
MEETING 9 - INDUCTION AND RECURSION

We do some initial Peer Instruction ...

Predicates

Before we get into mathematical induction we will repeat the concept of a predicate. A predicate is a
mathematical statement whose truth depends on a value of a variable. For example we could write:

A(n) ⇔ 8|n3 − n2

and put in various values in n’s place. For example, n = 4 gives the statement A(4) ⇔ 8|43−42 ⇔ 8|64−16 = 48
and since 8 does divide 48, the statement we get when putting 4 at the place of n becomes true. However, if
we put n = 5 we get the statement A(5) ⇔ 8|53 − 52 ⇔ 8|125− 25 = 100, and since 8 does not divide 100, the
statement becomes false.

Mathematical Induction

The powerful idea behind the method of proof by mathematical induction can be illustratred by falling
dominoes. If we line up a row of dominoes close to each other and tip the first one, they all fall.

If we wish to prove that some predicate is true for all integers, say A(n) (as above) we can sometimes use
this principle. If we can prove that A(1) is true and also the the implication A(p) ⇒ A(p + 1) is true for all
values of p ≥ 1, then we have

A(1) true ⇒ A(2) true ⇒ A(3) true . . .

and so on forever, in short for all n ≥ 1 we have A(n) true. We will start by looking at a very simple example.
Consider the following statement:

the sum of the n first odd natural numbers is n2.

Examples of this is 1 + 3 = 4 = 22, that is the sum of the first two odd natural numbers is 4 which is 22, that
is the square of 2. Another example is if we take the first 3 odd numbers and add them together: 1+3+5 = 9
we get 9 which is the square of 3. And so on. We can formulate this with a predicate:

A(n) ⇔
n
∑

k=1

(2k − 1) = n2

and we wish to prove that for all integers n ≥ 1, A(n) is true.

Theorem: ∀n ∈ N :
∑n

k=1(2k − 1) = n2.

Proof: As we said above, for each n, we introduced the predicate A(n) for the statement
∑n

k=1(2k−1) = n2.
Then we wish to prove that ∀n ∈ N : A(n). A proof that relies on mathematical induction first involves a
check that what we wish to prove is true for a starting value. Here the starting value is n = 1. Hence we wish
to prove that A(1) is true. Is it? Yes, since A(1) can be formulated

2 · 1− 1 = 12

which is true. The left hand side is the sum of the first 1 odd numbers, which is just 1 itself, the right hand
side is the square of 1 which is also 1, hence the left hand side equals the right hand side and so A(1) is true.

The next step is to show that for all natural numbers p, the implication A(p) ⇒ A(p+ 1) is true.
To prove that an implication is true we need to suppose that the preqrequisite is true, this called the

Induction Hypothesis. So we assume that for an particular natural number p we have A(p) ⇔∑p
k=1(2k− 1) =

p2 ⇔ LHSp = RHSp. We have introduced a further notation here, we denote, by LHSp the left hand side
of the induction hyposthesis and by RHSp the right hand side of the induction hypothesis. We now wish to
prove that A(p + 1) is true with this as a basis. That is we wish to prove that LHSp+1 = RHSp+1. So we
study LHSp+1 :

LHSp+1 =

p+1
∑

k=1

(2k − 1) =

p
∑

k=1

(2k − 1) + (2(p + 1)− 1) = LHSp + (2p + 1).
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Here is where we use the fact that the induction hypothesis holds, that is we use the equality LHSp =
∑p

k=1(2k − 1) = p2 = RHSp this means that this expression is in fact p2 + 2p + 1 = (p + 1)2, but (p + 1)2 is,
in it’s turn equal to RHSp+1! So we have

LHSp+1 = LHSp + (2p+ 1) = p2 + 2p+ 1 = (p+ 1)2 = RHSp+1.

which means that A(p + 1) is true and since this followed from A(p) we have established the truth of the
implication A(p) ⇒ A(p + 1). Since A(1) was true we conclude that A(2) is true, and from this we get A(3)
and so on: that A(n) must be true for all natural numbers n. That is ∀n ∈ N : A(n) which is what we wanted
to prove.

The general outline of a proof that relies on mathematical induction to prove a statement of the form
∀n ∈ N : A(n) is the following:

1. Check that the statement holds for a starting value, above this starting value was 1. We checked that
A(1) was true and it was.

2. Prove the implication A(p) ⇒ A(p+1). To prove this implication we first assume that A(p) is true for
a certain p. Then we use that information, that power given to us, to show that also A(p+ 1) is true.

3. Lastly we appeal to the principle of mathematical induction where we write down the argument

A(1) is true ⇒ A(2) is true ⇒ A(3) is true ⇒ . . . ⇒ A(n) is true for all n ∈ N.

A proof resting on mathematical induction must contain all these three steps. They are each vital. We will
study a number of examples of proofs by induction. We highlight the three items in the following example.

Example: Prove, by mathematical induction that 7|52n − 25n for all n ≥ 1.

Proof: First introduce the name A(n) for the statement 7|52n − 25n where n ∈ N. Out task is to show that
∀n ∈ N : A(n).

1. Check that A(1) is true. Is it? Does 7 divide 52·1 − 25·1? Well, 52·1 − 25·1 = 25− 32 = −7 = 7 · −1 and
this is divisible by 7 so, yes, A(1) is true.

2. Prove the implication A(p) ⇒ A(p + 1) for every natural number p. We therefore assume A(p), this is
the induction assumption and it states that 7|52p − 25p. This means that there exists a number q such

that 52p − 25p = 7q. With the support of this statement we wish to prove that 7|52(p+1) − 25(p+1). We
therefore observe

52(p+1) − 25(p+1) = 52p+2 − 25p+5 = 25 · 52p − 32 · 25p = 25 · 52p − 25 · 25p − 7 · 25p.
But this number can be written 25 · (52p − 25p) − 7 · 25p, and, using the induction hypothesis which
state that 52p − 25p = 7q for a natural number q, we have

52(p+1) − 25(p+1) = 25 · 7q − 7 · 25p = 7 · (25q − 25p)

which is clearly divisible by 7. Hence 7|52(p+1) − 25(p+1) which is A(p + 1). We have now proven the
implication A(p) ⇒ A(p+ 1) which completes step 2.

3. The two above steps and the principle of mathematical induction allows us to draw the conclusion that

A(1) is true ⇒ A(2) is true ⇒ . . . ⇒ A(n) is true for all n ≥ 1

which completes the proof.

Strong Mathematical Induction

We will now study something called strong mathematical induction. It is totally equivalent to the ordinary
type of mathematical induction that we have studied so far, but it is sometimes more useful.

Principle of Mathematical Induction, strong form: Given a statement A(n) for every integer n. If

1. A(n0) is true for some integer n0;
2. if k > n0 is any integer and A(p) is true for all integers p with n0 ≤ p < k, then we also have A(k).

Then A(n) is true for all integers greater than or equal to n0, that is we have ∀n ≥ n0 : A(n).

We will use the strong form of mathematical induction to prove that any natural number greater than 2 can
be written as the product of primes. This was proven before too, but using the well-ordering principle of the
natural numbers, and in fact, the well-ordering principle of the natural numbers is equivalent to the principle
of mathematical induction.
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Theorem: Every natural number greater than or equal to 2 is a product of primes.

Proof: We proceed by strong mathematical induction. We first introduce the predicate

A(n) ⇔ n is a product of primes.

What we are to prove can then be expressed ∀n ∈ N : n ≥ 2 ⇒ n is a product of primes. We now take the
three steps necessary for mathematical induction:

1. The starting value is n0 = 2 and A(n0) = A(2) is true since 2 itself is a prime, therefore it is also a
product of primes (containing one factor, namely 2 itself.)

2. We now fix an arbitrary natural number p ≥ 2 and assume that the statement holds for all natural
numbers, 2, 3, . . . , p − 1, that is we assume that A(2), A(3), . . . , A(p − 1) all hold. Then either p is
a prime itself, in which case the statement A(p) holds (that p is a product of primes). The other
possibility is that the number p is not a prime, in that case there exists natural numbers, 2 ≤ a, b < p

such that p = a · b. But as both A(a) and A(b) hold, then both a, b must be products of primes, this in
turn implies that p = a · b is a product of primes and we have then shown that A(p) is true. We have
now shown A(2) ∧A(3) ∧ . . . ∧A(p− 1) ⇒ A(p) which is the second step in the proof.

3. The third step is to appeal to the principle of strong mathematical induction in which we conclude that
as step 1 and 2 above proves we can deduce

A(2) true ⇒ A(3) true ⇒ . . . ⇒ A(n) true for all n ≥ 2

which completes the proof. (The last step is often referred to as an ”appeal to the principle of mathe-
matical induction” and you MUST always include that step to have a complete proof.)

The proof is complete.

The best thing to do now is to produce as many proofs as you can based on mathematical induction. There
are many such exercises in the book.

Recursively defined sequences

We will now use the principle of mathematical induction and congruences to study recursively defined se-
quences. A recursively defined sequence is a sequence of numbers (often integers) that are defined by specifying
starting value(s) and then specifying how a new value depends on the previously defined values. We give an
example:

Example: Let a1 = 1 and an+1 = n · an, for n ≥ 1. Then the value a2 is defined to be 2 · a1 = 2 · 1 = 2.
Similarly the value of a3 is defined to be 3 · a2 = 3 · 2 = 6, and, continuing on, we find that a4 = 4 · 3 · ·2 · 1 and
so on, we have, generally

an = n · (n− 1) · . . . · 2 · 1.
This number has important meaning in mathematics and is called the factorial and we denote it n!, and it

is an example of something that can be recursively defined. Note that when we define something recursively it
is very closely related to mathematical induction and indeed it is often very easy to prove something about a
recursively defined sequence using mathematical induction. We take an example of this:

Example: For every n ≥ 4, show that n! ≥ 2n.

Proof: We proceed by mathematical induction: introduce the name A(n) for the statement that n! ≥ 2n.
We wish to prove that ∀n ≥ 4 : A(n). We now take the three steps:

1. The statement A(4) is true since 4! = 24 ≥ 24 = 16.
2. Now prove that A(p) ⇒ A(p+1) for all p ≥ 4 so we assume that A(p) is true for a certain p ≥ 4. With

the support of this, we need to show that we also have A(p+1). Study the statement A(p+1) in detail:
A(p+1) ⇔ (p+1)! ≥ 2p+1. Can this be true? Well, since A(p) ⇔ p! ≥ 2p is true, we have that the left
hand side is (p + 1)! = (p + 1)p! ≥ (p + 1)2p, and since p ≥ 4 we can further estimate this downwards
so that it is greater than 2 · 2p = 2p+1. But in conclusion we have then found (p + 1)! ≥ 2p+1 which is
exactly the statement A(p+ 1). Thus the induction step is successfully taken.

3. We now conventionally appeal to the principle of mathematical induction which gives that

A(1) is true ⇒ A(2) is true ⇒ . . . ⇒ A(n) is true ∀n ≥ 4.

The proof is complete. (Question: is A(p) ⇒ A(p+ 1) true for smaller p?)
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It IS always important to take the third step in a proof based on mathematical induction since it is actually
an appeal to a property of the natural numbers called the axiom of induction that can be formulated like this

If 1 ∈ S ⊆ N and ∀x ∈ S : x+ 1 ∈ S then S = N.

We will NOT regard a proof of based on mathematical induction to be complete without the third step.

We will now study two special types of sequences. We define both of these in the same definition:

Definition: A sequence of numbers {an}∞n=1 is called an arithmetic sequence if there exists a constant d

such that an+1 = an + d for all n ∈ N. An sequence of numbers {an}∞n=1 is called a geometric sequence if there
exists a constant a such that an+1 = a · an for all n ∈ N. The number a is called the quotient of the geometric
series. The values a1 and b1 are called the starting values of the sequences.

We will prove a theorem about them by induction and state another theorem and leave the proof as an
exercise on induction proofs:

Theorem: Let {an}∞n=1 be an arithmetic sequence and let {bn}∞n=1 be a geometric sequence. Then, for all

n ∈ N we have an = a1 + (n− 1) · d and bn = b1 · b(n−1), where b is the quotient of {bn}.

Proof: This is a straight-forward proof by induction so we introduce the predicate

A(n) ⇔ an = a1 + (n− 1) · d.
Our task is to show that ∀n ∈ N : A(n). We take the three steps of mathematical induction:

1. A(1) ⇔ a1 = a1 + (1− 1) · d ⇔ a1 = a1 which is obviously true.
2. We now proceed to show the implication A(p) ⇒ A(p + 1) and we therefore assume that A(p) is true

for a certain p ∈ N, this is equivalent to LHSp = ap = a1 + (p− 1) · d = RHSp. Based on this we wish
to prove that A(p + 1), that is we want to show that LHSp+1 = RHSp+1. So we study

LHSp+1 = ap+1 = {by the definition of an arithmetic sequence} = ap + d = LHSp + d

but this number is RHSp + d, according to the induction assumption A(p), so the whole expression is
a1 + (p − 1) · d + d = a1 + p · d = a1 + (p + 1 − 1) · d = RHSp+1 so that LHSp+1 = RHSp+1 which
is exactly the statement A(p + 1). We have therefore shown that the implication A(p) ⇒ A(p + 1) is
always true for all p ∈ N.

3. We now appeal to the principle of mathematical induction which gives that

A(1) is true ⇒ A(2) is true ⇒ . . . ⇒ A(n) is true ∀n ≥ 1.

The proof is complete. Well not really, we have only done this for the arithmetic sequence, but the exact same
procedure works for the geometric sequence too. You can formulate those details as an exercise.

We now state a theorem without proof leaving the details as a very good exercise on induction proofs:

Theorem: Let {an} and {bn} be arithmetic and geometric sequences as in the definition above. Then
n
∑

k=1

ak = n · a1 + an

2
and

n
∑

k=1

bk = b1
bn+1 − 1

b− 1
if b 6= 1, otherwise

n
∑

k=1

bk = n · b1.

Solving recurrence relations

There is a special sequence of interest recursively defined by

a0 = 1, a1 = 1, an+2 = an+1 + an, for all n ≥ 0.

These numbers are called the Fibonacci numbers and they are given by 1, 1, 2, 3, 5, 8, 13, 21, . . .. They are a
special example of a so-called recurrence relation. We will see how to solve any recurrence relation of the form

an+2 = A · an+1 +B · an, for all n ≥ 0

where we denote by a0 and a1 the starting values of this sequence. In fact it is solved in the same way as a
differential equation, we first form the characteristic equation

λ2 = A · λ+B

and if this equation has the distinct roots r1 and r2, the solution to the recurrence relation is given by

an = C · rn1 +D · rn2
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where C,D are determined by A,B. If the characteristic equation λ2 = A ·λ+B has a double root r, the solu-
tion is given by an = (C · n+D)rn, where, again, C,D are determined by A,B. Again this can be formulated
as a theorem and proven by mathematical induction, but we will study several examples instead. (Formulate
this is as a theorem and do the proof as an exercise.)

Example: Find the sequence defined by a0 = 3, a1 = 2, an+2 = 3an+1 − 2an.

Solution: The characteristic equation is λ2 = 3λ − 2 ⇔ λ = 1 ∨ λ = 2, that is we have two distinct roots.
Hence the sequence is given by an = C · 1n + D · 2n and setting n = 0 and n = 1 gives the two equations
C +D = 3 and C + 2 ·D = 2 which is a linear system of equations which has the solution C = 4 and D = −1
so that the formula for the sequence reads an = 4− 2n.

If the characteristic equation has a double root, r, the solution will read an = (C · n +D)rn. We illustrate
this with an example:

Example: Solve the reccurrence relation an+2 = 4an+1 − 4an, n ≥ 0, where a0 = 1 and a1 = 4.

Solution: The characteristic equation reads λ2 = 4λ− 4 ⇔ (λ− 2)2 = 0 which has the double root λ = 2.
Hence the solution to the recurrence relation is given by an = (C · n+D)2n and setting n = 0 and n = 1 gives
the equations (C · 0 +D)20 = a0 = 1 and (C · 1 +D)21 = 4 which can be written

D = 1 ∧ C +D = 2 ⇔ C = D = 1

so the solution to the recurrence relation is an = (C · n+D)2n = (n+ 1)2n.

Solving a homogenous (=0) linear recurrence relation with constant coefficients of the second degree is easy.
It will be an expression of the form an = C · rn1 + D · rn2 or an = (C · n + D)rn dependeing on whether we
have two distinct roots or if we have a double root. It is just a matter of forming the characteristic equation
and determining the constants by using the starting values. We conclude this part of the theory by studying
a classic example of a recurrence relation and after that we will show how to solve non-homogenous linear
recurrence relations with constant coefficients.

Example: Define the sequence of integers {an}∞n=0 by a0 = 1, a1 = 1 and an+2 = an+1 + an.

Solution: The characteristic equation is λ2 = λ + 1 which has the solutions λ = 1±
√
5

2 . These are two
distinct roots so the solution has the general form

an = C ·
(

1 +
√
5

2

)n

+D ·
(

1−
√
5

2

)n

.

Putting n = 0, n = 1 gives the equations C +D = 1 and C · (1+
√
5

2 ) +D · (1−
√
5

2 ) = 1 which has the solutions

C = 1√
5
1+

√
5

2 , D = 1√
5
1−

√
5

2 , so that the general form of the solution reads an = 1√
5

(

1+
√
5

2

)n+1
− 1√

5

(

1−
√
5

2

)n+1
.

This sequence of numbers is called the Fibonacci numbers, they are 1, 1, 2, 3, 5, 8, 13, 21, . . .. It is a bit curious
that the complicated expression that defines an that we have found always turn out to be natural numbers.

The non-homogenous case. We now turn to the case where the recurrence relation is not homogenous. In
this theory we proceed exactly as with differential equations, we study this through example.

Example: Solve the linear recurrence relation an+2 = 5an+1 − 6an + 4n for various starting values a0, a1.

Solution: The equation is not homogenous, therefore we need to find a so-called particular solution, that
is we need to find one sequence {apn}∞n=0 such that a

p
n+2 = 5apn+1 − 6apn + 4n holds. The general solution to

an+2 = 5an+1 − 6an +4n will then be the solution to the homogenous equation an+2 = 5an+1 − 6an which will
be of the form an = C · 2n +D · 3n, as it has the characteristic equation λ2 − 5λ + 6 = 0 which has solutions
r1 = 2, r2 = 3. So we proceed to find a so-called particular solution. This sometimes requires some ingenuity.
As the expression 4n is a polynomial in n we try to set a particular solution as a polynomial, assume apn = qn+r,
where q, r are real numbers. Then a

p
n+2 = 5apn+1−6apn+4n ⇔ q(n+2)+r = 5q(n+1)+5r−6qn−6r+4n. We

continue to work with equivalences and find that this is equivalent to qn+2q+r = 5qn+5q+5r−6qn−6r+4n ⇔
4n − 2qn + 3q − 2r = 0 ⇔ (4 − 2q)n + (3q − 2r) = 0. This is a polynomial in n which is supposed to always
be 0, and it is 0 if and only if 4 − 2q = 0 and 3q − 2r = 0 which in turn is equivalent to q = 2, r = 3.
(Observe that it si crucial that we wrok with equivalences all the way through!) So we have found a particular
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solution being a
p
n = 2n + 3 and then the general form of a solution to an+2 = 5an+1 − 6an + 4n will then be

an = C · 2n +D · 3n +2n+3 where C,D are determined by the starting values of the sequence. For example if
a0 = 1, a1 = 2, then we obtain the equations C +D + 3 = 1 and 2C + 3D + 2+ 3 = 2 which have the solution
C,D = −3, 1 giving the solution an = 3n − 3 · 2n + 2n + 3. Other starting values yields other equations for
C,D and hence give rise to other solutions.


