22

(cont’d) CORBA Anatomy

• A stub on the client side provides a static interface to
remote object services.
– resolves the remote object’s location
– performs remote method invocation via a local ORB

• Sends the object reference, the method name and parameters to the
destination ORB (skeleton) by using IIOP (Internet Inter-ORB
Protocol)

• Receives and unmarshals data in return

• A skeleton on the server side performs up-calls on a real
object
– transforms the call and parameters into the required format and

calls the object
– marshals result (or exception) and sends it over ORB connection.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 23

ORB Protocols

• CORBA 2.0 defines standard protocols:
• GIOP: General Inter ORB Protocol

– Defines standard message format

• IIOP: Internet Inter ORB Protocol
– IIOP is the implementation of GIOP over TCP/IP
– IIOP-to-HTTP gateway and HTTP-to-IIOP gateway allow

CORBA clients to access Web resources and Web clients to access
CORBA resources.

• ESIOP: Environment Specific Inter ORB Protocol
– Allows ORBs to run on top of other standards (such as DCE:

Distributed Computing Environment consisting of standard APIs:
naming, DFS, RPC, etc.)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 24

IDL: Interface Definition Language

• IDL is a purely declarative language: interface declarations
• An IDL interface describes the attributes and methods

(operations) that are exported on the ORB.
– An interface can have several implementations.
– An object can implement several interfaces.

• IDL-to-language compilers are based on mapping from IDL
to the language (Java, C++, Smalltalk, COBOL, Ada)

• A compiler generates
– An interface(s),
– A stub (a client proxy for remote calls),
– A skeleton (a server proxy for translating incoming calls to up-calls)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 25

IDL Concepts

• Interface
– Similar to a class, but only defines the interface of an object,

without information on its representation in memory

• Operation
– Similar to a method or member function

– The direction of parameter must be specified: in, out, inout

• Attribute
– Does not define an attribute in memory

– Defines two operations for getting and setting the value

– readonly is used to suppress the function setting the value

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 26

Basic Data Types

• No int type

• No pointer type

• IDL types are defined in
terms of their semantics

IDL Java

short short

long int

unsigned
short

short

unsigned
long

int

float float

double double

char char

boolean boolean

octet byte

any class any

string String

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 27

Complex Types
• Build complex types from basic types in IDL:

– struct , enum , union , typedef
– array – fixed length collection
– sequence – variable length collection
– Object – reference to an IDL object (proxy)

• Mapping to Java
– sequence and array are mapped to the Java array type.
– enum , struct , and union are mapped to a final Java class that

implements the semantics of the IDL type.
– For example, array of bytes can be defined as:

typedef sequence <octet> bytes;
bytes getBytes(in string from)
raises(cannotget);

• The Java class generated should have the same name as the original IDL
type.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 28

Passing Parameters and Returns

• CORBA sends all types across the network by
value, except objects
– Objects are passed by reference
– A proxy is constructed on the receiving end

• The OMG added a new specification called
”Pass-by-Value”
– Include Object by Value mapping
– Initiators were Sun and IBM
– Motivation: support for object migration and replication
– RMI over IIOP

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 29

Java IDL (org.omg.CORBA)

• Java IDL is a reference implementation of CORBA in Java

• Oracle delivers Java IDL in the Java SDK, SE
– IDL-to-Java compiler

– Multi-protocol ORB (classes)

– Support for Java clients and servers (Name service, etc.)

• Java IDL is not a sophisticated product on the server side:
– Doesn't have CORBA scalability and security features

– No CORBA Services except of Naming

• Java IDL will be useful on the client
– Avoid downloading the ORB client

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 30

Other Implementations of CORBA

• CORBA platforms from Progress Software
– http://web.progress.com/en/Product-Capabilities/corba.html

• The Micro Focus’s solution for CORBA Technology
(VisiBroker)
– http://www.microfocus.com/products/visibroker/index.aspx

• CORBA typically comes as a part of an enterprise
(application) server

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 31

Developing a Distributed Application
with Java IDL

1. Define interfaces with IDL
2. Compile the interfaces using idlj , which generates the Java bindings

for a given IDL file.
3. Develop an implementation for the interfaces (servants)
4. Develop a server (a container for servants) that initializes ORB and

creates the servants
5. Develop a client
6. Compile the client, the servants and the server (using javac)
7. Start the Naming Service tnameserv , which is the Common Object

Services (COS) Name Service
8. Start the server
9. Run the client

Step 1. Sample IDL Interfaces
(see Example 4.3: Bank)

module bankidl {
 interface Account {

readonly attribute float balance;
exception rejected { string reason; };
void deposit(in float value) raises (rejected);
void withdraw(in float value) raises (rejected);

 };
 interface Bank {

exception rejected { string reason; };
Account newAccount(in string name) raises
(rejected);
Account getAccount (in string name);
boolean deleteAccount(in string acc);

 };
};

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 32

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 33

The IDL Interfaces (cont’d)

bank

account

Interface Account:
float balance
deposit(in float value)
withdraw(in float value)

Interface Bank:
Account newAccount(in string name)
Account getAccount (in string name)
boolean deleteAccount(in Account acc)

accountaccount

ServerServer

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 34

Step 2. Compiling IDL to Java

• The IDL to Java compiler (idlj) generates:
– Interfaces:

• Bank.java , Account.java
– Stubs for the client side:

• _BankStub.java , _AccountStub.java
– Skeletons for the server side:

• When using BOA (backwards compatible to J2SE 1.4)
BankImplBase.java , AccountImplBase.java

• When using POA: BankPOA.java,
AccountPOA.java

• Implementations of the interfaces should extend the skeletons.

– Helpers used to narrow a remote reference to its remote interface:
• BankHelper , AccountHelper

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 35

Step 3. Implementing The Interfaces.

• A servant is a class that implements the interface(s)
generated by a IDL to Java compiler.

• The servant class may extend an appropriate skeleton
(implementation base) class, for example:
public class BankImpl extends
_BankImplBase
or (when using POA)

 public class BankImpl extends BankPOA
– In this way the servant implements the interface and

encapsulates the skeleton that accepts (remote) calls

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 36

Inheritance Structure

bankidl.BankImplbankidl.BankImplbankidl.BankImplbankidl.BankImpl

extendsextends

Written by programmerWritten by programmer

bankidl._BankImplBasebankidl._BankImplBasebankidl._BankImplBasebankidl._BankImplBase

org.omg.CORBA.portable.ObjectImplorg.omg.CORBA.portable.ObjectImplorg.omg.CORBA.portable.ObjectImplorg.omg.CORBA.portable.ObjectImpl

extendsextends

implementsimplements
extendsextends

<interface><interface>
bankidl.Bankbankidl.Bank
<interface><interface>
bankidl.Bankbankidl.Bank

<interface><interface>
org.omg.CORBA.Objectorg.omg.CORBA.Object

<interface><interface>
org.omg.CORBA.Objectorg.omg.CORBA.Object

<interface><interface>
bankidl.BankOperationsbankidl.BankOperations

<interface><interface>
bankidl.BankOperationsbankidl.BankOperations

Used as signature typeUsed as signature type
in method declarationsin method declarations

Example 4.3
Bank
Implementation

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 37

package bankidl;

import java.util.Hashtable;
import bankidl.BankPackage.rejected;

public class BankImpl extends _BankImplBase {
private String bankname = null;

 private Hashtable accounts = new Hashtable();

 public BankImpl(String name) {
 super();

 bankname = name;
 }

public Account newAccount(String name) throws rejected {

 AccountImpl account = (AccountImpl) accounts.get(name);
 if (account != null) throw new rejected(

"Rejected: Account for: " + name + " already exists");

 }
 account = new AccountImpl(name);

 accounts.put(name, account);
 return (Account)account;

 }

public Account getAccount(java.lang.String name) {
 return (Account) accounts.get(name);

 }
public boolean deleteAccount(String name) {
 AccountImpl account = (AccountImpl) accounts.get(name);

 if (account == null) return false;
 accounts.remove(name);

 return true;
 }

}

Example 4.3
Account
Implementation

package bankidl;
import bankidl.AccountPackage.rejected;
public class AccountImpl extends _AccountImplBase {

 private float balance = 0;
 private String name = null;

public AccountImpl(java.lang.String name) {
 super();

 this.name = name;
 }
 public void deposit(float value) throws rejected {

 if (value < 0)
 throw new rejected("Rejected: Illegal value: ” +

value);
 balance += value;

 }

 public void withdraw(float value) throws rejected {
 if (value < 0)

throw new rejected("Rejected: Illegal value: ” + value);
 if ((balance - value) < 0)
throw new rejected("Rejected: Negative balance”));

 balance -= value;
 }

 public float balance() {
 return balance;
 }
}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 38

Inheritance Structure with POATie.
The Tie Delegation Model.

• An IDL to Java compiler can generate a <interface>POATie class that
extends the skeleton.

• The implementation class may inherit from a different class and implement the
remote interface.

• Remote calls received by the tie object are directed to the implementation object.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 39

bankidl._BankImplBasebankidl._BankImplBasebankidl._BankImplBasebankidl._BankImplBase

org.omg.CORBA.portable.ObjectImplorg.omg.CORBA.portable.ObjectImplorg.omg.CORBA.portable.ObjectImplorg.omg.CORBA.portable.ObjectImpl

<interface><interface>
bankidl.Bankbankidl.Bank
<interface><interface>
bankidl.Bankbankidl.Bank

<interface><interface>
org.omg.CORBA.Objorg.omg.CORBA.Obj

ectect

<interface><interface>
org.omg.CORBA.Objorg.omg.CORBA.Obj

ectect

<interface><interface>
bankidl.BankOperationsbankidl.BankOperations

<interface><interface>
bankidl.BankOperationsbankidl.BankOperations

extendsextends

extendsextends
implementsimplements

Written by programmerWritten by programmer

BankImplBankImplBankImplBankImpl

implementsimplements

BankPOATieBankPOATieBankPOATieBankPOATie

extendsextends

Tied togetherTied together

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 40

Design Options (1/2)

• Choose an ORB implementation that suits you (price,
efficiency, etc.)

• Use either POA (standard Portable Object Adapter) or BOA
(non-standard Basic Object Adapter, which could be more
efficient)
1. To generate both client and server-side POA bindings, use

idlj -fall My.idl
• Generates MyPOA.java given an interface My defined in My.idl.
• You must implement My in a class that must inherit from MyPOA.

2. To generate BOA bindings backwards compatible to J2SE 1.4, use
idlj -fall -oldImplBase My.idl
• Generates _MyImplBase.java given an interface My defined in

My.idl.
• You must implement My in a class that must inherit from

_MyImplBase.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 41

Design Options (2/2)

• Use a tie class when it is not convenient or possible to
have your implementation class inherit from either of the
skeletons MyPOA or _MyImplBase.

idlj –fallTIE My.idl
• Generates the tie class

– Wrap your implementation within My_Tie.

– For example:
 MyImpl myImpl = new MyImpl ();
My_Tie tie = new My_Tie (myImpl);
orb.connect (tie);

Step 4.
Server
Example 4.3

(Using BOA
backwards
compatible to
J2SE 1.4)

package bankidl;
import org.omg.*;
import org.omg.CORBA.ORB;
public class Server {
 public static void main(String args[]) {
 if (args.length != 3) {
 System.out.println(

 "usage: java Server <bankname> <-ORBInitialPort port>");
 System.exit(1);
 }
 try {
 ORB orb = ORB.init(args, null);
 BankImpl bankRef = new BankImpl(args[0]);
 orb.connect(bankRef);
 org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService”);
 NamingContext ncRef =

NamingContextHelper.narrow(objRef);
 NameComponent nc = new NameComponent(args[0], "");
 NameComponent path[] = {nc};
 ncRef.rebind(path, bankRef);
 orb.run();
 } catch (Exception e) { }
 }
}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 42

Step 5. Client
package bankidl;

import org.omg.CosNaming.*;

import org.omg.CORBA.ORB;

public class SClient {

 static final String USAGE =
"java bankidl.SClient <bank> <client> <value> <-ORBInitialPort
port>";

 Account account;

 Bank bankobj;

 String bankname = "SEB";

 String clientname = "Vladimir Vlassov";

 float value = 100;

 public static void main(String[] args) {

 if ((args.length > 0) && args[0].equals("-h")) {

 System.out.println(USAGE);

 System.exit(0);

 }

 new SClient(args).run();

 }

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 43

Step 5. Client (cont’d)
 public SClient(String[] args) {
 if (args.length > 2) {
 try { value = (new Float(args[2])).floatValue();
 } catch (NumberFormatException e) {
 System.out.println(USAGE);

 System.exit(0);
 }
 }
 if (args.length > 1) clientname = args[1];
 if (args.length > 0) bankname = args[0];
 try {
 ORB orb = ORB.init(args, null);
 org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");
 NamingContext ncRef = NamingContextHelper.narrow(objRef);
 NameComponent nc = new NameComponent(bankname, "");
 NameComponent[] path = {nc};
 bankobj = BankHelper.narrow(ncRef.resolve(path));
 } catch (Exception se) {
 System.out.println("The runtime failed: " + se);
 System.exit(0);
 }
 System.out.println("Connected to bank: " + bankname);
 }

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 44

Step 5. Client (cont’d)
public void run() {

 try {

 account = bankobj.getAccount(clientname);

 if (account == null) account =
bankobj.newAccount(clientname);

 account.deposit(value);

 System.out.println(clientname +
"'s account: $" + account.balance());

 } catch (org.omg.CORBA.SystemException se) {

 System.out.println("The runtime failed: " + se);

 System.exit(0);

 } catch (bankidl.AccountPackage.rejected e) {

 System.out.println(e.reason);

 System.exit(0);

 } catch (bankidl.BankPackage.rejected e) {

 System.out.println(e.reason);

 System.exit(0);

 }

 }

}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 45

Locating Objects

• Using Name Service
– The server creates the Bank object with the specified

name, e.g. “Nordea”, and makes it persistent (ready).
– To obtain the object reference, the client via the ORB

contacts the Name Service of Java IDL tnameserv :
tnameserv -ORBInitialPort 1050

• Using Interoperable Object References (IOR)
– Server can store an object’s IOR (Interoperable Object

Reference) as a string to a file.
– Client can then fetch the reference from the file via a

web server.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 46

package bankidl;

import org.omg.CORBA.ORB;

import java.io.*;

public class Serverl {

 public static final String USAGE =

"usage: java bankidl.Serverl bankname dir";

 public static void main(String[] args) {

 if (args.length < 2) {

 System.out.println(USAGE); System.exit(1);

 }

 try {

 ORB orb = ORB.init(args, null);

 BankImpl bankRef = new BankImpl(args[0]);

 orb.connect(bankRef);

 File dir = new File(args[1]);

 if (!dir.exists()) dir.mkdir();

 String filename = dir +
Character.toString(File.separatorChar)+

args[0] + ".ior";

 File file = new File(filename);

 file.createNewFile();

 file.deleteOnExit();

 FileWriter writer = new FileWriter(file);

 writer.write(orb.object_to_string(bankRef));

 writer.close();

 orb.run();

 } catch (Exception e) {

 System.out.println(USAGE); System.exit(1);

 }

 }

}

Example:
Server
Using IOR

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 47

Example:
Client
Using IOR

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 48

...
public class Clientl {
 static final String USAGE = "java bankidl.Client url

<-ORBInitialPort port>";
 Account account;
 Bank bankobj;
 String bankname = "SEB";
 String clientname;
 public static void main(String[] args) {
 if ((args.length > 0) && args[0].equals("-h")) {
 System.out.println(USAGE); System.exit(0);
 }
 new Clientl(args).run();
 }
 public Clientl(String[] args) {
 if (args.length < 1) {
 System.out.println(USAGE); System.exit(1);
 }
 try {
 URL bankURL = new URL(args[0]);
 BufferedReader in = new BufferedReader(new

InputStreamReader((InputStream)bankURL.getContent()));
 ORB orb = ORB.init(args, null);
 org.omg.CORBA.Object objRef =

orb.string_to_object(in.readLine());
 bankobj = BankHelper.narrow(objRef);
 } catch (Exception se) {
 System.out.println("The runtime failed: " + se);

System.exit(0);
 }
 System.out.println("Connected to bank: " + bankname);
 }

Java RMI (Remote Method Invocation)

java.rmi

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 50

Java RMI

• Java RMI is a Java native ORB (object request
broker)

• The Java RMI facility allows applications or
applets running on different JVMs, to interact with
each other by invoking remote methods.
– Remote reference (stub) is treated as local object.
– Method invocation on the reference causes the method

to be executed on the remote JVM.
– Serialized arguments and return values are passed over

network connections.
– Uses Object streams to pass objects “by value”.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 51

Some RMI Classes and Interfaces

• java.rmi.Remote
– Interface that indicates interfaces whose methods may be invoked

from a non-local JVM -- remote interfaces.

• java.rmi.Naming
– The RMI Naming Service client that is used to bind a name to an

object and to lookup an object by name at the name service
rmiregistry.

• java.rmi.RemoteException
– The common superclass for a number of communication-related

RMI exceptions.

• java.rmi.server.UnicastRemoteObject
– A class that indicates a non-replicated remote object.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 52

Developing a Distributed Application
with Java RMI

• Typical steps:
1. Define a remote interface(s) tha extends java.rmi.Remote .
2. Develop a class (a.k.a. servant class) that implements the interface.
3. Develop a server class that provide a container for servants, i.e.

creates the servants and registers them at the Naming Service.
4. Develop a client class that gets a reference to a remote object(s) and

calls its remote methods.
5. Compile all classes and interfaces using javac .
6. (optional) Generate stub classes for classes with Remote interfaces

using rmic
Since 1.5, stubs are generated dynamically by JIT

7. Start the Naming service rmiregistry
8. Start the server on a server host, and run the client on a client host.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 53

Architecture of a Client-Server
Application with Java RMI

ClientClient
RemoteServant obj =

(Servant)Naming.lookup
(
 “rmi://host/name“);

ServerServer

Servant obj = new Servant();
Naming.bind(“name“, obj);

Local calls

Remote calls

rmiregistryrmiregistry

StubStub
RemoteServant
interface

TCPbased Transport LayerTCPbased Transport Layer

Remote Reference LayerRemote Reference Layer

SkeletonSkeletonServant
object

Servant
object

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 54

Declaring and Implementing a Remote
Interface (1/2)

• A remote interface must extend the
java.rmi.Remote
– Each method must throw java.rmi.RemoteException

• A class may implement one or several remote interface
– The class should extend the UnicastRemoteObject class

or must be exported via the static call
 UnicastRemoteObject.exportObject(Remote
obj)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 55

Declaring and Implementing a Remote
Interface (2/2)

• An object of the class that implements the remote interface
is called a servant.
– A servant is created by a server and lives until the server dies.
– The servant and the server can be encapsulated into one class

(typically, a primary class).

• A stub and a skeleton are generated from a servant class
by JIT

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 56

The Naming Service rmiregistry .
The Naming Client Naming

• A Remote object can be registered with a specified name at the
Naming service, rmiregistry , provided in J2SE.
– A registered object can be pointed to by a URL of the form

rmi://host:port/objectName
– The URL indicates host/port of rmiregistry – default localhost:1099.

• The Naming class provides a static client of the RMI registry.
• A server binds a name to an object:
try {
 Bank bankobj = new

BankImpl(“CityBank”);
 Naming.rebind(“rmi://” + host + ”:” +

port + ”/CityBank”, bankobj);
 System.out.println(bankobj + " is

ready.");
} catch (Exception e) {

e.printStackTrace();
}

• A client looks up a remote reference:
String bankURL =

“rmi://theHost/CityBank”;

try {

 bankobj = (Bank) Naming.lookup(bankURL);

} catch (Exception e) {

 System.out.println("The runtime failed:
"+ e);

 System.exit(0);

}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 57

Loading Stub Classes
• Stubs are dynamically loaded when needed either from the local file system or from the

network using the URL specified on server side using the
java.rmi.server.codebase property.

– The property can be set in a command line of an application, for example:
-Djava.rmi.server.codebase=http://webvector/export
/

– See: http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/javarmiproperties.html

RMI clientRMI client

2. Client makes a Naming.lookup

3. The registry returns an
 instance of the stub

4. Client requests the stub
 class from the code base

5. The HTTP server returns
 the stub class

RMI
registry

RMI
registry

URL location
(file, ftp, http)
URL location
(file, ftp, http)

ServantServant

ServerServer

1. Server binds a servant to a name

java.rmi.server.codebase =
http://myHost/mydir/

myHost

JVM

http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/javarmiproperties.html

Starting rmiregistry programmatically

• Before rebind/bind

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 58

try { LocateRegistry.getRegistry(1099).list(); }
catch (RemoteException e) {

LocateRegistry.createRegistry(1099);
 }

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 59

Parameters and Returns in Java RMI
• Primitive data types and non-remote Serializable objects are

passed by values.
– If an object is passed by value, it is cloned at the receiving JVM, and its

copy is no longer consistent with the original object.
– The class name collision problem. Versioning.

• Remote objects are passed by references.
– A remote reference can be returned from a remote method. For example:

try {
 // lookup for the bank at rmiregistry
 Bank bankobj = (Bank)Naming.lookup(bankname);

 // create a new account in the bank
 Account account = bankobj.newAccount(clientname);

 account.deposit(value);
} catch (Rejected e) { handle the exception }
…

– A remote object reference can be passed as a parameter to a remote
method.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 60

Example: A Bank Manager

• An application that controls accounts.

• Remote interfaces:
– Account – deposit, withdraw, balance;

– Bank – create a new account, delete an account, get
an account;

• Classes that implement the interfaces:
– BankImpl – a bank servant class that implements the
Bank interface used to create, delete accounts;

– AccountImpl – a account servant class that
implements the Account interface to access accounts.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 61

Bank and Account Remote Interfaces
• The Bank interface:

 package bankrmi;
import java.rmi.*;
import bankrmi.Account;
import bankrmi.RejectedException;
public interface Bank extends Remote {
 public Account newAccount(String name) throws

RemoteException,RejectedException;
 public Account getAccount(String name) throws RemoteException;
 public boolean deleteAccount(String name) throws RemoteException;
 public String[] listAccounts() throws RemoteException;
}

• The Account interface
package bankrmi;
import java.rmi.Remote;
import java.rmi.RemoteException;
public interface Account extends Remote {
 public float getBalance() throws RemoteException;
 public void deposit(float value) throws RemoteException,

RejectedException;
 public void withdraw(float value) throws RemoteException,

RejectedException;
}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 62

A Fragment of the Bank Implementation
package bankrmi;
import java.rmi.*;
import java.util.*;
public class BankImpl extends UnicastRemoteObject implements Bank {

private String bankName;
private Map<String, Account> accounts = new HashMap<String, Account>();
public BankImpl(String bankName) throws RemoteException {
super();
this.bankName = bankName;
}
public synchronized Account newAccount(String name) throws RemoteException,
RejectedException {
AccountImpl account = (AccountImpl) accounts.get(name);
if (account != null) {
throw new RejectedException("Rejected: Bank: " + bankName +
" Account for: " + name + " already exists: " + account);
}
account = new AccountImpl(name);
accounts.put(name, account);
return account;
}
public synchronized Account getAccount(String name) {
return accounts.get(name);
}
public synchronized String[] listAccounts() {
return accounts.keySet().toArray(new String[1]);
}

...
}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 63

The Account Implementation
package bankrmi;
import java.rmi.*;
public class AccountImpl extends UnicastRemoteObject implements Account {
 private float balance = 0;
 private String name;

public AccountImpl(String name) throws RemoteException {
 super();
 this.name = name;
 }
 public synchronized void deposit(float value) throws RemoteException,

RejectedException {
 if (value < 0)
 throw new RejectedException("Rejected: Account "+name+": Illegal value:

"+value);
 balance += value;

}
 public synchronized void withdraw(float value) throws RemoteException,

RejectedException {
 if (value < 0)
 throw new RejectedException("Rejected: Account "+name+": Illegal value:

"+value);
 if ((balance - value) < 0)

 throw new RejectedException("Rejected: Account "+ name +
": Negative balance on withdraw: " + (balance - value));

 balance -= value;
}

 public synchronized float getBalance() throws RemoteException {
 return balance;
 }
}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 64

The Server Application
package bankrmi;
public class Server {

private static final String USAGE = "java bankrmi.Server
<bank_rmi_url>";
private static final String BANK = "Nordea";
public Server(String bankName) {
try {
Bank bankobj = new BankImpl(bankName);
java.rmi.Naming.rebind(bankName, bankobj);
} catch (Exception e) {
e.printStackTrace();
}
}
public static void main(String[] args) {
if (args.length > 1 || (args.length > 0 &&
args[0].equalsIgnoreCase("-h"))) {
System.out.println(USAGE);
System.exit(1);
}
bankName = (args.length > 0) ? args[0] : BANK;
new Server(bankName);
}

}

package bankrmi;
import bankrmi.*;
import java.rmi.*;
public class SClient {
 static final String USAGE = "java Client <bank_url> <client> <value>";
 String bankname = “Noname", clientname = “Noname"; // defaults
 float value = 100;
 public SClient(String[] args) {

 //... Read and parse command line arguments (see Usage above)
 try {
 Bank bankobj = (Bank) Naming.lookup(bankname);

 Account account = bankobj.newAccount(clientname);
 account.deposit(value);
 System.out.println (clientname + "'s account: $" +
account.balance());
 } catch (Rejected e) {
 System.out.println(e); System.exit(0);

 } catch (Exception se) {
 System.out.println("The runtime failed: " + se); System.exit(0);

 }
 }
 public static void main(String[] args) {
 new SClient(args);
 }
} Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 65

A Fragment of a Simple Client

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java RMI 66

Integrating Java RMI with CORBA

• RMI is an all-Java solution
– A good programming model

• CORBA is an enterprise distributed architecture
– A programming model not designed specifically for Java

– A mature middleware infrastructure

• RMI can run on top of IIOP
– The OMG adds a new specification called ”Pass-by-Value”

– See: http://download.oracle.com/javase/7/docs/technotes/guides/
rmi-iiop/index.html

– Most of services in Java2EE application server implementations
use either RMI or RMI/IIOP for communication

	Distributed Objects. Java IDL (CORBA) and Java RMI
	Outline
	Review: Architectures of Distributed Applications
	Existing Implementation Approaches
	Motivation for RPC and RMI
	Remote Method Invocation (RMI)
	Remote Method Invocation
	Parameter Passing
	Marshaling/Unmarshaling
	Stubs and Skeletons
	Synchronous versus Asynchronous Invocation
	Locating Objects
	Use of the Naming Service
	Remote Reference in Return
	Separate Interface from Implementation. Interface Definition Language (IDL)
	Generating Stubs and Skeleton. IDL Mappings
	Java IDL (CORBA)
	Four Components of OMA (Object Management Architecture)
	Four Components of OMA (cont)
	The Architecture of CORBA
	CORBA Anatomy
	(cont’d) CORBA Anatomy
	ORB Protocols
	IDL: Interface Definition Language
	IDL Concepts
	Basic Data Types
	Complex Types
	Passing Parameters and Returns
	Java IDL (org.omg.CORBA)
	Other Implementations of CORBA
	Developing a Distributed Application with Java IDL
	Step 1. Sample IDL Interfaces (see Example 4.3: Bank)
	The IDL Interfaces (cont’d)
	Step 2. Compiling IDL to Java
	Step 3. Implementing The Interfaces.
	Inheritance Structure
	Example 4.3 Bank Implementation
	Example 4.3 Account Implementation
	Inheritance Structure with POATie. The Tie Delegation Model.
	Design Options (1/2)
	Design Options (2/2)
	Step 4. Server
	Step 5. Client
	Step 5. Client (cont’d)
	Slide 45
	Slide 46
	Example: Server Using IOR
	Example: Client Using IOR
	Java RMI (Remote Method Invocation)
	Java RMI
	Some RMI Classes and Interfaces
	Developing a Distributed Application with Java RMI
	Architecture of a Client-Server Application with Java RMI
	Declaring and Implementing a Remote Interface (1/2)
	Declaring and Implementing a Remote Interface (2/2)
	The Naming Service rmiregistry. The Naming Client Naming
	Loading Stub Classes
	Starting rmiregistry programmatically
	Parameters and Returns in Java RMI
	Example: A Bank Manager
	Bank and Account Remote Interfaces
	A Fragment of the Bank Implementation
	The Account Implementation
	The Server Application
	A Fragment of a Simple Client
	Integrating Java RMI with CORBA

