
Introduction to Visualization and Computer Graphics

DH2320, Fall 2015

Prof. Dr. Tino Weinkauf

Introduction to Visualization and

Computer Graphics

Visibility

Shading

Local Illumination

Smooth Shading Simple Shadows Global Illumination

3D Rendering

Visibility Perspective

Geometric Model Color

Visibility Algorithms

Two Rendering Pipelines

Rasterization

 Project all triangles to the screen

 Rasterize them (convert to pixels)

 Determine visibility

 Apply shading (compute color)

Raytracing

 Iterate over all pixels

 Determine visible triangle

 Compute shading, color pixel

  next lecture

Triangle / Polygon Rasterization

After Perspective Projection

Observations

Straight lines

remain straight!

Triangles mapped

to triangles

Polygons

to polyogns

Rasterization

3D Scene

Projection Visibility Rasterization

Visiblity

• preprocessing

or

• during rasterization

Rasterization

Two main algorithms

 Painter’s algorithm (old)

 Simple version

 Correct version

 z-Buffer algorithm

 Dominant real-time method today

Painter’s Algorithm

Painter’s Algorithm

Painters Algorithm

 Sort primitives back-to-front

 Draw with overwrite

Drawbacks

 Slowish

 𝒪(𝑛 ⋅ log 𝑛) for 𝑛 primitives

 “Millions per second”

 Wrong

 Not guaranteed to always work

Counter Example

Correct Algorithm

 Need to cut primitives

 Several strategies

 Notable: BSP Algorithm in Quake

 Old graphics textbooks list many variants

 No need for us to go deeper

z-Buffer Algorithm

z-Buffer Algorithm

Algorithm

 Store depth value
for each pixel

 Initialize to MAX_FLOAT

 Rasterize all primitives

 Compute fragment depth & color

 Do not overwrite if fragment is farer away
than the one stored the one in the buffer

color depth

Discussion: z-Buffer

Advantages

 Extremely simple

 Versatile – only primitive rasterization required

 Very fast

 GeForce 2 Ultra: 2GPixel /sec
(release year: 2000)

 GeForce 700 GTX Titan: 35 GPixel / sec
(release year: 2013)

Discussion: z-Buffer

Disadvantages

 Extra memory required

 This was a serious in obstacle back then...

 Invented 39 years ago (1974; Catmull / Straßer)

 Only pixel resolution

 Need painter’s algorithm for certain
vector graphics computations

 No transparency

 This is a real problem for 3D games / interactive media

 Often fall-back to sorting

 Solution: A-Buffer, but no hardware support

Rasterization and Clipping

Rasterization

How to rasterize Primitives?

Two problems

 Rasterization

 Clipping

color depth

Rasterization

Assumption

 Triangles only

 Triangle not outside screen

 No clipping required

Triangle Rasterization

Several Algorithms...

Triangle Rasterization

Example: two slabs

Triangle Rasterization

Incremental rasterization

Δ𝑥 constant

precompute and

add in each step

Incremental Rasterization

Precompute steps in x, y-direction

 For boundary lines

 For linear interpolation within triangle

 Colors

 Texture coordinates (more later)

 Inner loop

 Only one addition (“DDA” algorithm)

 Floating point value

 Strategies

– Fixed-point arithmetics

– Bresenham / midpoint algorithm
(requires if; problematic on modern CPUs)

Rasterization

How to rasterize Primitives?

Two problems

 Rasterization

 Clipping

color depth

Why Clipping?

Crashes – write to off-screen memory!

Clipping Strategies

Pixel Rejection

 “if (x,y ∉ screen) continue;”

 Can be arbitrarily slow (large triangles)

 Nope. Not a good idea.

Screen space clipping

 Modify rasterizer to jump to visible pixels

 See tutorial 5

 Efficient

 Still problems with when crossing camera plane
(𝑤 = 0) ⇒ a semi-good idea

Smart Slab Renderer

Does not crash, optimal complexity

 𝑂(𝑘) for 𝑘 output fragments

Problem

Problem:

 Triangles crossing camera plane!

 Wrong results

 Need object space clipping

𝑓
𝑧1

𝑦′ = 𝑓
𝑦

𝑧

𝑧2

𝑦1

𝑦2

camera
plane

image
plane

View Frustum Clipping

near clipping

plane

far clipping

plane

four side

planes

six planes

clip triangles

against all

six planes

Incremental Algorithm

Incremental Algorithm

Incremental Algorithm

Output: Multiple Triangles

Further Optimization

View Frustum Culling

 Complex shapes (whole bunnies)

 Coarse bounding volume (superset)

 Cube, Sphere

 Often: Axis-aligned bounding box

 Reject all triangles inside if bounding volume outside view
frustrum

Smooth Shading Simple Shadows Global Illumination

3D Rendering

Visibility Perspective

Geometric Model

Local Illumination

Color

Shading Models

mirror

diffuse surface

Reflectance Models

glossy surface

Interaction with Surfaces

Local Shading Model

 Single point light source

 Shading model / material model

 Input: light vector 𝐥 = 𝐩𝐨𝐬𝑙𝑖𝑔ℎ𝑡 − 𝐩𝐨𝐬𝑜𝑏𝑗𝑒𝑐𝑡

 Input: view vector 𝐯 = 𝐩𝐨𝐬𝑐𝑎𝑚𝑒𝑟𝑎 − 𝐩𝐨𝐬𝑜𝑏𝑗𝑒𝑐𝑡

 Input: surface normal 𝐧 (orthogonal to surface)

 Output: color (RGB)

Viewer

Light

object surface

𝐯 𝐥 𝐧

Interaction with Surfaces

General scenario

 Multiple light sources?

 Light is linear

 Multiple light sources: add up contributions

 Double light strength ⇒ double light output

Viewer

Light

object surface

𝐯 𝐥 𝐧

Remark

Simplify notation

 Define component-wise vector product

𝐱 ∘ 𝐲 =

𝑥1

𝑥2

𝑥3

∘

𝑦1

𝑦2

𝑦3

≔

𝑥1 ⋅ 𝑦1

𝑥2 ⋅ 𝑦2

𝑥3 ⋅ 𝑦3

 No fixed convention in literature

 The symbol “∘” only used in these lecture slides!

Remark

Lighting Calculations

 Need to perform calculations for 𝑟, 𝑔, 𝑏-channels

 Often:
𝑜𝑢𝑡𝑝𝑢𝑡𝑟 = 𝑙𝑖𝑔ℎ𝑡𝑟 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑟 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐯, 𝐥, 𝐧
𝑜𝑢𝑡𝑝𝑢𝑡𝑔 = 𝑙𝑖𝑔ℎ𝑡𝑔 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑔 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐯, 𝐥, 𝐧)

𝑜𝑢𝑡𝑝𝑢𝑡𝑏 = 𝑙𝑖𝑔ℎ𝑡𝑏 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑏 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐯, 𝐥, 𝐧)

 Shorter
 𝐨𝐮𝐭𝐩𝐮𝐭 =
𝐥𝐢𝐠𝐡𝐭_𝐬𝐭𝐫𝐞𝐧𝐠𝐭𝐡 ∘ 𝐦𝐚𝐭𝐞𝐫𝐢𝐚𝐥 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐯, 𝐥, 𝐧

Shading Effects

Shading effects

 Diffuse reflection

 “Ambient reflection”

 Perfect mirrors

 Glossy reflection

 Phong / Blinn-Phong

 (Cook Torrance)

 Transparency & refraction

Shading Effects

Shading effects

 Diffuse reflection

 “Ambient reflection”

 Perfect mirrors

 Glossy reflection

 Phong / Blinn-Phong

 (Cook Torrance)

 Transparency & refraction

Diffuse (“Lambertian”) Surfaces

Equation
𝑐 ~ cos 𝜃

 Less light received at flat angles

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃

𝜃
𝐧

𝜃

𝐧 𝐧
surface
normal

light color
surface color

𝑐 – intensity (scalar)

𝐜 – color (RGB, ℝ3)

𝐜𝑟 – surface color (RGB)

𝐜𝑙 – light color (RGB)

(set to zero if negative)

Diffuse (“Lambertian”) Surfaces

Equation
𝑐 ~ cos 𝜃

 Less light received at flat angles

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃 ⋅
light color
surface color

𝑐 – intensity (scalar)

𝐜 – color (RGB, ℝ3)

𝐜𝑟 – surface color (RGB)

𝐜𝑙 – light color (RGB)

Attenuation:
1

𝑑𝑖𝑠𝑡2

(point lights)

1

𝑑𝑖𝑠𝑡2

1

𝑑𝑖𝑠𝑡2

𝜃
𝐧

𝜃

𝐧 𝐧
surface
normal

Diffuse Reflection

Diffuse Reflection

 Very rough surface microstructure

 Incoming light is scattered in all directions uniformly

 “Diffuse” surface (material)

 “Lambertian” surface (material)

Surface Normal?

What is a surface normal?

 Tangent space:

 Plane approximation
at a point 𝐱 ∈ 𝒮

 Normal vector:

 Perpendicular to that plane

 Oriented surfaces:

 Pointing outwards
(by convention)

 Orientation defined only for closed
solids

point 𝐱

surface
normal
𝐧 𝐱 ∈ ℝ3

tangent
space

𝒮

Triangles

Single Triangle

 Parametric equation

𝐩1 + 𝜆 𝐩2 − 𝐩1 + 𝜇 𝐩3 − 𝐩1 |𝜆, 𝜇 ∈ ℝ

 Tangent space: the plane itself

 Normal vector
𝐩2 − 𝐩1 × 𝐩3 − 𝐩1

 Orientation convention:
𝐩1, 𝐩2, 𝐩3 oriented counter-clockwise

 Length: Any positive multiple works (often 𝐧 = 1)

𝐩1

𝐩3

𝐩2

𝐧

Triangle Meshes

Smooth Triangle Meshes

 Store three different “vertex normals”

 E.g., from original surface (if known)

 Heuristic:
Average neighboring triangle normals

Lambertian Surfaces

Equation

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃
 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ 𝐧, 𝐥

light direction
normal vector

𝐧
𝐥

(assuming: 𝐧 = 𝐥 = 1)

𝜃
𝐧

𝜃

𝐧 𝐧
surface
normal

𝜃

Lambertian Bunny

Face Normals Interpolated
Normals

Shading Effects

Shading effects

 Diffuse reflection

 “Ambient reflection”

 Perfect mirrors

 Glossy reflection

 Phong / Blinn-Phong

 (Cook Torrance)

 Transparency & refraction

“Ambient Reflection”

Problem

 Shadows are pure black

 Realistically, they should be gray

 Some light should bounce around...

 Solution: Add constant
𝐜 = 𝐜𝑎 ∘ 𝐜𝑎

 Not very realistic

 Need global light transport simulation
for realistic results

ambient light color
surface color

Ambient Bunny

Pure Lambertian Mixed with Ambient
Light

Shading Effects

Shading effects

 Diffuse reflection

 “Ambient reflection”

 Perfect mirrors

 Glossy reflection

 Phong / Blinn-Phong

 (Cook Torrance)

 Transparency & refraction

Perfect Reflection

Perfect Reflection

 Rays are perfectly reflected
on surface

 Reflection about surface
normal

 𝐫 = 2 𝐧, 𝐥 𝐧 − 𝐥

𝐧

𝐥 𝐫

Silver Bunny

Perfect Reflection

 Difficult to compute

 Need to match camera and
light emitter

 More later:

 Recursive raytracing

 Right image: Environment
mapping

Reflective Bunny
(Interpolated Normals)

Shading Effects

Shading effects

 Diffuse reflection

 “Ambient reflection”

 Perfect mirrors

 Glossy reflection

 Phong / Blinn-Phong

 (Cook Torrance)

 Transparency & refraction

Glossy Reflection

Glossy Reflection

 Imperfect mirror

 Semi-rough surface

 Various models

Phong Illumination Model

Traditional Model: Phong Model

 Physically incorrect

(e.g.: energy conservation not guaranteed)

 But “looks ok”

 Always looks like plastic

 On the other hand, our world is full of plastic...

0

0,2

0,4

0,6

0,8

1

1,2

-90 -60 -30 0 30 60 90

p=1 p=2 p=5 p=10 p=50 p=100

How does it work?

Phong Model:

 “Specular” (glossy) part:

𝐜 = 𝐜𝑝 ∘ 𝐜𝑙 ⋅
𝐫

𝐫
,

𝐯

𝐯

𝑝

 Ambient part:
𝐜 = 𝐜𝑟 ∘ 𝐜𝑎

 Diffuse part:
𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ 𝐧, 𝐥

 Add all terms together

cos ∠𝐫,𝐯

𝐥

𝐯
𝐫

(high-) light
color

Phong Exponents

𝐧

Blinn-Phong

Blinn-Phong Model:

 “Specular” (glossy) part:

𝐜 = 𝐜𝑝 ∘ 𝐜𝑙 ⋅
𝐡

𝐡
,

𝐧

𝐧

𝑝

 Half-angle direction

𝐡 =
𝟏

𝟐

𝐥

𝐥
+

𝐯

𝐯

cos ∠𝐡,𝐧

𝐥

𝐯 𝐡
𝐧

 In the plane: ∠
𝐡

𝐡
,

𝐧

𝐧
=

1

2
∠

𝐫

𝐫
,

𝐯

𝐯

 Approximation in 3D

Phong+Diffuse+Ambient Bunny

Blinn-Phong Bunny Interpolated Normals

Phong+Diffuse+Ambient Bunny

Blinn-Phong Bunny Interpolated Normals

Better Models

Phong Bunny Cook-Torrance
Model

Shading Effects

Shading effects

 Diffuse reflection

 “Ambient reflection”

 Perfect mirrors

 Glossy reflection

 Phong / Blinn-Phong

 (Cook Torrance)

 Transparency & refraction

Transparency

Transparency

 “Alpha-blending”

 𝛼 = “opacity”

 Color + opacity: RGB𝛼

Blending

 Mix in 𝛼 of front color,
keep 1 − 𝛼 of back color

𝐜 = 𝛼 ⋅ 𝐜𝑓𝑟𝑜𝑛𝑡 + 1 − 𝛼 ⋅ 𝐜𝑏𝑎𝑐𝑘

 Not commutative! (order matters)

 unless monochrome

50% red,
50% green

0.0
1.0
0.0
0.5

1.0
0.0
0.0
0.5

back

front

Refraction: Snell’s Law

Refraction

 Materials of different
“index of refraction”

 Light rays change direction
at interfaces

Snell’s Law
sin 𝜃1

sin 𝜃2
=

𝑛2

𝑛1

 𝑛1, 𝑛2: indices of refraction

 vacuum: 1.0, air: 1.000293

 water: 1.33, glass: 1.45-1.6

𝐧

−𝐧

𝜃1

𝜃2

𝑛2
𝑛1

Refraction

Implementation

 Not a local shading model

 Global algorithms: mostly raytracing

 Various “fake” approximations for local shading

Refraction

Reflection

(raytraced)

Simple Shadows Global Illumination

3D Rendering

Visibility Perspective

Geometric Model

Local Illumination

Smooth Shading

Color

Shading Algorithms

Flat Shading

Flat Shading

constant color per triangle

Flat Shading

“Gouraud Shading” Algorithm

compute color at vertices, interpolate color for pixels

Flat Shading

“Phong Shading” Algorithm

interpolate normals for each pixel

Simple Shadows

Geometric Model

Perspective Visibility Local Illumination

Smooth Shading

3D Rendering

Global Illumination

Global Illumination: next lecture

Color

