
Java I/O.
Overview of New I/O (NIO)

Leif Lindbäck, Vladimir Vlassov

KTH/ICT/SCS

HT 2015

ID2212 Network Programming with Java
Lecture 5

Outline

• Java I/O
– I/O using Streams
– Types of streams
– Standard streams
– Accessing files
– File channels

• Overview of New I/O
– Buffers
– Channels
– Selectors

Lecture 5: Java I/O. Overview of New I/O 2

Lecture 5: Java I/O. Overview of New I/O 3

I/O in Java
• Package java.io
• I/O sources and destinations:

– standard input, standard output, standard err
– Files, streams of TCP socket and URL connections

• Input and output streams
– Java provides different types of stream APIs, e.g. byte streams,

character streams, object streams, etc.
– Different stream reading and writing primitives, e.g. read/write,

print
– Basic streams: byte streams
– Other streams are built on top of byte streams

Lecture 5: Java I/O. Overview of New I/O 4

I/O in Java (cont’d)

• For example:
 try (BufferedReader r = new BufferedReader(
 new InputStreamReader(
 socket.getInputStream())) {
 String str;
 while ((str = r.readLine()) != null) {
 //process the line read
 }
 } catch (IOException e) {
 e.printStackTrace();
 }

Lecture 5: Java I/O. Overview of New I/O 5

Streams

• Streams pass data from/to programs.
– Input can be performed by different types of input

streams, e.g. byte input stream, character input
stream (reader)

– Output can be performed by different types of
output streams, e.g. byte output stream, character
output stream (writer)

– If a stream handles characters on the program side,
then it is called a reader or a writer.

Lecture 5: Java I/O. Overview of New I/O 6

Streams

A source can be: A destination can be:

File
Socket input stream
Reader
InputStream
PipedOutputStream
array

File
Socket output stream
Writer
OutputStream
PipedInputStream
array

String
array
Object
char
int
short
...

Program

a stream a stream

Lecture 5: Java I/O. Overview of New I/O 7

Some Types of Streams

ObjectOutputStream

ObjectInputStream

Objects Serialized

DataOutputStream

DataInputStream

Typed
data

Binary
representation

Lecture 5: Java I/O. Overview of New I/O 8

DataInputStream Example
try (DataInputStream inData = new DataInputStream(
 new FileInputStream(
 fileName))) {
 while (true) {
 no = inData.readInt();
 System.out.println("No " + no);
 }
} catch (EOFException done) {
} catch (FileNotFoundException e) {
 System.err.println("file " + fileName +
 " is mising");
} catch (IOException e) {
 e.printStackTrace();
}

Lecture 5: Java I/O. Overview of New I/O 9

Types of Streams (cont’d)

FileWriter

FileReader
Text file
(default encoding)

OutputStreamWriter
Bytes

InputStreamReader

characters

FileOutputStream

FileInputStream

ByteArrayOutputStream

ByteArrayInputStream

bytes

Byte array

File of bytes

Standard Streams

• Static fields in the java.lang.System
class:
– public static final PrintStream err;

• The “standard” error output stream;

– public static final PrintStream out;
• The “standard” output stream;

– public static final InputStream in;
• The “standard” input stream.

– All the streams are already open and ready to
supply/accept data

System.out.println(“your output “ + result);

Lecture 5: Java I/O. Overview of New I/O 10

Lecture 5: Java I/O. Overview of New I/O 11

Files (java.io package)
• File class supports platform-independent usage of file- and directory

names.
– Instances of this class represent the name of a file or a directory on the host

file system.

• Some constructors:
File(String path)
File(String dir, String fileName)
File(File dir, String fileName)

• Some interesting methods of File:
public boolean exists();
public boolean isDirectory();
public boolean isFile();
public long length();
public String[] list();
public String[] list(FileNameFilter f);
public boolean mkdir();
public boolean renameTo(File dest);
public boolean createNewFile()

File Streams

• Used to access files (for reading and writing) as a continues
stream of bytes or characters

• FileInputStream and FileOutputStream
– for reading and writing bytes to the file

• FileReader and FileWriter
– for reading and writing character files

• Provide read and write methods
• Can be created by constructors given a file name or an

object of File
FileInputStream inf = new FileInputStream(filename);

Lecture 5: Java I/O. Overview of New I/O 12

Lecture 5: Java I/O. Overview of New I/O 13

File Descriptor

• FileDescriptor class is a platform-independent
representation of a handle of an open file or an open
socket.

• Objects of this class
– are returned by getFD() of FileInputStream ,

FileOutputStream , RandomAcessFile , ...

– passed to (used by) FileInputStream ,
FileOutputStream , FileReader , FileWriter , ...

Lecture 5: Java I/O. Overview of New I/O 14

Random Access File

• RandomAccessFile class – provides an API similar to
the file API in C
– Instances of this class represent the file opened in a given

mode, e.g.
• “r” – for reading only
• “rw”– for reading and writing

– Methods of this class provide means for reading from file,
writing into file and changing current file access position.

– All methods (including constructors) of this class may throw
IOException.

– Contains object of the FileDescriptor class as a handle of
the file.

An Overview of New I/O

Use of the new I/O API when performing
course programming assignments is

optional

New I/0 (java.nio.*...)

• New I/O APIs introduced in JDK v 1.4

• NIO APIs supplements java.io
– provides a new I/O model based on channels,

buffers and selectors

– enables non-blocking scalable I/O

– allows improving performance of distributed
applications (mostly for the server side)

16Lecture 5: Java I/O. Overview of New I/O

Features in NIO APIs

• Buffers for data of primitive types, e.g. char, int
• Channels, a new primitive I/O abstraction
• A multiplexed, non-blocking I/O facility

(selectors, selection keys, selectable channels)
for writing scalable servers

• Character-set encoders and decoders
• A pattern-matching facility based on Perl-style

regular expressions (java.util)
• A file interface that supports locks and memory

mapping

17Lecture 5: Java I/O. Overview of New I/O

NIO Packages

java.nio Buffers, which are used throughout the NIO APIs.

java.nio.channels Channels and selectors.

java.nio.charset Character encodings.

java.nio.channels.
spi

Service-provider classes for channels.

java.nio.charset.s
pi

Service-provider classes for charsets.

java.util.regex Classes for matching character sequences against patterns
specified by regular expressions.

18Lecture 5: Java I/O. Overview of New I/O

NIO Programming Abstractions

• Buffers
– Containers for data
– Can be filled, drained, flipped, rewind, etc.
– Can be written/read to/from a channel

• Channels of various types
– Represent connections to entities capable of performing I/O

operations, e.g. pipes, files and sockets
– Can be selected when ready to perform I/O operation

• Selectors and selection keys
– together with selectable channels define a multiplexed,

non-blocking I/O facility. Used to select channels ready for I/O
• Charsets and their associated decoders and encoders

– translate between bytes and Unicode characters

19Lecture 5: Java I/O. Overview of New I/O

Buffers
• Buffer is a container for a fixed amount of data of a

specific primitive type; Used by channels
– Content, data
– Capacity, size of buffer; set when the buffer is created;

cannot be changed
– Limit, the index of the first element that should not be read

or written; limit ≤ capacity
– Position, the index of the next element to be read or written
– Mark, the index to which its position will be reset when the

reset method is invoked
– Buffer invariant: 0 ≤ mark ≤ position ≤ limit ≤ capacity

20Lecture 5: Java I/O. Overview of New I/O

Buffer Classes

Buffer Superclass for other buffers;
clear, flip, rewind, mark/reset

ByteBuffer provides views as other buffers, e.g. IntBuffer
get/put, compact, views; allocate, wrap

MappedByteBuffer

Subclass of the ByteBuffer
A byte buffer mapped to a file

CharBuffer
DoubleBuffer
FloatBuffer
IntBuffer
LongBuffer

absolute (index-based) and relative (position-based) get/put,
compact, allocate, wrap

21Lecture 5: Java I/O. Overview of New I/O

Some Buffer’s methods
static
allocateDirect()

Allocates a new direct byte buffer. With direct ByteBuffer ,
JVM avoid intermediate buffering when performing native I/O
operations directly upon the direct buffer.

static
allocate()

allocate a buffer of a given capacity

clear() clear the buffer, i.e. prepare the buffer for writing data into it by
channel-reads or relative puts (limit = capacity; position = 0)

flip() prepare the buffer for reading data from it by channel-writes or
relative gets (limit = position; position = 0)

rewind() prepare the buffer for re-reading data from it (position = 0)

mark() set this buffer's mark at its position (mark = position)

reset() reset this buffer's position to the previously-marked position
(position = mark)

22Lecture 5: Java I/O. Overview of New I/O

23

Some Buffer’s methods (cont’d)

Lecture 5: Java I/O. Overview of New I/O

static wrap() wrap a given array into a buffer; returns the buffer.

get/put absolute (index-based) and relative (position-based) get/put
data from/into the buffer; position = position –/+ 1;

asIntBuffer()
asCharBuffer()
…

create a view of this byte buffer as a other primitive type
buffer, e.g. as an IntBuffer, as a CharBuffer, etc.

slice() create a new buffer that shares part of this buffer's content
starting at this buffer's position.

duplicate() creates a new byte buffer that shares the this buffer's
content.

compact() copy data between position and limit to the beginning of the
buffer; position is set to the number of data items copied.

boolean
hasRemaining()

check whether there are any elements between the current
position and the limit.

Creating Buffers

• Allocation
– Create an empty buffer on top of a backing Java array

Bytebuffer buf1 = ByteBuffer.allocate(100);
IntBuffer buf2 = intBuffer.allocate(100);

• Direct allocation (only ByteBuffer)
– Direct buffers (using DMA)

ByteBuffer buf3 =
ByteBuffer.allocateDirect(100);

• Wrapping
– Wrap a buffer around existing data array

byte[] data = “Some data”.getBytes(“UTF-8”);
ByteBuffer buf4 = ByteBuffer.wrap(data);
char[] text = “Some text”.toCharArray();
CharBuffer buf5 = CharBuffer.wrap(text);

24Lecture 5: Java I/O. Overview of New I/O

Filling/Draining Buffers
• Filling using wrap or put

String s = ”Some String”;
CharBuffer buf1 = CharBuffer.wrap(s);
CharBuffer buf2 = CharBuffer.allocate(s.length());
// put reversed s in to buf2
for (int i = s.length() - 1; i >= 0; i--) {

buf2.put(s.charAt(i)); // relative put
} // position in buf2 should be 11 after the loop

• Draining using get

buf2.flip(); // limit = position; position = 0
String r = ””;
while (buf2.hasRemaining())

r += buf2.get();
}

25Lecture 5: Java I/O. Overview of New I/O

Reading/Writing Buffers from/to
Channels

• Reading from a channel to a buffer

while (buf.hasRemaining() &&
channel.read(buf) != -1) {
// process the buffer’s content

}

• Writing to a channel from a buffer

while (buf.hasRemaining() &&
 channel.write(buf) != -1) ;

26Lecture 5: Java I/O. Overview of New I/O

Channels

• Channels represent connections to various I/O
sources, such as pipes, sockets, files, datagrams;
– operate with buffers and I/O sources: move

(read/write) data blocks into / out of buffers from /
to the I/O sources;

– can be open or closed;
– can be blocking/non-blocking, selectable (socket,

pipe), interruptible (file);
– enable non-blocking I/O operations

27Lecture 5: Java I/O. Overview of New I/O

Channels versus Streams
Channels (new I/O) Streams (traditional I/O)

Write/read data to/from buffers;
similar to buffered streams;
buffers can be directly allocated in
memory – efficient implementation

Write data onto output streams and
reading data from input streams

Block-based: a streams of blocks
from/to buffers

Byte-based: a continues stream of
bytes

Bi-directional: tend to support both
reading and writing on the same
object (source, buffer)

Uni-directional: input streams and
output streams

28Lecture 5: Java I/O. Overview of New I/O

Some Channel Classes

• For TCP connections
– SocketChannel
– ServerSocketChannel

• For UDP communication
– DatagramChannel

• For file access
– FileChannel

29Lecture 5: Java I/O. Overview of New I/O

FileChannel
• java.nio.channels.FileChannel

– A channel for reading, writing, mapping, and manipulating
a file.

– Similar to RandomAccessFile
• Can be mapped to a buffer in the main memory

– MappedByteBuffer()
• Has a current position within its file which can be both

queried and modified.
• The file itself contains a variable-length sequence of bytes

that can be read and written and whose current size can
be queried.

Lecture 5: Java I/O. Overview of New I/O 30

Some methods of FileChannel

read (dst, pos)
write (src, pos)

Read or write at an absolute position in a file
without affecting the channel's position.

MappedByteBuffer() Map a region of a file directly into memory.

force() Force out file updates to the underlying storage
device, in order to ensure that data are not lost in
the event of a system crash.

transferTo()
transferFrom()

Bytes can be transferred from a file to some
other channel, and vice versa, in a way that can
be optimized by many OSs into a very fast
transfer directly to or from the file system cache.

31Lecture 5: Java I/O. Overview of New I/O

FileChannel Example

32Lecture 5: Java I/O. Overview of New I/O

import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class FileChannelTest {
 public static void main(String[] args) {
 String filename = (args.length > 0)? args[0] : "test.txt";
 try {
 FileInputStream inf = new FileInputStream(filename);
 FileChannel channel = inf.getChannel();
 MappedByteBuffer buffer =
 channel.map(FileChannel.MapMode.READ_ONLY,
 0, channel.size());
 WritableByteChannel out = Channels.newChannel(System.out);
 while (buffer.hasRemaining() && out.write(buffer) != -1) {
 System.out.println("Writing the file " + filename);
 }
 channel.close();
 } catch (IOException e) {
 e.printStackTrace();
 System.exit(0);
 }
 }
}

import java.io.*;
import java.nio.channels.*;

public class FileTransferTest {
 public static void main(String[] args) {
 String srcname = (args.length > 0)? args[0] : "test.txt";
 try {
 FileInputStream inf = new FileInputStream(srcname);
 FileChannel src = inf.getChannel();
 WritableByteChannel dst = Channels.newChannel(System.out);
 src.transferTo(0, src.size(), dst);
 } catch (IOException e) {
 e.printStackTrace();
 System.exit(0);
 }
 }
}

Using transfer method

33Lecture 5: Java I/O. Overview of New I/O

SocketChannel
• A selectable channel for stream-oriented connecting sockets.

– Reads from and writes to a TCP socket.
– Uses ByteBuffer for reading and writing
– Does not have public constructors

• Each SocketChannel is associated with a peer Socket
object
– Binding, closing, and manipulation of socket options must be done

through the associated Socket object

SocketChannel channel = SocketChannel.open();
channel.configureBlocking(false);
channel.connect(new InetSocketAddress(host,

 port));

34Lecture 5: Java I/O. Overview of New I/O

35Lecture 5: Java I/O. Overview of New I/O

SocketChannel Example 1
import java.io.IOException;
import java.nio.channels.*;
import java.net.*;

public class ChannelTest {
 public static void main(String[] args) {
 String host = (args.length > 0)? args[0] : "www.sun.com";
 int port = (args.length > 1) ? Integer.parseInt(args[1]) : 80;
 try {
 SocketChannel channel = SocketChannel.open();
 channel.configureBlocking(false);
 channel.connect(new InetSocketAddress(host, port));
 //can do something here while connecting
 while (!channel.finishConnect()) {
 System.out.println("Connecting to " + host + " on port " + port);
 // can do something here while connecting
 }
 System.out.println("Connected to " + host + " on port " + port);
 // communication with the server via channel
 channel.close();
 } catch (IOException e) {
 e.printStackTrace();
 System.exit(0);
 }
 }
}

36Lecture 5: Java I/O. Overview of New I/O

import java.io.IOException;
import java.nio.*;
import java.nio.channels.*;
import java.net.*;

public class HTTPClient {
 public static final String GET_REQUEST = "GET /index.html HTTP/1.0\n\n";
 public static void main(String[] args) {
 String host = (args.length > 0) ? args[0] : "www.sun.com";
 int port = (args.length > 1) ? Integer.parseInt(args[1]) : 80;
 WritableByteChannel out = Channels.newChannel(System.out);
 try {
 SocketChannel channel = SocketChannel.open(new InetSocketAddress(
 host, port));
 ByteBuffer buf = ByteBuffer.wrap(GET_REQUEST.getBytes());
 channel.write(buf);
 buf = ByteBuffer.allocate(1024);
 while (buf.hasRemaining() && channel.read(buf) != -1) {
 buf.flip();
 out.write(buf);
 buf.clear();
 }
 } catch (IOException e) {
 e.printStackTrace();
 System.exit(0);
 }
 }
}

Example 2

ServerSocketChannel
• A selectable channel for stream-oriented listening sockets.

– Abstraction for listening network sockets.

– Listens to a port for TCP connections.
– Does not have public constructors

• Each ServerSocketChannel is associated with a peer ServerSocket object
– Binding and the manipulation of socket options must be done through the associated

ServerSocket object;

• accept on a ready ServerSocketChannel returns SocketChannel
ServerSocketChannel serverChannel = ServerSocketChannel.open();
ServerSocket socket = serverChannel.socket();
socket.bind(new InetSocketAddress(port));
serverChannel.configureBlocking(false);
selector = Selector.open();
serverChannel.register(selector, SelectionKey.OP_ACCEPT);

Lecture 5: Java I/O. Overview of New I/O 37

Selectors

• Selector is an object used to select a channel
ready to communicate (to perform an
operation)
– Used to operate with several non-blocking channels

– Allows readiness selection
• Ability to choose a selectable channel that is ready for some

of network operation, e.g. accept, write, read, connect

38Lecture 5: Java I/O. Overview of New I/O

Selectable Channels

• Selectable channels include:
– DatagramChannel
– Pipe.SinkChannel
– Pipe.SourceChannel
– ServerSocketChannel
– SocketChannel

• Channels are registered with a selector for
specific operations, e.g. accept, read, write

• Registration is represented by a selection key

39Lecture 5: Java I/O. Overview of New I/O

Selection Keys

• A selector operates with set of selection keys

• Selection key is a token representing the
registration of a channel with a selector

• The selector maintains three sets of keys
– Key set contains the keys with registered channels;

– Selected-key set contains the keys with channels
ready for at least one of the operations;

– Cancelled-key set contains cancelled keys whose
channels have not yet been deregistered.

– The last two sets are sub-sets of the Key set.

40Lecture 5: Java I/O. Overview of New I/O

Use of Selectors

• Create a selector
Selector selector = Selector.open();

• Configure a channel to be non-blocking
channel.configureBlocking(false);

• Register a channel with the selector for specified operations
(accept, connect, read, write)
ServerSocketChannel serverChannel =
 ServerSocketChannel.open();
ServerSocket serverSocket = serverChannel.socket();
serverSocket.bind(new InetSocketAddress(port));
serverChannel.configureBlocking(false);
serverChannel.register(selector,
SelectionKey.OP_ACCEPT);

– Register as many channels as you have/need
41Lecture 5: Java I/O. Overview of New I/O

Use of Selectors (cont’d)

• Select() on the selector to perform the
selection of keys with ready channels
– Selects a set of keys whose channels are ready for

I/O.

• selectNow() – non-blocking select: returns
zero if no channels are ready

• selectedKeys() on the selector to get the
selected-key set

• Iterate over the selected-key set and handle the
channels ready for different I/O operations, e.g.
read, write, accept

42Lecture 5: Java I/O. Overview of New I/O

SelectionKey

Lecture 5: Java I/O. Overview of New I/O 43

• Upon registration, each of the registered channels is
assigned a selection key.
SelectionKey clientKey =

clientChannel.register(selector,
SelectionKey.OP_READ | SelectionKey.OP_WRITE);

• Selection key allows attaching of a single arbitrary object
to it

• Associate application data (e.g. buffer, state) with the key (channel)
ByteBuffer buffer = ByteBuffer.allocate(1024);
clientKey.attach(buffer);

• Get the channel and attachment from the key
SocketChannel clientChannel =
 (SocketChannel) key.channel();
ByteBuffer buffer = (ByteBuffer) key.attachment();

Lecture 5: Java I/O. Overview of New I/O 44

while (true) {
 selector.select();
 Iterator<SelectionKey> keys = selector.selectedKeys().iterator();

 while (keys.hasNext()) {
 SelectionKey key = keys.next();
 keys.remove();

 if (key.isAcceptable()) { // accept connection.
 ServerSocketChannel server =
 (ServerSocketChannel) key.channel();
 SocketChannel channel = server.accept();
 channel.configureBlocking(false);
 channel.register(selector, SelectionKey.OP_READ,
 ByteBuffer.allocate(1024));

 } else if (key.isReadable()) { // read from a channel.
 SocketChannel channel = (SocketChannel) key.channel();
 ByteBuffer buffer = (ByteBuffer) key.attachment();
 channel.read(buffer);
 key.interestOps(SelectionKey.OP_READ | SelectionKey.OP_WRITE);

Non-Blocking Server

Lecture 5: Java I/O. Overview of New I/O 45

 } else if (key.isWritable()) { // write buffer to channel.
 SocketChannel channel = (SocketChannel) key.channel();
 ByteBuffer buffer = (ByteBuffer) key.attachment();
 buffer.flip();
 channel.write(buffer);
 if (buffer.hasRemaining()) {
 buffer.compact();
 } else {
 buffer.clear();
 }
 key.interestOps(SelectionKey.OP_READ);
 }
 }
}

Non-Blocking Server, Cont'd

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

