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Exam

e Thursday, 14 January 2016, at 08:00 - 10:00
e Location: V2, V3, V32

e 4 hand-written pages allowed
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3D Rendering

Assumption
= 3D Model is given

= Triangle mesh
(for simplicity)

How do we get it to the screen?



3D Rendering

Geometric Model Color

Perspective Visibility Local lllumination

Smooth Shading Simple Shadows Global lllumination



D Rendering

Geometric Model Color



Physics, Biology
Ray Optics & Color



Ray Optics

Geometric ray model
= Light travels along rays



Ray Optics

\.

—

Geometric ray model
= Rays have “intensity” and "“color”



What iIs COL R?



e Next slides mostly from Kristi Potter (U Utah)
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The Electromagnetic
Spectrum

Range of all possible frequencies of
electromagnetic radiation




The Visible Spectrum

Human Visual System Sensitive to 380-780 nm

Wavelength, A (hm)




Glass prism

Newton’s experiment for splitting white light into a spectrum



Ray Optics

reddish bluish

wavelength 4
700nm 390nm

Color spectrum
= Continuous spectrum
= |ntensity for each wavelength



Human Color
Perception
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Photoreceptors

Cones for day vision (small, medium, long)
Rods for night vision
Binary signal on/off

Info indicated by which cell & how often



Color Coded through
Signal Comparison

S-cone rod M-cone L-cone
437 mmh_I 49Bnm 3533nm 564 nm
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Why 3?

® Our 3 cones cover the visible spectrum
® Theoretically possible with only 2 cones

® Most birds, some fish, reptiles & insects have 4



What is COL R?

e Color is:

.~ o A spectral distribution of light

" e Perceptual response to spectral distribution of light .~
.® A way of encoding a spectral distribution of light \

Vision Science

* ~ Computer Graphics -------- *> Visualization <«-------- : p
Neuro Science

e It would be too simplistic to describe color just as

e A particular wavelength of light
e RGB
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Color Blindness



Color Blindness

The numeral "74" should be clearly visible to viewers with normal color vision.

Viewers with dichromacy or anomalous trichromacy may read it as "21°.

Viewers with achromatopsia may not see numbers.
From http://en.wikipedia.org/wiki/Color_blindness
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THE DIFFERENT APPEARANCES OF THE VISIBLE SPECTRUM

missing long-
wavelength cone

missing middle-
| wavelength cone

missing short-
wavelength cone

missing long
& middle cones

rod vision
[night wision|




Color lllusions






Actual luminance distribution










Contrast Effects

® Result of center/surround cells
® Simultaneous or successive

® Juxtaposition of colors effects our
perception of them

® Complimentary colors often most effected



e The terms "simultaneous contrast" and "successive
contrast" refer to visual effects in which the appearance of a
patch of light (the "test field") is affected by other light
patches ("inducing fields") that are nearby in space and
time, respectively.

e The names are somewhat misleading since both
simultaneous and successive contrast involve inducing
fields that are close in both time and space.
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Simultaneous Contrast




Simultaneous Contrast




Simultaneous Contrast







Successive Contrast







Equiluminant Colors

® Strong contrast causes
shapes to be seen by
color sensitive cell

® Equiluminance hides
positions from light
sensitive cells

® Flickering/movement
caused by this
disconnect




Other perceptual aspects



» This is Van Gogh’s last painting before he committed suicide.”
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David McCandless & AlwaysWithHonor.com /7 1.0 /7 apr 03 // InformationlsBeautifulnet  source : Pantans . ColerMallers & wab soufces



Color Mixing, Color Models, Color Interpolation



Additive color mixing

e Additive color mixing:
e Light rays with different spectra of light come together
e The spectra add up
e The result is a different spectrum of light, i.e., color.

e Example RGB:
e Monitors
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Subtractive color mixing

e Subtractive color mixing:
e A light ray with a (white) spectrum of light hits a surface
e [tis being reflected
e The surface absorbs some wavelengths of light
e The result is a different spectrum of light, i.e., color.
e Example CMY (K):
Cyan: complement of red (= absorbs red) Y
Magenta: complement of green
Yellow: complement of blue

K = black ink to hide
color mixing imperfections
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Color Models

e Color Models are a way to encode a spectrum of light
e HSL
o HSV
e RGB
e CMYK
® many more...

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015



HLS System

e Hue
classifies a color as red,
green, blue, or mixture
of these. The hues are
given on a circle.

e Lightness
depends on the amount
of light

e Saturation
describes the gray
portion of the color

o Perception-oriented
color system
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Luminescence 100 = White

Hue 240 = Blue

Hue 120 = Green \

Hue 0/360 = Red

Luminescence 0 = Black




A

(Value "V")

Y

HSV System

e Hue
classifies a color as red,
green, blue, or mixture
of these. The hues are
given on a circle.

e Saturation
describes the gray
portion of the color

e Value
depends on the amount
of light

o Perception-oriented
color system

cuts through the HSV cone at v=1 and v=0.5
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RGB System

Green
e Red e
" [White
reen
’ / Black B Blue
/R
e Blue Red

RGB color cube

e Technology-
oriented color
system

e Describes a color
by mixing three
primary colors
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RGB Model
Bitmap (Pixel Display)

= Screen: w - h discrete pixels
Origin: usually upper left

= Varying color per pixel h=17

RGB Model

= Every pixel can emit red, , blue light

= Intensity range:
Usually: bytes 0...255
0 = dark
255 = maximum brightness

25515
25515
25515

W Hex: FFFFFF




Human Vision

A

Response curves.

(ideal) monitor: human eye
emitted spectra —

Ny

wavelength 4

700nm 390nm

(curves: schematic, not accurate)

Create color impressions
= Basis for three-dimensional color space

= Wide spacing, narrow bands: purer colors
Otherwise: washed out colors



Conversion from HSV to RGB

Opera | W HSL and HSV - Wikipedia, x JE3 = = X

€« < C &= ﬂ https://en.wikipedia.org/wiki/HSL_and_HSV#Converting_to_RGB |. w (O @ @
+ E dict ﬁa SE=>EN (& Heise [ Kayleigh lokal n Kayleigh D Holger ). Review ). Manuals J. Homepage ). HTML CS5JS J. TXC ), Temp ). Lecture J, Group ). KTH J. Ivo . TopolnVis 2015
amounts of R, G, and B to reach the proper lightness or value [ -

From HSV [edit]

Given a color with hue H = [0°, 360°], saturation Sysy € [0, 1], and value V £ [0, 1], we first find

chroma:
1
C=Vx SHSV
Then we can find a point (R4, G4, B¢) along the bottom three faces of the RGB cube, with the \

same hue and chroma as our color (using the intermediate value X for the second largest
compenent of this color):

H V(1-5)
H' =

60 " 0% e+ 1200 180* 240° 3000 3609
X =C(1-|H mod2-1|) y

((0.0.0)  if H is undefined st
(C,X,0) if0<H <1
(X,C,0) if1<H <2
(Ry,Gy,B;) ={ (0,C,X) if2<H <3 E
(0,X,0) if3<H <4
(X,0,C) if4<H' <5
\(C,O,X) f5<H <6
Finally, we can find R, G, and B by adding the same amount to each component, to match value:
m=V-C
(R,G,B) =(Ry+m,G; +m,B; +m)

From HSL reditl <z
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Color Interpolation

e When using a specific color model, we can interpolate

between two colors by treating them like vectors and using
linear interpolation.

Example:
(G) =(1-t)| G, |+t]| G
B B, B,
e [t is often perceptually better, to interpolate in the HSV or

other perception-based models!
Example of changing the saturation:

H H
(S) = ((1 —t)S; + t52>
74 4
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Transparency

Transparency 09 L9
1.0 0.0
= “Alpha-blending” 0.0 ‘W/‘ 0.0
= o = "opacity” Y- -
y N
= Color + opacity: RGBa 50% red. front
50% green back
Blending o g
= Mix in « of front color,
]

keep 1 — « of back color
C=0a" Crront + (1—a) - Cpack

= Not commutative! (order matters)
unless monochrome



3D Rendering

Geometric Model Color

Perspective



More about homogenous coordinates
Projective Geometry



Constructing Projective Spaces

/
q \

(1-t)q+ts (1-t)q+ts
fort € [0,1] fort > 1



Constructing Projective Spaces

origin

(1—-t)0+ts (1-t)0+ts
fort € [0,1] fort > 1

Since the first point is the origin,
we just have for all points along the ray:

ts
s' =ts= ( x)
ts,



Constructing Projective Spaces

1 1 2 2
i " p'eP! P/]R p’ € P?

...... - 2
peR! . T/ pelR
0

P ={())|er) 4:{( )| € m#0)

Projective Space P¢:
» Euclidean (“affine”) space R* embedded in R**!
c Atw =1

* |dentify all points on lines through the origin
= Representing the same Euclidean point



Constructing Projective Spaces

Translations:
» Sheering of the projective space

1 0 ¢,
0 1 ¢,
0 0 1

= Translation of the embedded affine space



Normalization

Conversion between
 Cartesian coordinates (Euclidian space)
 Homogeneous coordinates (projective space)

()
X —
Cartesian coordinates homogenous coordinates
(Euclidian space) \/ (projective space)
1 X
2= ()

normalization”

") overloaded name
do not confuse with x/||x||



Vectors & Points

Interpretation

X
* Points: Y w0
Z

X
* Vectors: (321 ) — “pure directions”



Vectors & Points

Rules

* Substracting points
yields vectors

= Normalize first!

* Vectors can be
added to
= Other vectors

= Points
(normalize first!)

origin



Physics
Perspective Projection



Pinhole Camera

Pinhole camera
= Create image by selecting rays of specific angles
= Low efficiency (small holes for sharp images)



Pinhole Camera
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Pinhole camera
= Create image by selecting rays of specific angles
= Low efficiency (small holes for sharp images)



Pinhole Camera

entral Projection




Central projection

Pinhole Camera

.
P

I —
x' =17

y' =77

Proof:
Intercept theorem!

1



(Actual Camera)

| — N

Camera with Lens
= Higher efficiency (bundles many rays)
= Finite Depth of field
= We will consider pinhole cameras only.



Pinhole Camera
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Undetermined degree of freedom
= Focal length vs. image size
= Source of a lot of confusion!



Pinhole Camera

Parameters
= /1- size of the screen (pixels, cm, +1.0,...)
= /—focal length (classical photography)

= Meaningful parameter: & — viewing angle



Pinhole Camera

e

Relation:



Pinhole Camera

e

o L L L
AN

La_h W
N Y

= Scaling /#7and / by a common factor: no change

Invariance



Pinhole Camera

e

A\f—h

AN

Typical choices (vertical angles)
= “Normal” perspective: «a = 30° (“50mm”lens: 27°)
= Tele photography: a =~ 5°—20° (275-70mm)
= Wide angle lens: a =~ 45°—90° (28-12mm)



View Volume

-

far clipping

near clipping plane

T =

four side
planes




Pinhole Camera

e
-
-
-
-
-
-
-
-
g
-

Our camera:
= Focus point: origin
= View direction: z-axis



Homogeneous Coordinates

X
| x'=/7
x' f 0 0 0\ /x X = ]x )
y\_[o r 0o 0|y y' =fy y' ==
z' 0 0 1 —1]|z 2 =7—1 T
W’ 0 0 1 0 1 W,:Z Zl:Z
\ ' J Z
w =1

Projection Matrix P

before normalization after normalization

Write in homogeneous coordinates
= Third row is arbitrary (for now), not used.



View transform
/-

-ﬂ( L L

Reminder:



To Screen Coordinates

[ - 0 0 0) 3
s
tan (%) =:::::'"""------- ﬂ-----———+\ 1
0 S RS
O/
tan (%) -
\ 0 0 1 0 / 1
0 0 0 1
1
Scale to unit screen coordinates
0
= We set / to 1 in previous matrix =L sl
=1

= Third row is arbitrary (for now), normalized screen
not used. coordinates



Aspect Ratio

{W' 1(a) 0 0 0) =

7 fan 5 o
1
0 5 0 O '
tan (7) non-square
\ 0 0 1 0 / screen
0 0 0 1
+1
Non-square screens?
s T

= Screen: w X h pixels
. W
" Aspect ratio — normalized screen

= Different horizontal angle! coordinates



To Screen Coordinates

+ 1
+1
w/2 0 0 w/2 A )
0 —h/2 0 h/2 -4 N
0 0 1 0 ~1 -1
0 o 0 1
0 w1
0 ,
0 w—1
Scale to pixels
: : : vh—1
= Third row is arbitrary (for ,
h—1

now), not used.



Overall

To Screen Coordinates

0

= Multiply both

a0 = Zfar t Znear

Znear — Zfar

p = 2 "Znear ' Zfar

h/2
/tan @
h/2
° ' tan (%
\ X

Lo/

Znear — Zfar

w /2

tan ()

h/2

()

Additionally:

Also scale + shift such that

, 7—1
Z:

YA
are in value [0..1] for inputs

Z € [Znearfzfar]



Summary

Projection matrix

0 0 0
b_[0 f 0 O
0 0 1 -1
00 1 0

OOOi
[\

0 0 w/2\ | 7tanls 0 0 0
—h/2 0 h/2 . 1 {0 0 0
0 1 0 0 ©) 0 01fo 0 1 -1
tan (=
0 0 1 2 0 0 1 0
0
0

\ ) \ ) \ )

I |
scaling to pixels, normalized projection
upper left origin screen coord’s matrix




General Camera

Our camera so far:
= Focus point: origin
= View direction: z-axis
= General position/orientation?



General Camera

general camera

*
N7

' 3
~
RN Sso
N NSO
N .o

camera in origin, view in z-direction



General Camera

general camera

camera in origin, view in z-direction



General Camera

general camera

\"

“. Camera coordinate system (u, v, w)
WY Origin: c

17 07 [O
Standard coordinates (x,y,z) = ([0] , [1] , [OD
01 LOJ L1

camera in origin,
view: z-direction



Derivation




Derivation

Same effect:
Transform the world with
Inverse camera transform

T BN » /
a0 =N

W=
Y




Derivation

Transform:




Derivation

Transform: {u, v, w} orthogonal!




General Camera

general camera

u

D Camera coordinate system (u,r,v)
Y I Origin:
& gin: c

Transform:

~u -
p—><— \4 —)(p—C)
e

17 07 [O
Standard coordinates (x,y,z) = ([0] , [1] , [OD
01 LOJ L1

camera in origin,
view: z-direction



General Camera

general camera

u
Q"I . Camera coordinate system (u,r,v)
'\ v Origin: ¢
Homogeneous:

_u_
— —C

p—| v‘\’/ B} ’\(P
0 0 O 1>

)

u
C Vv
W

—]C



Summary

Projection (screen coord’s)
1

o O O

S A~

o O

—__--o o

o o

-1

-}

0
2 0 0 w/2 /ta“ (2)
b | 0 —n/2 0 /2. 1
s = 0

0 0o 1 0 o (g
0 0o 0 1 2

\ 0 0

0 0

Add View Matrix

Benefit: y_ u

Still only one overall p.-[~ V
4 x4 matrix - W

to multiply with! 0 O



