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I/O in Java
• Package java.io
• I/O sources and destinations:

– standard input, standard output, standard err
– Files, streams of TCP socket and URL connections

• Input and output streams
– Java provides different types of stream APIs, e.g. byte streams, 

character streams, object streams, etc.
– Different stream reading and writing primitives, e.g. read/write, 

print
– Basic streams: byte streams
– Other streams are built on top of byte streams
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I/O in Java (cont’d)

• For example:
   try (BufferedReader r = new BufferedReader(
                       new InputStreamReader(
                       socket.getInputStream())) {
     String str;
     while ((str = r.readLine()) != null) {
       //process the line read
     }
   } catch (IOException e) {
     e.printStackTrace();
   }
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Streams

• Streams pass data from/to programs.
– Input can be performed by different types of input 

streams, e.g. byte input stream, character input 
stream (reader)

– Output can be performed by different types of 
output streams, e.g. byte output stream, character 
output stream (writer)

– If  a stream handles characters on the program side, 
then it is called a reader or a writer. 
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Streams

A source can be: A destination can be:

File
Socket input stream
Reader
InputStream
PipedOutputStream
array

File
Socket output stream
Writer
OutputStream
PipedInputStream
array

String
array
Object  
char
int
short
...

Program

a stream a stream
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Some Types of Streams

ObjectOutputStream

ObjectInputStream

Objects Serialized

DataOutputStream

DataInputStream

Typed
data

Binary
representation
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DataInputStream  Example
try (DataInputStream inData = new DataInputStream(
                              new FileInputStream(
                              fileName))) {
  while (true) {
    no = inData.readInt();
    System.out.println("No " + no);
  }
} catch (EOFException done) {
} catch (FileNotFoundException e) {
  System.err.println("file " + fileName + 
                     " is mising");
} catch (IOException e) {
  e.printStackTrace();
}
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Types of Streams (cont’d)

FileWriter

FileReader
Text file
(default encoding)

OutputStreamWriter
Bytes

InputStreamReader

characters

FileOutputStream

FileInputStream

ByteArrayOutputStream

ByteArrayInputStream

bytes

Byte array

File of bytes



Standard Streams 

• Static fields in the java.lang.System  
class:
– public static final PrintStream err;

• The “standard” error output stream;

– public static final PrintStream out;
• The “standard” output stream;

– public static final InputStream in;
• The “standard” input stream. 

– All the streams are already open and ready to 
supply/accept data

System.out.println(“your output “ + result);
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Files (java.io  package)
• File  class supports platform-independent usage of file- and directory 

names.
– Instances of this class represent the name of a file or a directory on the host 

file system.

• Some constructors:
File(String path)
File(String dir, String fileName)
File(File dir, String fileName)

• Some interesting methods of File:
public boolean exists();
public boolean isDirectory();
public boolean isFile();
public long length();
public String[] list();
public String[] list(FileNameFilter f);
public boolean mkdir();
public boolean renameTo(File dest);
public boolean createNewFile()



File Streams

• Used to access files (for reading and writing) as a continues 
stream of bytes or characters

• FileInputStream  and FileOutputStream
– for reading and writing bytes to the file

• FileReader  and FileWriter
– for reading and writing character files

• Provide read and write methods
• Can be created by constructors given a file name or an 

object of File
FileInputStream inf = new FileInputStream(filename);
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File Descriptor

•  FileDescriptor  class is a platform-independent 
representation of a handle of an open file or an open 
socket.

• Objects of this class 
– are returned by getFD()  of FileInputStream , 

FileOutputStream , RandomAcessFile , ...

– passed to (used by) FileInputStream , 
FileOutputStream , FileReader , FileWriter , ...
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Random Access File

• RandomAccessFile  class – provides an API similar to 
the file API in C
– Instances of this class represent the file opened in a given 

mode, e.g. 
• “r”  – for reading only
• “rw”– for reading and writing

– Methods of this class provide means for reading from file, 
writing into file and changing current file access position.

– All methods (including constructors) of this class may throw 
IOException.

– Contains object of the FileDescriptor  class as a handle of 
the file.



An Overview of New I/O

Use of the new I/O API when performing 
course programming assignments is 

optional



New I/0 (java.nio.*...)

• New I/O APIs introduced in JDK v 1.4

• NIO APIs supplements java.io
– provides a new I/O model based on channels, 

buffers and selectors

– enables non-blocking scalable I/O

– allows improving performance of distributed 
applications (mostly for the server side)
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Features in NIO APIs

• Buffers for data of primitive types, e.g. char, int 
• Channels, a new primitive I/O abstraction 
• A multiplexed, non-blocking I/O facility 

(selectors, selection keys, selectable channels) 
for writing scalable servers

• Character-set encoders and decoders 
• A pattern-matching facility based on Perl-style 

regular expressions (java.util)
• A file interface that supports locks and memory 

mapping
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NIO Packages

java.nio Buffers, which are used throughout the NIO APIs. 

java.nio.channels Channels and selectors. 

java.nio.charset Character encodings.

java.nio.channels.
spi

Service-provider classes for channels.

java.nio.charset.s
pi

Service-provider classes for charsets.

java.util.regex Classes for matching character sequences against patterns 
specified by regular expressions.
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NIO Programming Abstractions

• Buffers
– Containers for data
– Can be filled, drained, flipped, rewind, etc.
– Can be written/read to/from a channel

• Channels of various types
– Represent connections to entities capable of performing I/O 

operations, e.g. pipes, files and sockets
– Can be selected when ready to perform I/O operation

• Selectors and selection keys 
– together with selectable channels define a multiplexed, 

non-blocking I/O facility. Used to select channels ready for I/O
• Charsets and their associated decoders and encoders

– translate between bytes and Unicode characters
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Buffers
• Buffer is a container for a fixed amount of data of a 

specific primitive type; Used by channels
– Content, data
– Capacity, size of buffer; set when the buffer is created; 

cannot be changed
– Limit, the index of the first element that should not be read 

or written; limit ≤ capacity
– Position, the index of the next element to be read or written 
– Mark, the index to which its position will be reset when the 

reset method is invoked
– Buffer invariant:  0 ≤  mark ≤ position ≤ limit ≤ capacity 
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Buffer Classes

Buffer Superclass for other buffers;
clear, flip, rewind, mark/reset

ByteBuffer provides views as other buffers, e.g. IntBuffer
get/put, compact, views; allocate, wrap

  
MappedByteBuffer

Subclass of the ByteBuffer
A byte buffer mapped to a file

CharBuffer
DoubleBuffer
FloatBuffer
IntBuffer
LongBuffer

absolute (index-based) and relative (position-based) get/put, 
compact, allocate, wrap
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Some Buffer’s methods
static 
allocateDirect()

Allocates a new direct byte buffer. With direct ByteBuffer , 
JVM avoid intermediate buffering when performing native I/O 
operations directly upon the direct buffer.

static 
allocate()

allocate a buffer of a given capacity

clear() clear the buffer, i.e. prepare the buffer for writing data into it by  
channel-reads or relative puts (limit = capacity; position = 0)

flip() prepare the buffer for reading data from it by channel-writes or 
relative gets (limit = position; position = 0)

rewind() prepare the buffer for re-reading data from it (position = 0)

mark() set this buffer's mark at its position (mark = position)

reset() reset this buffer's position to the previously-marked position 
(position = mark)
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Some Buffer’s methods (cont’d)
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static wrap() wrap a given array into a buffer; returns the buffer.

get/put absolute (index-based) and relative (position-based) get/put 
data from/into the buffer; position = position –/+ 1;

asIntBuffer()
asCharBuffer()
…

create a view of this byte buffer as a other primitive type 
buffer, e.g. as an IntBuffer, as a CharBuffer, etc.

slice() create a new buffer that shares part of this buffer's content 
starting at this buffer's position. 

duplicate() creates a new byte buffer that shares the this buffer's 
content. 

compact() copy data between position and limit to the beginning of the 
buffer; position is set to the number of data items copied.

boolean 
hasRemaining()

check whether there are any elements between the current 
position and the limit. 



Creating Buffers

• Allocation
– Create an empty buffer on top of a backing Java array

Bytebuffer buf1 = ByteBuffer.allocate(100);
IntBuffer buf2 = intBuffer.allocate(100);

• Direct allocation (only ByteBuffer)
– Direct buffers (using DMA)

ByteBuffer buf3 = 
ByteBuffer.allocateDirect(100);

• Wrapping
– Wrap a buffer around existing data array

byte[] data = “Some data”.getBytes(“UTF-8”);
ByteBuffer buf4 = ByteBuffer.wrap(data);
char[] text = “Some text”.toCharArray();
CharBuffer buf5 = CharBuffer.wrap(text);
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Filling/Draining Buffers
• Filling using wrap or put

String s = ”Some String”;
CharBuffer buf1 = CharBuffer.wrap(s);
CharBuffer buf2 = CharBuffer.allocate(s.length());
// put reversed s in to buf2
for (int i = s.length() - 1; i >= 0; i--) {

buf2.put(s.charAt(i)); // relative put
} // position in buf2 should be 11 after the loop

• Draining using get

buf2.flip(); // limit = position; position = 0
String r = ””;
while (buf2.hasRemaining()) 

r += buf2.get();
}
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Reading/Writing Buffers from/to 
Channels

• Reading from a channel to a buffer

while (buf.hasRemaining() && 
channel.read(buf) != -1) { 
// process the buffer’s content

}

• Writing to a channel from a buffer

while (buf.hasRemaining() && 
     channel.write(buf) != -1) ;
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Channels

• Channels represent connections to various I/O 
sources, such as pipes, sockets, files, datagrams;
– operate with buffers and I/O sources: move 

(read/write) data blocks into / out of buffers from / 
to the I/O sources;

– can be open or closed;
– can be blocking/non-blocking, selectable (socket, 

pipe), interruptible (file);
– enable non-blocking I/O operations
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Channels versus Streams
Channels (new I/O) Streams (traditional I/O)

Write/read data to/from buffers; 
similar to buffered streams;
buffers can be directly allocated in 
memory – efficient implementation

Write data onto output streams and 
reading data from input streams

Block-based: a streams of blocks 
from/to buffers

Byte-based: a continues stream of 
bytes

Bi-directional: tend to support both 
reading and writing on the same 
object (source, buffer)

Uni-directional: input streams and 
output streams
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Some Channel Classes

• For TCP connections
– SocketChannel
– ServerSocketChannel

• For UDP communication
– DatagramChannel

• For file access
– FileChannel
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FileChannel
• java.nio.channels.FileChannel

– A channel for reading, writing, mapping, and manipulating 
a file.

– Similar to RandomAccessFile
• Can be mapped to a buffer in the main memory

– MappedByteBuffer()
• Has a current position within its file which can be both 

queried and modified. 
• The file itself contains a variable-length sequence of bytes 

that can be read and written and whose current size can 
be queried.
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Some methods of FileChannel

read (dst, pos)
write (src, pos)

Read or write at an absolute position in a file 
without affecting the channel's position.

MappedByteBuffer() Map a region of a file directly into memory.

force() Force out file updates to the underlying storage 
device, in order to ensure that data are not lost in 
the event of a system crash.

transferTo()
transferFrom()

Bytes can be transferred from a file to some 
other channel, and vice versa, in a way that can 
be optimized by many OSs into a very fast 
transfer directly to or from the file system cache. 
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FileChannel Example
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import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class FileChannelTest {
  public static void main(String[] args) {
    String filename = (args.length > 0)? args[0] : "test.txt";
    try {
      FileInputStream inf = new FileInputStream(filename);
      FileChannel channel = inf.getChannel();
      MappedByteBuffer buffer = 
          channel.map(FileChannel.MapMode.READ_ONLY, 
                      0, channel.size());
      WritableByteChannel out = Channels.newChannel(System.out);
      while (buffer.hasRemaining() && out.write(buffer) != -1) {
        System.out.println("Writing the file " + filename);
      }
      channel.close();
    } catch (IOException e) {
      e.printStackTrace();
      System.exit(0);
    }
  }
}



import java.io.*;
import java.nio.channels.*;

public class FileTransferTest {
  public static void main(String[] args) {
    String srcname = (args.length > 0)? args[0] : "test.txt";
    try {
      FileInputStream inf = new FileInputStream(srcname);
      FileChannel src = inf.getChannel();
      WritableByteChannel dst = Channels.newChannel(System.out);
      src.transferTo(0, src.size(), dst);
    } catch (IOException e) {
      e.printStackTrace();
      System.exit(0);
    }
  }
}

Using transfer method
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SocketChannel
• A selectable channel for stream-oriented connecting sockets.

– Reads from and writes to a TCP socket.
– Uses ByteBuffer  for reading and writing
– Does not have public constructors

• Each SocketChannel  is associated with a peer Socket 
object
– Binding, closing, and manipulation of socket options must be done 

through the associated Socket object

SocketChannel channel = SocketChannel.open();
channel.configureBlocking(false);
channel.connect(new InetSocketAddress(host,    

                                    port));
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SocketChannel Example 1
import java.io.IOException;
import java.nio.channels.*;
import java.net.*;

public class ChannelTest {
  public static void main(String[] args) {
    String host = (args.length > 0)? args[0] : "www.sun.com";
    int port = (args.length > 1) ? Integer.parseInt(args[1]) : 80;
    try {
      SocketChannel channel = SocketChannel.open();
      channel.configureBlocking(false);
      channel.connect(new InetSocketAddress(host, port));
      //can do something here while connecting
      while (!channel.finishConnect()) {
        System.out.println("Connecting to " + host + " on port " + port);
        // can do something here while connecting
      }
      System.out.println("Connected to " + host + " on port " + port);
      // communication with the server via channel
      channel.close();
    } catch (IOException e) {
      e.printStackTrace();
      System.exit(0);
    }
  }
}
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import java.io.IOException;
import java.nio.*;
import java.nio.channels.*;
import java.net.*;

public class HTTPClient {
  public static final String GET_REQUEST = "GET /index.html HTTP/1.0\n\n";
  public static void main(String[] args) {
    String host = (args.length > 0) ? args[0] : "www.sun.com";
    int port = (args.length > 1) ? Integer.parseInt(args[1]) : 80;
    WritableByteChannel out = Channels.newChannel(System.out);
    try {
      SocketChannel channel = SocketChannel.open(new InetSocketAddress(
                                                 host, port));
      ByteBuffer buf = ByteBuffer.wrap(GET_REQUEST.getBytes());
      channel.write(buf);
      buf = ByteBuffer.allocate(1024);
      while (buf.hasRemaining() && channel.read(buf) != -1) {
        buf.flip();
        out.write(buf);
        buf.clear();
      }
    } catch (IOException e) {
      e.printStackTrace();
      System.exit(0);
    }
  }
}

Example 2



ServerSocketChannel
• A selectable channel for stream-oriented listening sockets.

– Abstraction for listening network sockets.

– Listens to a port for TCP connections.
– Does not have public constructors

• Each ServerSocketChannel  is associated with a peer ServerSocket  object
– Binding and the manipulation of socket options must be done through the associated 

ServerSocket  object;

• accept  on a ready ServerSocketChannel  returns SocketChannel 
ServerSocketChannel serverChannel = ServerSocketChannel.open();
ServerSocket socket = serverChannel.socket();
socket.bind(new InetSocketAddress(port));
serverChannel.configureBlocking(false);
selector = Selector.open();
serverChannel.register(selector, SelectionKey.OP_ACCEPT);
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Selectors

• Selector is an object used to select a channel 
ready to communicate (to perform an 
operation)
– Used to operate with several non-blocking channels

– Allows readiness selection
• Ability to choose a selectable channel that is ready for some 

of network operation, e.g. accept, write, read, connect
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Selectable Channels

• Selectable channels include: 
– DatagramChannel
– Pipe.SinkChannel
– Pipe.SourceChannel
– ServerSocketChannel
– SocketChannel

• Channels are registered with a selector for 
specific operations, e.g. accept, read, write

• Registration is represented by a selection key

39Lecture 5: Java I/O. Overview of New I/O



Selection Keys

• A selector operates with set of selection keys

• Selection key is a token representing the 
registration of a channel with a selector

• The selector maintains three sets of keys
– Key set contains the keys with registered channels; 

– Selected-key set contains the keys with channels 
ready for at least one of the operations;

– Cancelled-key set contains cancelled keys whose 
channels have not yet been deregistered. 

– The last two sets are sub-sets of the Key set.
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Use of Selectors

• Create a selector
Selector selector = Selector.open();

• Configure a channel to be non-blocking
channel.configureBlocking(false);

• Register a channel with the selector for specified operations 
(accept, connect, read, write)
ServerSocketChannel serverChannel =
                    ServerSocketChannel.open();
ServerSocket serverSocket = serverChannel.socket();
serverSocket.bind(new InetSocketAddress(port));
serverChannel.configureBlocking(false);
serverChannel.register(selector, 
SelectionKey.OP_ACCEPT);

– Register as many channels as you have/need
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Use of Selectors (cont’d)

• Select()  on the selector to perform the 
selection of keys with ready channels
– Selects a set of keys whose channels are ready for 

I/O.

• selectNow()  – non-blocking select: returns 
zero if no channels are ready

• selectedKeys()  on the selector to get the 
selected-key set

• Iterate over the selected-key set and handle the 
channels ready for different I/O operations, e.g. 
read, write, accept
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SelectionKey
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• Upon registration, each of the registered channels is 
assigned a selection key.
SelectionKey clientKey = 

clientChannel.register(selector, 
SelectionKey.OP_READ | SelectionKey.OP_WRITE);

• Selection key allows attaching of a single arbitrary object 
to it

• Associate application data (e.g. buffer, state) with the key (channel)
ByteBuffer buffer = ByteBuffer.allocate(1024);
clientKey.attach(buffer);

• Get the channel and attachment from the key
SocketChannel clientChannel = 
                    (SocketChannel) key.channel();
ByteBuffer buffer = (ByteBuffer) key.attachment();
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while (true) {
  selector.select();
  Iterator<SelectionKey> keys = selector.selectedKeys().iterator();

  while (keys.hasNext()) {
    SelectionKey key = keys.next();
    keys.remove();

    if (key.isAcceptable()) { // accept connection.
      ServerSocketChannel server = 
          (ServerSocketChannel) key.channel();
      SocketChannel channel = server.accept();
      channel.configureBlocking(false);
      channel.register(selector, SelectionKey.OP_READ, 
                       ByteBuffer.allocate(1024));

    } else if (key.isReadable()) {  // read from a channel.
      SocketChannel channel = (SocketChannel) key.channel();
      ByteBuffer buffer = (ByteBuffer) key.attachment();
      channel.read(buffer);
      key.interestOps(SelectionKey.OP_READ | SelectionKey.OP_WRITE);

   

Non-Blocking Server
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    } else if (key.isWritable()) {  // write buffer to channel.
      SocketChannel channel = (SocketChannel) key.channel();
      ByteBuffer buffer = (ByteBuffer) key.attachment();
      buffer.flip();
      channel.write(buffer);
      if (buffer.hasRemaining()) {
        buffer.compact();
      } else {
        buffer.clear();
      }
      key.interestOps(SelectionKey.OP_READ);
    }
  }
}

Non-Blocking Server, Cont'd
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