ID2212 Network Programming with Java
Lecture 6

Distributed Objects.
Java IDL (CORBA) and Java RMI

Leif Lindback, Vladimir Vlassov
KTH/ICT/SCS
HT 2015

QOutline

Revisited: Distributed Computing
— Architectures
— Implementation Approaches

Basics of a Distributed Object Architecture
Java IDL (CORBA)
Java RMI: Remote Method Invocation

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

Review:
Architectures of Distributed
Applications

* Two-tier architecture: Clients and Servers

* Three-tier architecture:
— First tier: clients with GUI
— Middle tier: business logic
— Third tier: System services (databases)

* Peer-to-peer architecture: Equal peers

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

Existing Implementation Approaches

* Message passing via sockets
* RPC: Remote Procedure Calls

* Distributed objects (RMI)

— DCOM: Distributed Component Object Model
(Microsoft, homogeneous implementation)

— CORBA: Common Object Request Broker
Architecture (OMG, heterogeneous)

— Java RMI (Oracle, homogeneous)

— Enterprise Java Beans (EJB) — Distributed
component architecture for building integrated

enterprise services

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

Motivation for RPC and RMI

* Message passing over socket connections is
somewhat low level for distributed applications

— Typically, client/server interaction is based on a
request/response protocol

— Requests are typically mapped to procedures or
method invocations on objects located on the server

* A better approach for client/server applications
is to use

— Remote Procedure Calls
* Rendezvous (like in ADA, Concurrent C)

— Remote Method Invocation — in OO environment

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

Remote Method Invocation (RMI)

* Remote method invocation (RMI) is the
mechanism to invoke a method in a remote
object

— the object-oriented analog of RPC in an distributed

OO environment, e.g. OMG CORBA, Java RMI,
DCOM

— RPC allows calling procedures over a network
— RMI invokes object's methods over a network

* Location transparency: invoke a method on a
stub like on a local object (via stack)

* Location awareness: the stub makes remote call
across a network and returns a result via stack

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 6
RMI

Remote Method Invocation

a { <« —
m(x) { |
return x*5 |-
<E? r=a.m(x); } I's
} v
a { // stub =
m(x) { |
1. Marshal x a_skeleton { // skeleton
2. Send Msg w/ a, m/=———>-___ m() |
—p 3. Receive Msg I
4. Unmarshal x I
5. result = a.m(X)
Network 6. Marshal result
€ 7. Send Msg w/ result
8. Receive Msg w/ restrt—"
9. Unmarshal result
10. Return result
}
}
Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 7

RMI

Parameter Passing

Parameters are passed in an RMI message and not via
a local stack

— data of primitive types are passed by values

— objects are passed either by values (replication) or by
references

Objects can be heterogeneous
— different implementation languages

— different target virtual machines and operation systems
Different representations of primitive types

— convert data representation across different implementation

Composite Types (e.g., structures, objects)

— need to be flattened and reconstructed (marshal / unmarshal)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

Marshaling/Unmarshaling

* Marshaling:
— done by client (i.e., caller)
— packing the parameters into a message
— flatten structures
— perform representation conversions if necessary

— also done by server (i.e., callee) for results

* Unmarshaling:

— done by receiver of message to extract parameters
or results

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

Stubs and Skeletons

* Encapsulate marshaling and communication
— Enable application code in both client and server to treat call
as local
* Stub is a proxy for the real object on the client
— represents the real object as a local object on the client
— contains information to locate the real object
— implements original interface with the same method signatures
but the methods perform remote calls to the real object
* Skeleton is on the server
— receives, unmarshals parameters
— calls original routine on the real object

— marshals and sends result (data, acknowledgment or
exception) to the client

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 10
RMI

Synchronous versus Asynchronous

Invocation

Void methods do not require a result to be sent to the
caller

Asynchronous invocation

— The method locally invoked on the stub immediately returns
and the calling thread proceeds as soon as the request is on its
way to the remote object

— The request is executed by the underlying layer in a separate
thread

— Problem: exceptions

Synchronous invocation

— The calling thread is suspended waiting for the remote
invocation to complete (for the invoked method to return)

— The calling thread proceeds as soon as it gets

acknowledgement from the remote object

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

11

Locating Objects

How does the caller get a reference to the remote object, i.e. stub?

One approach is to use a distributed Naming Service:
— Associate a unique name with a remote object and bind the name to
the object at the Naming Service.
* The name must be unique in current context.
* The record typically includes name, class name, object reference
* The object reference contains location information.
— The object name is used by the client to lookup the Naming Service
for the object reference (stub).

— Problem of the primary reference: How does the client locate the
Naming Service? — configuration issues

Another way to get a reference to a remote object is to get it as a
parameter or a return in remote method invocation

Third way: to make a reference (IOR: Interoperable Object
Reference) and store/send it in a file

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

12

]
Il

-
[}

Use of the Naming Service

Naming
service

A '

a = new ClassA();

Naming.rebind(a, “nameA");

=
I
I
]
I

(ClassA) :

I

g au {4 \ 4 a
Naming.lookup (“nameAéyt—— L, é(x) { return x*5—}:
}
a.m(x);
Network
a { // stub a_skeleton { // skeletpn
m(x) { mC) {
} < < } o
} }
Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 13

RMI

Remote Reference in Return

Naming @a = new ClassA();

k////////, service .| Naming.rebind(a, “nameA”);

a = (ClassA) a {
Naming.lookup(“nameA?); -+ getB() { T—
return new ClassB(); } }

[—————-—

|
[
[
|
N a { // stub e a_skeleton { :
getB() { .. }|} — getB(){ up-call; |
send b } } :
[
_// get reference network !
l b = a.getB(); b { |
! p(S)() { return S*S; 7}
i b { // stub . ~ b_skeleton {
p(s) { ..} 1} - pC){ ... } }
Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 14

RMI

Separate Interface from

Implementation. Interface Definition
Language (IDL)

A remote object is remotely accessed via its
remote interfaces.

Objects can be heterogeneous
— different implementation languages
— different target virtual machines and operation
systems
Separate interface definition from
implementation:

— Implementation may change, as long as the interface
is respected

Interface Definition Language (IDL)

— Describe interface for RMI
Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 15

RMI

Generating Stubs and Skeleton.
ID1L. Mappings

* Where do Stubs and Skeletons come from?

— writing (un)marshaling code is bugprone

— communication code has many details

— structure of code is very mechanical

* Answer:
— Stubs and Skeletons can be generated from IDL definitions

* Mapping from IDL to OO-language

— generates code for Stubs and Skeletons
— IDL to Java, C++, Smalltalk, COBOL, Ada

— Allows cross language invocations

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

16

Java IDL (CORBA)

Reference implementation of OMG
CORBA in Java for Java

org.omg.CORBA

Four Components of OMA

(Object Management Architecture)

* By the Object Management Group (OMG) consortium
that operates since 1989. See: http://www.omg.org

1. Object Model (Glossary of terms)

— Concepts: class, object, attribute, method, inheritance, etc.
— UML (Unified Modeling Language) is a standard for object
modeling.

* See: UML modeling with IBM Rational software:
http://www-306.ibm.com/software/rational/uml/

2. CORBA (Common Object Request Broker Architecture)

— A mechanism for communication between objects

— Specification, related APIs and tools
— Object Request Broker (ORB) is implementation of CORBA

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 18
RMI

Four Components of OMA (cont)

3. CORBA Services

— Horizontal services common for any objects: Naming, Security, Life
Cycle, Transactions, Events, etc.

4. CORBA Facilities

— High level functionality for integrating objects

* User interface: drag-and-drop, compound documents
* System Management
* Task Management / Workflow

— Vertical services supporting particular industries

* Finance, Oil and Gas Exploration, Telecommunications (TMN/TINA-C) ,
10 other

— TMN is Telecommunications Management Network;

— TINA-C is Telecommunications Information Networking Architecture

Consortium
Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 19
RMI

The Architecture of CORBA

Implementation
Caller ‘ .| Interface repository
Repository
/ M Object implementations
: (Servants)
Dynamic atatic ORB 4 1
Invocation T T
Interface tubs |Interface {
\ Static Dynamic
ORB Skeletolys Skeletons | |
[\ ORB Basic (Abject Adapter (BOA)
\ Interface |0F Portable Object Adapter (POA)
IHOP _ y,
= — ORB

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

20

CORBA Anatomy

* ORB: Object Request Broker

— makes it possible for CORBA objects to communicate with
each other by connecting objects making requests (clients)
with objects servicing requests (servants).

* BOA: Basic Object Adapter

— accepts call requests (as a meta-call),

— instantiates objects,

— initiates up-calls on skeletons,

— manages the Implementation Repository,

— different ORB vendors have completely different
implementation of BOA

* POA: Portable Object Adapter
— like BOA but portable between different ORB products

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

(cont’d) CORBA Anatomy

A stub on the client side provides a static interface to
remote object services.
— resolves the remote object’s location

— performs remote method invocation via a local ORB

* Sends the object reference, the method name and parameters to
the destination ORB (skeleton) by using IIOP (Internet
Inter-ORB Protocol)

* Receives and unmarshals data in return
A skeleton on the server side performs up-calls on a real
object

— transforms the call and parameters into the required format
and calls the object

— marshals result (or exception) and sends it over ORB
connection.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 22
RMI

ORB Protocols

CORBA 2.0 defines standard protocols:
GIOP: General Inter ORB Protocol

— Defines standard message format

HIOP: Internet Inter ORB Protocol
— IIOP is the implementation of GIOP over TCP/IP

— IHOP-to-HTTP gateway and HTTP-to-IIOP gateway allow
CORBA clients to access Web resources and Web clients to
access CORBA resources.

ESIOP: Environment Specific Inter ORB Protocol

— Allows ORBs to run on top of other standards (such as DCE:

Distributed Computing Environment consisting of standard
APIs: naming, DFS, RPC, etc.)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

23

IDL.: Interface Definition
Language

IDL is a purely declarative language: interface
declarations

An IDL interface describes the attributes and methods
(operations) that are exported on the ORB.

— An interface can have several implementations.

— An object can implement several interfaces.

IDL-to-language compilers are based on mapping from
IDL to the language (Java, C++, Smalltalk, COBOL,
Ada)

A compiler generates
— An interface(s),
— A stub (a client proxy for remote calls),

— A skeleton (a server proxy for translating incoming calls to

up-calls)
Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 24
RMI

IDL Concepts

* Interface
— Similar to a class, but only defines the interface of an object,
without information on its representation in memory
* Operation
— Similar to a method or member function

— The direction of parameter must be specified: in, out, inout

* Attribute
— Does not define an attribute in memory
— Defines two operations for getting and setting the value
— readonly is used to suppress the function setting the value

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

25

Basic Data Types

* No int type

* No pointer type

* IDL types are defined in
terms of their semantics

Lecture 6: Distributed Objec

IDL
short
long

unsigned
shor

unsigned
long

float
double
char
boolean
octet

any

REItring

ts. Java IDL (CORBA) and

Java

short
int

short
int

float
double
char
boolean
byte

class any

iring

26

Complex Types

Build complex types from basic types in IDL:
- struct,enum,union, typedef
- array — fixed length collection
- sequence — variable length collection
- Object —reference to an IDL object (proxy)

Mapping to Java
- sequence and array are mapped to the Java array type.

- enum, struct, and union are mapped to a final Java class that
implements the semantics of the IDL type.
— For example, array of bytes can be defined as:
typedef sequence <octet> bytes;
bytes getBytes(in string from) raises(cannotget);
The Java class generated should have the same name as the
original IDL type.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

27

Passing Parameters and Returns

* CORBA sends all types across the network by
value, except objects
— Objects are passed by reference
— A proxy is constructed on the receiving end

* The OMG added a new specification called
”Pass-by-Value”
— Include Object by Value mapping
— Initiators were Sun and IBM

— Motivation: support for object migration and
replication
— RMI over I1OP

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

28

Java IDL (org.omg.CORBA)

Java IDL is a reference implementation of CORBA in
Java

Oracle delivers Java IDL in the Java SDK, SE
— IDL-to-Java compiler
— Multi-protocol ORB (classes)

— Support for Java clients and servers (Name service, etc.)

Java IDL is not a sophisticated product on the server
side:

— Doesn't have CORBA scalability and security features

— No CORBA Services except of Naming

Java IDL will be useful on the client

— Avoid downloading the ORB client
Lecture 6: Distributed Objects. Java IDL (CORBA) and Java

RMI

29

Other Implementations of CORBA

* CORBA platforms from Progress Software
— http://web.progress.com/en/Product-Capabilities/corba.html

* The Micro Focus’s solution for CORBA Technology
(VisiBroker)
— http://www.microfocus.com/products/visibroker/index.aspx

* CORBA typically comes as a part of an enterprise
(application) server

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 30
RMI

Developing a Distributed Application
with Java IDL

Define interfaces with IDL

Compile the interfaces using id1 j, which generates the Java
bindings for a given IDL file.

Develop an implementation for the interfaces (servants)

Develop a server (a container for servants) that initializes ORB and
creates the servants

Develop a client
Compile the client, the servants and the server (using javac)

Start the Naming Service tnameserv, which is the Common
Object Services (COS) Name Service

Start the server
Run the client

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 31
RMI

Step 1. Sample IDL Interfaces

module bankidl {
interface Account {
readonly attribute float balance;
exception rejected { string reason; };
void deposit(in float value) raises (rejected);

void withdraw(in float value) raises
(rejected);

i
interface Bank {
exception rejected { string reason; };

Account newAccount(in string name) raises
(rejected);

Account getAccount (in string name);
boolean deleteAccount(in string acc);
}i
}i

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 32
RMI

The IDL Interfaces (cont’d)

Interface Bank: Server
Account newAccount(in string name)

Account getAccount (1n string name)

boolean deleteAccount(in Account aca)%r]k

Interface Account:
float balance v
deposit(in float value)

withdraw(in float value)

account

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 33
RMI

Step 2. Compiling IDL to Java

The IDL to Java compiler (1d1 j) generates:
— Interfaces:
* Bank.java, Account. java
— Stubs for the client side:
 _BankStub.java,_AccountStub. java
— Skeletons for the server side:

* When using BOA (backwards compatible to J2SE 1.4)
BankImplBase.java,AccountImplBase. java

* When using POA: BankPOA.java, AccountPOA. java

* Implementations of the interfaces should extend the skeletons.

— Helpers used to narrow a remote reference to its remote
interface:

* BankHelper, AccountHelper

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

34

Step 3. Implementing The

Interfaces.

* Aservantis a class that implements the
interface(s) generated by a IDL to Java compiler.

* The servant class may extend an appropriate

skeleton (implementation base) class, for example:

public class BankImpl extends
_BankImplBase

or (when using POA)
public class BankImpl extends BankPOA

— In this way the servant implements the interface and
encapsulates the skeleton that accepts (remote) calls

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 35
RMI

Inheritance Structure

org.omg.CORBA.portable.ObjectImpl

A
<interface>
org.omg.CORBA.Object
A
<interface> gxtends
bankidl.BankOperations
extends

<interface> <
bankidl.Bank

_______________ bankidl._BankImplBase

implements

xte
Used as signature type
in method declarations bankidl.BankImpl

Written by programmer

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 36

RMI

public class BankImpl extends _BankImplBase {

private String bankname = null;
Ste 2' private Hashtable accounts = new Hashtable();
Bank public BankImpl(String name) {
N super();
Implementation bankname = name:
}

public Account newAccount(String name) throws rejected {

AccountImpl account = (AccountImpl) accounts.get(name);
if (account != null) {

throw new rejected("Rejected: Account for:

+ name + " already exists");

}

account = new AccountImpl(name);
accounts.put(name, account);
return (Account)account;

}

public Account getAccount(java.lang.String name) {
return (Account) accounts.get(name);

}

public boolean deleteAccount(String name) {
AccountImpl account = (AccountImpl) accounts.get(name);
if (account == null) {

return false;

}
accounts.remove(name);
return true;

package bankidl;
import bankidl.AccountPackage.rejected,;

public class AccountImpl extends _AccountImplBase {
private float balance = 0;

Step 3 private String name = null;
Account public AccountImpl(java.lang.String name) {
. super(),;
Implementation this.name = name;
}

public void deposit(float value) throws rejected {
if (value < 0) {
throw new rejected("Rejected: Illegal value: " +
value);
}
balance += value;
}
public void withdraw(float value) throws rejected {
if (value < 0) {
throw new rejected("Rejected: Illegal value: " +
Value);
}
if ((balance - value) < 0) {
throw new rejected("Rejected: Negative balance”));
}
balance -= value;
}
public float balance() {
return balance;

¥

Le

Inheritance Structure with POATie.
The Tie Delegation Model.

An IDL to Java compiler can generate a <interface>P0OATie class that
extends the skeleton.

The implementation class may inherit from a different class and implement
the remote interface.

Remote calls received by the tie object are directed to the implementation
object.

<interface> org.omg.CORBA.portable.ObjectImpl
org.omg.CORBA.Obj

ect ﬁ

<interface> extends
bankidl.BankOperations

T

extends
<interface> | implements :
bankidl.Bank < bankidl._BankImplBase
"\\ implements T extends
BankImpl <—r—— — Tied together -—-—-—- —> | BankPOATie

Written by programmer

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 39
RMI

Design Options (1/2)

Choose an ORB implementation that suits you (price,
efficiency, etc.)

Use either POA (standard Portable Object Adapter) or
BOA (non-standard Basic Object Adapter, which could
be more efficient)

1. To generate both client and server-side POA bindings, use
idlj -fall My.idl
* Generates MyPOA. java given an interface My defined in
My.idl.
* You must implement My in a class that must inherit from MyPOA.
2. To generate BOA bindings backwards compatible to J2SE 1.4,
use
idlj -fall -oldImplBase My.idl
* Generates _MyImplBase.java given an interface My defined in
My.idl.
* You must implement My in a class that must inherit from
_MyImplBase.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 40
RMI

Design Options (2/2)

Use a tie class when it is not convenient or possible to have
your implementation class inherit from either of the
skeletons MyPOA or _MyImplBase.

idlj -fallTIE My.idl

* Generates the tie class
— Wrap your implementation within My_Tie.

— For example:

MyImpl myImpl = new MyImpl ();
My_Tie tie = new My_Tie (myImpl);
orb.connect (tie);

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 41
RMI

St 4 package bankidl;
(SI) e import org.omg.*;
import org.omg.CORBA.ORB;

Server public class Server {

public static void main(String args[]) {
if (args.length = 3) {

(Using BOA, System.out.println(

Backwards "usage: java Server <bankname> <-ORBInitialPort port>");
compatible to } System.exit(1);

JDK 1.4) e

ORB orb = ORB.init(args, null);
BankImpl bankRef = new BankImpl(args[0]);
orb.connect(bankRef);
org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService”);

NamingContext ncRef = NamingContextHelper.narrow(objRef);
NameComponent nc = new NameComponent(args[0], "");
NameComponent path[] = {nc};
ncRef.rebind(path, bankRef);
orb.run();

} catch (Exception e) {
e.printStackTrace();

}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 42
RMI

Step 5. Client

package bankidl;
import org.omg.CosNaming.*;
import org.omg.CORBA.ORB;
public class SClient {
static final String USAGE = "java bankidl.SClient <bank> “ +
“<client> <value> “ +

“<-ORBInitialPort port>";
Account account;

Bank bankobj;

String bankname = "SEB";

String clientname = "Vladimir Vlassov";
float value = 100;

public static void main(String[] args) {
if ((args.length > 0) && args[0].equals("-h")) {
System.out.println(USAGE);
System.exit(0);
}
new SClient(args).run();

}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 43
RMI

Step 5. Client (cont’d)

public SClient(String[] args) {

if (args.length
try {

> 2) A

value = (new Float(args[2])).floatValue();
} catch (NumberFormatException e) {

System.out.println(USAGE);

System.exit(0);

}
}
if (args.length
if (args.length
try {

ORB orb = ORB

NamingContext
NameComponent

> 1) clientname = args[1];
> 0) bankname = args[0];

.init(args, null);
org.omg.CORBA.

Object objRef =
orb.resolve_initial_references("NameService");

ncRef = NamingContextHelper.narrow(objRef);

nc = new NameComponent(bankname, "");

NameComponent[] path = {nc};

bankobj = BankHelper.narrow(ncRef.resolve(path));
} catch (Exception se) {

System.out.println("The runtime failed: " + se);

System.exit(0);

}

System.out.println("Connected to bank: " + bankname);

44

Step 5. Client (cont’d)

public void run() {

try {
account = bankobj.getAccount(clientname);
if (account == null) {

account = bankobj.newAccount(clientname);
}
account.deposit(value);
System.out.println(clientname + "'s account: $" +
account.balance());

} catch (org.omg.CORBA.SystemException se) {
System.out.println("The runtime failed: " + se);
System.exit(0);

} catch (bankidl.AccountPackage.rejected e) {
System.out.println(e.reason);

System.exit(0);

} catch (bankidl.BankPackage.rejected e) {
System.out.println(e.reason);

System.exit(0),

Locating Objects

* Using Name Service

— The server creates the Bank object with the
specified name, e.g. “Nordea”, and makes it
persistent (ready).

— To obtain the object reference, the client via the
ORB contacts the Name Service of Java IDL, which

is started with the following command:
tnameserv -ORBInitialPort 1050

* Using Interoperable Object References (IOR)

— Server can store an object’s IOR (Interoperable
Object Reference) as a string to a file.

— Client can then fetch the reference from the file via a
web server.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 46
RMI

package bankidl;
import org.omg.CORBA.ORB;
import java.io.*;

Server public class Serverl {

public static final String USAGE =
Using IOR "usage: java bankidl.Serverl bankname dir";
public static void main(String[] args) {
if (args.length < 2) {
System.out.println(USAGE); System.exit(1);

}
try {
ORB orb = ORB.init(args, null);
BankImpl bankRef = new BankImpl(args[0]);
orb.connect(bankRef);
File dir = new File(args[1]).
if (!dir.exists()) {
dir.mkdir();
}
String filename = dir + Character.toString(File.separatorChar) +
args[0] + ".ior";
File file = new File(filename);
file.createNewFile();
file.deleteOnExit();
FileWriter writer = new FileWriter(file);
writer.write(orb.object_to_string(bankRef));
writer.close();
orb.run();
} catch (Exception e) {
System.out.println(USAGE); System.exit(1);

public class Clientl {
static final String USAGE =
"java bankidl.Client url <-ORBInitialPort port>";
3 Bank bankobj;
Client FIThe PRI

String bankname = "SEB";
USing IOR public static void main(String[] args) {
if ((args.length > 0) && args[0].equals("-h")) {
System.out.println(USAGE); System.exit(0);
}

new Clientl(args).run();

}
public Clientl(String[] args) {
if (args.length < 1) {
System.out.println(USAGE); System.exit(1);
}
try {
URL bankURL = new URL(args[0]);
BufferedReader in = new BufferedReader(
new InputStreamReader(
(InputStream)bankURL.getContent()));
ORB orb = ORB.init(args, null);
org.omg.CORBA.Object objRef =
orb.string_to_object(in.readLine());
bankobj = BankHelper.narrow(objRef);
} catch (Exception se) {

System.out.println("The runtime failed: " + se);
System.exit(0);

}

System.out.println("Connected to bank: "™ + bankname);

¥

Java RMI (Remote Method
Invocation)

java.rmi

Java RMI

* Java RMI is a Java native ORB (object request
broker)

* The Java RMI facility allows applications or
applets running on different JVMs, to interact
with each other by invoking remote methods.

— Remote reference (stub) is treated as local object.

— Method invocation on the reference causes the
method to be executed on the remote JVM.

— Serialized arguments and return values are passed
over network connections.

— Uses Object streams to pass objects “by value”.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 50
RMI

Some RMI Classes and Interfaces

java.rmi.Remote

— Interface that indicates interfaces whose methods may be
invoked from a non-local JVM -- remote interfaces.

java.rmi.Naming

— The RMI Naming Service client that is used to bind a name to
an object and to lookup an object by name at the name service
rmiregistry.

java.rmi.RemoteException

— The common superclass for a number of
communication-related RMI exceptions.

java.rmi.server.UnicastRemoteObject
— A class that indicates a non-replicated remote object.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 51
RMI

Developing a Distributed Application

with Java RMI
Typical steps:

1. Define a remote interface(s) tha extends java.rmi.Remote.

2. Develop a class (a.k.a. servant class) that implements the
interface.

3. Develop a server class that provide a container for servants,
i.e. creates the servants and registers them at the Naming
Service.

4. Develop a client class that gets a reference to a remote
object(s) and calls its remote methods.

5. Compile all classes and interfaces using javac.

6. (optional) Generate stub classes for classes with Remote
interfaces using rmic

Since 1.5, stubs are generated dynamically by JIT
Start the Naming service rmiregistry

8. Start the server on a server host, and run the client on a client
host.

~

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 52
RMI

Architecture of a Client-Server
Application with Java RMI

rmiregistry
n
Server 7 \
7
Servant obj = new Servant(); // \\
Naming.bind(“name”, obj); 7 \\ Client
RemoteServant obj =
Local calls (Servant)Naming.lookup(
"I “rmi://host/name”);
Servant | Skeleton
object llIRemote calls Stub
Remote Reference Layer RemoteServant
interface

TCP-based Transport Layer

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 53
RMI

Declaring and Implementing a Remote
Interface (1/2)

* Aremote interface must extend the java.rmi.Remote
— Each method must throw java.rmi.RemoteException

* A class may implement one or several remote interface

— The class should extend the UnicastRemoteObject class or
must be exported via the static call
UnicastRemoteObject.exportObject(Remote obj)

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 54
RMI

Declaring and Implementing a Remote
Interface (2/2)

* An object of the class that implements the remote
interface is called a servant.

— A servant is created by a server and lives until the server dies.

— The servant and the server can be encapsulated into one class
(typically, a primary class).

* Astub and a skeleton are generated from a servant class
by JIT

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 55
RMI

The Naming Service rmiregistry.

The Naming Client Naming

* A Remote object can be registered with a specified name at the
Naming service, rmiregistry, provided in J2SE.

— Arregistered object can be pointed to by a URL of the form
rmi://host:port/objectName

— The URL indicates host/port of rmiregistry — default

localhost:1099.

* Aserver binds a name to an object:

try {
Bank bankobj = new
BankImpl(“CityBank");
Naming.rebind(“rmi://" + host + ":
+ port + "/CityBank”, bankobj);

System.out.println(bankobj + " is
ready.");

} catch (Exception e) {
e.printStackTrace();

5t

* Aclient looks up a remote reference:

String bankURL =
“rmi://theHost/CityBank”;

try {
bankobj = (Bank)
Naming.lookup(bankURL);

} catch (Exception e) {

System.out.println("The runtime
failed: "+ e);

System.exit(0);

¥

¥

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 56

RMI

Loading Stub Classes

* Stubs are dynamically loaded when needed either from the local file system or
from the network using the URL specified on server side using the
java.rmi.server.codebase property.

— The property can be set in a command line of an application, for example:

-Djaxﬁ.rmi.server.codebase=http://webvector/exp
ort

— See:

2. Client makes a Naming.lookup

5. The HTTP server returns

> RMI 1. Server binds a servant to a name

RMI client |«— registry | [________________
3. The registry returns an i |
instance of the stub s ! JVM |

1 | :

1 : 1

i | Server i

uests the stub | i |

class from the code base v ! I

! Servant !

I |

myHost ! .

| |

I |

| |

: I

the stub cl ; java.rmi.server.codebase =
¢ Stub class URL location http://myHost/mydir/
(file, ftp, http) | -----—-—-----"-"------"— - !
Lecture 6: Distributed Objects. Java IDL. (CORBA) and Java 57

RMI

http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/javarmiproperties.html
http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/javarmiproperties.html

Starting rmiregistry programmatically

* Before rebind/bind

try {
LocateRegistry.getRegistry(1099).1list();

} catch (RemoteException e) {
LocateRegistry.createRegistry(1099);

}

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 58
RMI

Parameters and Returns in Java
RMI

* Primitive data types and non-remote Serializable objects are

passed by values.
— If an object is passed by value, it is cloned at the receiving JVM, and
its copy is no longer consistent with the original object.

— The class name collision problem. Versioning.

* Remote objects are passed by references.
— A remote reference can be returned from a remote method. For
example:

try A
// lookup for the bank at rmiregistry
Bank bankobj = (Bank)Naming.lookup(bankname);
// create a new account in the bank
Account account = bankobj.newAccount(clientname);

account.deposit(value);
} catch (Rejected e) { handle the exception }

— Aremote object reference can be passed as a parameter to a remote
method.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

Example: A Bank Manager

* An application that controls accounts.

* Remote interfaces:
- Account - deposit, withdraw, balance;
- Bank - create a new account, delete an account, get
an account;
* Classes that implement the interfaces:

- BankImpl — a bank servant class that implements
the Bank interface used to create, delete accounts;

- AccountImpl —a account servant class that
implements the Account interface to access
accounts.

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java 60
RMI

Bank and Account Remote Interfaces

The Bank interface:

package bankrmi;

import java.rmi.¥*;

import bankrmi.Account;

import bankrmi.RejectedException;

public interface Bank extends Remote {
public Account newAccount(String name) throws RemoteException,

RejectedException;

public Account getAccount(String name) throws RemoteException;
public boolean deleteAccount(String name) throws RemoteException;
public String[] listAccounts() throws RemoteException;

}

The Account interface
package bankrmi;
import java.rmi.Remote;
import java.rmi.RemoteException;
public interface Account extends Remote {
public float getBalance() throws RemoteException;
public void deposit(float value) throws RemoteException,
RejectedException;
public void withdraw(float value) throws RemoteException,
RejectedException;

A Fragment of the Bank Implementation

package bankrmi;
import java.rmi.*;
import java.util.¥*;
public class BankImpl extends UnicastRemoteObject implements Bank {
private String bankName;
private Map<String, Account> accounts = new HashMap<String, Account>();
public BankImpl(String bankName) throws RemoteException {
super (),
this.bankName = bankName;
}
public synchronized Account newAccount(String name) throws RemoteException,
RejectedException {

AccountImpl account = (AccountImpl) accounts.get(name);
if (account != null) {
throw new RejectedException("Rejected: Bank: " + bankName +
" Account for: " + name +
" already exists: " + account);
}
account = new AccountImpl(name);
accounts.put(name, account);
return account;
}
public synchronized Account getAccount(String name) {
return accounts.get(name);
}
public synchronized String[] listAccounts() {
return accounts.keySet().toArray(new String[1]);

¥

The Account Implementation

package bankrmi;
import java.rmi.*;
public class AccountImpl extends UnicastRemoteObject implements Account {
private float balance = 0;
private String name;
public AccountImpl(String name) throws RemoteException {
super();
this.name = name;

¥
public synchronized void deposit(float value) throws RemoteException,
RejectedException {
if (value < 0) {
throw new RejectedException("Rejected: Account " + name +
": Illegal value: "+value);
}
balance += value;
}
public synchronized void withdraw(float value) throws RemoteException,
RejectedException {
if (value < 0) {
throw new RejectedException("Rejected: Account " + name +
": Illegal value: "+value);

}
if ((balance - value) < 0) {

throw new RejectedException("Rejected: Account " + name +
": Negative balance on withdraw: " +
(balance - value));

}
balance -= value;
¥
public synchronized float getBalance() throws RemoteException {
return balance;
}
1

The Server

package bankrmi;
public class Server {
private static final String USAGE =
"java bankrmi.Server <bank_rmi_url>";
private static final String BANK = "Nordea";
public Server(String bankName) {
try {
Bank bankobj = new BankImpl(bankName);
java.rmi.Naming.rebind(bankName, bankobj);
} catch (Exception e) {
e.printStackTrace();

}
}
public static void main(String[] args) {
if (args.length > 1 || (args.length > 0 &&
args[0].equalsIgnoreCase("-h"))) {
System.out.println(USAGE);
System.exit(1);
}
bankName = (args.length > 0) ? args[0] : BANK;
new Server(bankName);

A Fragment of a Simple Client

package bankrmi;
import bankrmi.*;
import java.rmi.¥*,;
public class SClient {
static final String USAGE = "java Client <bank_url> <client> <value>";
String bankname = “Noname";
String clientname = “Noname";
float value = 100;
public SClient(String[] args) {
//... Read and parse command line arguments (see Usage above)
try {
Bank bankobj = (Bank) Naming.lookup(bankname);
Account account = bankobj.newAccount(clientname);
account.deposit(value);
System.out.println (clientname + "'s account: $" + account.balance());
} catch (Rejected e) {
System.out.println(e); System.exit(0);
} catch (Exception se) {
System.out.println("The runtime failed: " + se);
System.exit(0);
}
}

public static void main(String[] args) {
new SClient(args);

}

Integrating Java RMI with
CORBA

* RMI is an all-Java solution

— A good programming model

* CORBA is an enterprise distributed architecture
— A programming model not designed specifically for Java

— A mature middleware infrastructure

* RMI can run on top of IIOP
— The OMG adds a new specification called ”Pass-by-Value”

— See:
http://download.oracle.com/javase/7/docs/technotes/guides/
rmi-iiop/index.html

— Most of services in Java2EE application server
implementations use either RMI or RMI/ITOP for

communication

Lecture 6: Distributed Objects. Java IDL (CORBA) and Java
RMI

66

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

