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o Representation Learning

» Same story as before
Priors even more important
Factor Analysis
PCA as a latent variable model
GP-LVM

vV vy VvYy
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Introduction Approximative Inference

Graphical Models!

o

p(x,y, 2) = p(ylz, 2)p(x)p(2) p(z,y,2) = pylz)p(z|2)p(

N
p({z:}ily) = [ [ pleilpa;) (1)
i=1

'Bishop 2006, pp. 8.0, 8.1.
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Latent Variable Models?

e What is our task?

e p(y) .
e Latent variables

e Generative Model

e Explaining away

*Bishop 2006, p. 364.
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Latent Variable Models?

e What is our task?

* p(y)
Latent variables

Generative Model

Yi=WX; +€ (2)
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Latent Variable Models?

Latent Variables

“The primary role of the latent variable is to allow a complicated
distribution over the observed variables be represented in terms of a
model constructed from a simpler (typically exponential family)
conditional distribution.”

*Bishop 2006, p. 364.
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Factor Analysis

p(yil6) = / p(yili, )p(x;)dx; = / N(Wx; + 1, N (10, Z0)

=NWpo+ p, ¥ + WEWT)
= N(p, ¥ + WWT) 3)

e X and W are related

e Integrate out X
> pick 1o =0, 39 =1

e Low dimensional density model of Y
» rank of WWT dimensionality of X

Ek
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Factor Analysis

W =WR 4)
p(yil@) = N(p, ¥ + WRRTWT) (5)
=N(p, ¥ +WWT) (©6)

(7

e The marginal likelihood is invariant to a rotation

> no unique solution
» model is the same but interpretation tricky
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Factor Analysis

W = argmaxywp(Y|0) (8)
e ~ N(0,0°T) 9)
WL = Uy(A — 02I)2 (10)
S = UAUT (11)

e Dimensions of Y independent given X
» W orthogonal matrix WTW =T
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Factor Analysis

e Factor Analysis is a linear continous latent variable model

e Solution not unique
e PCA is Factor Analysis with two assumptions

» factor loadings orthogonal WTW =1
» noise free case € = lim,2_,(0°1

Ek
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Gaussian Process Latent Variable Models

e General co-variance function

(Ex. SE)
e X appears non-linearly in @ 0

relation to Y
e Marginalisation of X intractable

Ek
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Gaussian Process Latent Variable Models

argmaxx op(Y|X, 0)p(X) (12)
p(Y|X,6) = / p(Y|£)p(EX, B)df (13)
p(X) = N(0,T) (14)

e GP-prior sufficiently regularises objective

e Need to set dimensionality of X

Ek
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Being Bayesian

You know nothing for certain

All parameters should have prior
distributions

Decisions should be made from
posterior

Posterior is reached through
Bayes Rule
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Approximative Inference References

Being Bayesian

_ p(y|€)p(6)

p(y) = / p(y|0)p(6)d6 (16)

15)

e posterior distribution requires us to compute evidence p(y)
e integral often intractable

e approximate computation
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Being Bayesian

A~

6 = argmaxp(y|6)p() (17)

Maximum a Posteriori estimation (MAP)

point estimate as mode of posterior

e simple

but does not communicate uncertainty well

Ek
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e Stochastic Approximations
» Sampling
» Exact if infinite computational resources
> Hedvig will do this

e Deterministic Approximations
> Analytical approximations of posterior
» Laplace approximation or mode matching
» Variational Bayes

Advanced Machine Learning
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Laplace Approximation?

e MAP finds the mode of the posterior

e Does not describe the region around the mode particularly well
because there is no averaging happening

e Laplace Approximation,
> use the MAP estimate
» approximate the posterior with an analytic form around its mode

*Bishop 2006, pp. 213-216,
Ek
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References

Laplace Approximation?

Algorithm

1. Approximate posterior with Gaussian
2. Find MAP estimate

3. Make Taylor Expansion around mode

*Bishop 2006, pp. 213-216,
Ek
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Laplace Approximation?

£(6) = log (p(y|0)p(0)) = log (p(y|0)) + log (p(6)) ~ (18)

N
Z (p(y:]6)) + log (p(6)) (19)

*Bishop 2006, pp. 213-216,
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Laplace Approximation?

t(8) = log (p(y|0)p(6)) = log (p(y(6)) + log (p(0)) (20)

N
=" log (p(yil6)) + log (»(6)) 21

i=1
Make Taylor Expansion around MAP parameter estimate 6

~ 2
1) =1(6)+ (0 - 0" D)y 00 ) 06yt

~1(6) + 5(6 )" H(6)(0 ~ 0) 22)

*Bishop 2006, pp. 213-216,
Ek

DD2434 - Advanced Machine Learning



Introduction Recap Approximative Inference References

Laplace Approximation?

Make Taylor Expansion around MAP parameter estimate 0

5t(0) 1 ~ 1 6%t(0) R
— T (0 —0T (0 —
HO) = t(B) + (6~ )T Py 5+ 50— 0) " 2y 50— )+ ...
~1(0) + (0 0)TH(O)(6 - 0) 3)
Linear term disappears as 6 is MAP estimate
A 5%logp(8|y
1(9) = TV, (24)

Hessian is the second derivatives of the true posterior

*Bishop 2006, pp. 213-216,
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Laplace Approximation?

Compute evidence using approximation
togp(y) = log [ p(y16)p(6)d6 = tog [ ¢'®\a6 es)
1
~ t(0) + §|27TH_1| (26)

- A~ d 1
= logp(y|0) + logp(0) + §log27r - 510g|H| (27)

*Bishop 2006, pp. 213-216,
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Laplace Approximation?

p(y) ~ p(y|0)p(0)[2r H |2 (28)

Likelihood at MAP point

Penalty term of prior

Hessian takes into account local curvature around MAP point

Gaussian approximation to the posterior

*Bishop 2006, pp. 213-216,
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Laplace Approximation?

0.30

= prior

-8 -6 -4 -2 0 2 4
f

3Bishop 2006, pp. 213-216,Images courtesy by Alan Saul
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Laplace Approximation?

0.30

e prior
== likelihood

0.00

-8 -6 -4 -2 0 2 4 6 8

s

3Bishop 2006, pp. 213-216,Images courtesy by Alan Saul
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Laplace Approximation?

0.6

= prior
= likelihood

= =« posterior
0.5

0.4

0.3

0.2

0.1

0.0

-8 -6 -4 -2 0 2 4 6 8

*Bishop 2006, pp. 213-216,Images courte;y by Alan Saul
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Laplace Approximation?

Approximative Inference

0.6
== prior
= likelihood
] = =+ posterior
0.5 : !
[}
0.4
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Laplace Approximation?

0.6

0.5

0.4

——

0.3

e ==

0.2

0.1

0.0

== prior
= likelihood
= =+ posterior

-8 -6 -4 -2 0 2 4

3Bishop 2006, pp. 213-216,Images courte;y by Alan Saul




Introduction Recap Approximative Inference

Laplace Approximation?

0.6

0.5
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0.3
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References

Laplace Approximation?
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Approximative Inference

Laplace Approximation?

0.6 valuate curvature
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1 = likelihood
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Laplace Approximation?
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Laplace Approximation?

e Good

» Easy (assuming we can compute second derivatives)

» When we know that posterior is well characterized by its mode
e Bad

> Local
» Hard to know how good the approximation is

*Bishop 2006, pp. 213-216,
Ek
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Variational Bayes*

Want to reach posterior p(@|y)
e Approximate true posterior with simple distribution ¢(8)
> ¢(0) has a set of parameters

Formulate optimisation problem

What is the objective function?

“Bishop 2006, pp. 462-470
Ek
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Variational Bayes*

KL-divergence

KL(6)lIn(0ly) = [ a(0)iog. %2 a0 9)

e Always positive

e Non-symmetric

e Part of a class of functionals called a-divergence
» encapsulate several different inference algorithms

*Bishop 2006, pp. 462-470
Ek
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Variational Bayes*

KL |pO) = [ at01og 500 = Loioly) = L9}
_ 0o 10y
B /q(e)l =0y, 0) 10=
B q(0)
= / q(9)10gp(y’0)d9+ / q(6)d6 logp(y)
=1
:/q(O)logp?}(f)e)dB—Hogp(y) (30)

“Bishop 2006, pp. 462-470
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Variational Bayes*

KL@(O)0) = [ a@)og 000+ omty)  GD
= logpy) = KL(4(0) p(01y)) + | qw)log%del (32)
£(6)

e Kl -divergence always positive

e £(0) lower bound on logp(y)

“Bishop 2006, pp. 462-470
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Variational Bayes*

Lower bound,

d0 (33)

q(0

Eq o) [logp(y, 0 q(0)logp(y, 0)d6 (34)

6)= [ at
/ q(0)logp(y, 0)d6 — / q(0)logq(0)de
/

0)logq(6 (35)

\

e Maximise expected value of joint distribution with as “informative”
distribution as possible
“Bishop 2006, pp. 462-470
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Variational Bayes*

e Good

> fast
» principled, we know how well bad we are doing

e Bad
» how to design proposal distribution

e KL-divergence is not symmetric if we instead minimise KL(p||q) we
get Expectation Propagation

“Bishop 2006, pp. 462-470
Ek
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Comparison between approximations®

Prior p(f, /) Likelihood p(y =1|f,,f,)

SImages courtesy by Alan Saul
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Comparison between approximations®

True posterior Laplace approximation

SImages courtesy by Alan Saul
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Comparison between approximations®

True posterior KL approximation

SImages courtesy by Alan Saul
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Comparison between approximations®

True posterior EP approximation

7

b

SImages courtesy by Alan Saul
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e A Bayesian makes decision from the posterior distribution
» combines data and belief

e computing posterior often requires intractable integrals
e to proceed we use approximations
e now you got a flavour of how this is done

This is current very active research
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End of Part 1

e 4 lectures

e Dealing with Uncertainty is the key

Probabilities are useful means for representing certainty
> probabilistic objects

Priors are the key to learning

> two different examples
> parametrisation

What is the tasks we need to solve

I have been very abstract on purpose to focus on understanding
learning

Ek
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Approximative Inference

Introduction Recap

“It’s true there’s been a lot of work on trying to apply statistical
models to various linguistic problems. I think there have been
some successes, but a lot of failures. There is a notion of success
which I think is novel in the history of science. It interprets success

as approximating unanalyzed data.”

[Noam Chomsky]
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What do you need to do?

e Translate to your own problems/data

e How have you solved problems before, think of the assumptions you
made

e What are sensible priors/likelihoods/structures
e What assumptions can you make?

e Don’t be afraid of being abstract, when you get too close to the
problem you often make assumptions that you are not aware of

Ek
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Get your hands dirty, i.e. develop your own priors for developing
models
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What do you need to do?

Ek

Translate to your own problems/data

How have you solved problems before, think of the assumptions you
made

What are sensible priors/likelihoods/structures
What assumptions can you make?

Don’t be afraid of being abstract, when you get too close to the
problem you often make assumptions that you are not aware of

Get your hands dirty, i.e. develop your own priors for developing
models

Form your own opinion and disagree with me
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Take home message

e Machine learning is really simple, it should be as even Carl have
learnt quite a few things in life

Formulating learning so that it can be externalised might be very hard
and really involved but that is just labour

Make assumptions, lots of them, that is the basis of learning, but be
aware of them
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Carls rant

o Intelligence is the ability to reason under uncertainty

e If we have absolute knowledge we do not need intelligence
reasoning(Laplace)

e Absolute knowledge - all data
e which interesting problems do we have that for?

e no priors (or not formulated priors) makes us headless chickens we
become too naive

e when we need a lot of data to solve a simple problem you should be
worried

e ML is a young field, the important thing is not that it can but why it
can, otherwise development will stop
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Next Time

Lecture 4
e November 13th 15-19 V1

e Variational Bayes example

e Help session for assignment

» anything else that you want me
to do
within the realm of me keeping
some decency

Ek
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e.o.f.
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My Research

@wc&@@
) (=)
= =

Ek

DD2434 - Advanced Machine Learning



Introduction Approximative Inference REEICES

References |

Christopher M Bishop. Pattern recognition and machine learning.
2006. URL: http://www.library.wisc.edu/
selectedtocs/bg0137.pdf.

Ek

DD2434 - Advanced Machine Learning


http://www.library.wisc.edu/selectedtocs/bg0137.pdf
http://www.library.wisc.edu/selectedtocs/bg0137.pdf

	Introduction
	Recap
	Approximative Inference

