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Visibility Algorithms 



Two Rendering Pipelines 

Rasterization 

 Project all triangles to the screen 

 Rasterize them (convert to pixels) 

 Determine visibility 

 Apply shading (compute color) 

Raytracing 

 Iterate over all pixels 

 Determine visible triangle 

 Compute shading, color pixel 

  next lecture 

 



Triangle / Polygon Rasterization 

After Perspective Projection 

Observations 
 

Straight lines 

remain straight! 
 

Triangles mapped 

to triangles 
 

Polygons 

to polyogns 



Rasterization 

3D Scene 

Projection Visibility Rasterization 

Visiblity 

• preprocessing 

or 

• during rasterization 



Rasterization 

Two main algorithms 

 Painter’s algorithm (old) 

 Simple version 

 Correct version 

 z-Buffer algorithm 

 Dominant real-time method today 



Painter’s Algorithm 



Painter’s Algorithm 

Painters Algorithm 

 Sort primitives back-to-front 

 Draw with overwrite 

Drawbacks 

 Slowish 

 𝒪(𝑛 ⋅ log 𝑛) for 𝑛 primitives 

 “Millions per second” 

 Wrong 

 Not guaranteed to always work 



Counter Example 

Correct Algorithm 

 Need to cut primitives 

 Several strategies 

 Notable: BSP Algorithm in Quake 

 Old graphics textbooks list many variants 

 No need for us to go deeper 



z-Buffer Algorithm 



z-Buffer Algorithm 

Algorithm 

 Store depth value 
for each pixel 

 Initialize to MAX_FLOAT 

 Rasterize all primitives 

 Compute fragment depth & color 

 Do not overwrite if fragment is farer away 
than the one stored the one in the buffer 

color depth 



Discussion: z-Buffer 

Advantages 

 Extremely simple 

 Versatile – only primitive rasterization required 

 Very fast 

 GeForce 2 Ultra: 2GPixel /sec  
(release year: 2000) 

 GeForce 700 GTX Titan: 35 GPixel / sec 
(release year: 2013) 



Discussion: z-Buffer 

Disadvantages 

 Extra memory required 

 This was a serious in obstacle back then... 

 Invented 39 years ago (1974; Catmull / Straßer) 

 Only pixel resolution 

 Need painter’s algorithm for certain  
vector graphics computations 

 No transparency 

 This is a real problem for 3D games / interactive media 

 Often fall-back to sorting 

 Solution: A-Buffer, but no hardware support 

 



Rasterization and Clipping 



Rasterization 

How to rasterize Primitives? 

Two problems 

 Rasterization 

 Clipping 

color depth 



Rasterization 

Assumption 

 Triangles only 

 Triangle not outside screen 

 No clipping required 

 



Triangle Rasterization 

Several Algorithms... 



Triangle Rasterization 

Example: two slabs 



Triangle Rasterization 

Incremental rasterization 

Δ𝑥 constant 

precompute and 

add in each step 



Incremental Rasterization 

Precompute steps in x, y-direction 

 For boundary lines 

 For linear interpolation within triangle 

 Colors 

 Texture coordinates (more later) 

 Inner loop 

 Only one addition (“DDA” algorithm) 

 Floating point value 

 Strategies 

– Fixed-point arithmetics 

– Bresenham / midpoint algorithm 
(requires if; problematic on modern CPUs) 



Rasterization 

How to rasterize Primitives? 

Two problems 

 Rasterization 

 Clipping 

color depth 



Why Clipping? 

Crashes – write to off-screen memory! 



Clipping Strategies 

Pixel Rejection 

 “if (x,y ∉ screen) continue;” 

 Can be arbitrarily slow (large triangles) 

 Nope. Not a good idea. 

Screen space clipping 

 Modify rasterizer to jump to visible pixels 

 See tutorial 5 

 Efficient 

 Still problems with when crossing camera plane 
(𝑤 = 0) ⇒ a semi-good idea 



Smart Slab Renderer 

Does not crash, optimal complexity  

 𝑂(𝑘) for 𝑘 output fragments 



Problem 

Problem: 

 Triangles crossing camera plane! 

 Wrong results 

 Need object space clipping 

𝑓 
𝑧1 

𝑦′ = 𝑓
𝑦

𝑧
 

𝑧2 

𝑦1 

𝑦2 

camera 
plane 

image 
plane 



View Frustum Clipping 

near clipping 

plane 

far clipping 

plane 

four side   

planes 

six planes 

clip triangles 

against all  

six planes 



Incremental Algorithm 



Incremental Algorithm 



Incremental Algorithm 

Output: Multiple Triangles 



Further Optimization 

View Frustum Culling 

 Complex shapes (whole bunnies) 

 Coarse bounding volume (superset) 

 Cube, Sphere 

 Often: Axis-aligned bounding box 

 Reject all triangles inside if bounding volume outside view 
frustrum 



Smooth Shading Simple Shadows Global Illumination 

3D Rendering 

Visibility Perspective 

Geometric Model 

Local Illumination 

Color 



Shading Models 



mirror 

diffuse surface 

Reflectance Models 

glossy surface 



Interaction with Surfaces 

Local Shading Model 

 Single point light source 

 Shading model / material model 

 Input: light vector 𝐥 = 𝐩𝐨𝐬𝑙𝑖𝑔ℎ𝑡 − 𝐩𝐨𝐬𝑜𝑏𝑗𝑒𝑐𝑡  

 Input: view vector 𝐯 = 𝐩𝐨𝐬𝑐𝑎𝑚𝑒𝑟𝑎 − 𝐩𝐨𝐬𝑜𝑏𝑗𝑒𝑐𝑡  

 Input: surface normal 𝐧 (orthogonal to surface) 

 Output: color (RGB) 

Viewer 

Light 

object surface 

𝐯 𝐥 𝐧 



Interaction with Surfaces 

General scenario 

 Multiple light sources? 

 Light is linear 

 Multiple light sources: add up contributions 

 Double light strength ⇒ double light output 

Viewer 

Light 

object surface 

𝐯 𝐥 𝐧 



Remark 

Simplify notation 

 Define component-wise vector product 

𝐱 ∘ 𝐲 =

𝑥1

𝑥2

𝑥3

∘

𝑦1

𝑦2

𝑦3

≔

𝑥1 ⋅ 𝑦1

𝑥2 ⋅ 𝑦2

𝑥3 ⋅ 𝑦3

 

 No fixed convention in literature 

 The symbol “∘” only used in these lecture slides! 



Remark 

Lighting Calculations 

 Need to perform calculations for 𝑟, 𝑔, 𝑏-channels 

 Often: 
𝑜𝑢𝑡𝑝𝑢𝑡𝑟 = 𝑙𝑖𝑔ℎ𝑡𝑟 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑟 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐯, 𝐥, 𝐧  
𝑜𝑢𝑡𝑝𝑢𝑡𝑔 = 𝑙𝑖𝑔ℎ𝑡𝑔 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑔 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐯, 𝐥, 𝐧) 

𝑜𝑢𝑡𝑝𝑢𝑡𝑏 = 𝑙𝑖𝑔ℎ𝑡𝑏 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑏 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐯, 𝐥, 𝐧) 

 Shorter 
               𝐨𝐮𝐭𝐩𝐮𝐭 = 
𝐥𝐢𝐠𝐡𝐭_𝐬𝐭𝐫𝐞𝐧𝐠𝐭𝐡 ∘ 𝐦𝐚𝐭𝐞𝐫𝐢𝐚𝐥 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐯, 𝐥, 𝐧  



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Diffuse (“Lambertian”) Surfaces 

Equation 
𝑐 ~ cos 𝜃 

 Less light received at flat angles 
 

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃 

𝜃 
𝐧 

𝜃 

𝐧 𝐧 
surface 
normal 

light color 
surface color 

𝑐 – intensity (scalar) 

𝐜 – color (RGB, ℝ3) 

𝐜𝑟 – surface color (RGB) 

𝐜𝑙 – light color (RGB) 

(set to zero if negative) 



Diffuse (“Lambertian”) Surfaces 

Equation 
𝑐 ~ cos 𝜃             

 Less light received at flat angles 
 

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃 ⋅ 
light color 
surface color 

𝑐 – intensity (scalar) 

𝐜 – color (RGB, ℝ3) 

𝐜𝑟 – surface color (RGB) 

𝐜𝑙 – light color (RGB) 

Attenuation: 
1

𝑑𝑖𝑠𝑡2 

(point lights) 

1

𝑑𝑖𝑠𝑡2 

1

𝑑𝑖𝑠𝑡2 

𝜃 
𝐧 

𝜃 

𝐧 𝐧 
surface 
normal 



Diffuse Reflection 

Diffuse Reflection 

 Very rough surface microstructure 

 Incoming light is scattered in all directions uniformly 

 “Diffuse” surface (material) 

 “Lambertian” surface (material) 



Surface Normal? 

What is a surface normal? 

 Tangent space: 

 Plane approximation 
at a point 𝐱 ∈ 𝒮 

 Normal vector:  

 Perpendicular to that plane 

 Oriented surfaces: 

 Pointing outwards 
(by convention) 

 Orientation defined only for closed 
solids 

point 𝐱 

surface 
normal 
𝐧 𝐱 ∈ ℝ3

 

tangent 
space 

𝒮 



Triangles 

Single Triangle 

 Parametric equation 
 

𝐩1 + 𝜆 𝐩2 − 𝐩1 + 𝜇 𝐩3 − 𝐩1 |𝜆, 𝜇 ∈ ℝ  
 

 Tangent space: the plane itself 

 Normal vector 
𝐩2 − 𝐩1 × 𝐩3 − 𝐩1  

 Orientation convention: 
𝐩1, 𝐩2, 𝐩3 oriented counter-clockwise 

 Length: Any positive multiple works (often 𝐧 = 1) 

𝐩1 

𝐩3 

𝐩2 

𝐧 



Triangle Meshes 

Smooth Triangle Meshes 

 Store three different “vertex normals” 

 E.g., from original surface (if known) 

 Heuristic: 
Average neighboring triangle normals 



Lambertian Surfaces 

Equation 
 

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃 
 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ 𝐧, 𝐥  

light direction 
normal vector 

𝐧 
𝐥 

(assuming: 𝐧 = 𝐥 = 1) 

𝜃 
𝐧 

𝜃 

𝐧 𝐧 
surface 
normal 

𝜃 



Lambertian Bunny 

Face Normals Interpolated 
Normals 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



“Ambient Reflection” 

Problem 

 Shadows are pure black 

 Realistically, they should be gray 

 Some light should bounce around... 

 Solution: Add constant 
𝐜 = 𝐜𝑎 ∘ 𝐜𝑎 

 

 

 Not very realistic 

 Need global light transport simulation 
for realistic results 

ambient light color 
surface color 



Ambient Bunny 

Pure Lambertian Mixed with Ambient 
Light 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Perfect Reflection 

Perfect Reflection 

 Rays are perfectly reflected 
on surface 

 Reflection about surface 
normal 

     𝐫 = 2 𝐧, 𝐥 𝐧 − 𝐥 

𝐧 

𝐥 𝐫 



Silver Bunny 

Perfect Reflection 

 Difficult to compute 

 Need to match camera and 
light emitter 

 More later: 

 Recursive raytracing 

 Right image: Environment 
mapping 
 

Reflective Bunny 
(Interpolated Normals) 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Glossy Reflection 

Glossy Reflection 

 Imperfect mirror 

 Semi-rough surface 

 Various models 



Phong Illumination Model 

Traditional Model: Phong Model 

 Physically incorrect 

(e.g.: energy conservation not guaranteed) 

 But “looks ok” 

 Always looks like plastic 

 On the other hand, our world is full of plastic... 



0

0,2

0,4

0,6

0,8

1

1,2

-90 -60 -30 0 30 60 90

p=1 p=2 p=5 p=10 p=50 p=100

How does it work? 

Phong Model: 

 “Specular” (glossy) part: 

𝐜 = 𝐜𝑝 ∘ 𝐜𝑙 ⋅
𝐫

𝐫
,

𝐯

𝐯

𝑝

 

 Ambient part: 
𝐜 = 𝐜𝑟 ∘ 𝐜𝑎 

 Diffuse part: 
𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ 𝐧, 𝐥  

 Add all terms together 

                       
cos ∠𝐫,𝐯

 

𝐥 

𝐯 
𝐫 

(high-) light 
color 

Phong Exponents 

𝐧 



Blinn-Phong 

Blinn-Phong Model: 

 “Specular” (glossy) part: 

𝐜 = 𝐜𝑝 ∘ 𝐜𝑙 ⋅
𝐡

𝐡
,

𝐧

𝐧

𝑝

 

 

 Half-angle direction 
 

𝐡 =
𝟏

𝟐

𝐥

𝐥
+

𝐯

𝐯
 

                       
cos ∠𝐡,𝐧

 
𝐥 

𝐯 𝐡 
𝐧 

 In the plane: ∠
𝐡

𝐡
,

𝐧

𝐧
=

1

2
∠

𝐫

𝐫
,

𝐯

𝐯
 

 Approximation in 3D 



Phong+Diffuse+Ambient Bunny 

Blinn-Phong Bunny Interpolated Normals 



Phong+Diffuse+Ambient Bunny 

Blinn-Phong Bunny Interpolated Normals 



Better Models 

Phong Bunny Cook-Torrance 
Model 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Transparency 

Transparency 

 “Alpha-blending” 

 𝛼 = “opacity” 

 Color + opacity: RGB𝛼  

Blending 

 Mix in 𝛼 of front color, 
keep 1 − 𝛼 of back color 
 

𝐜 = 𝛼 ⋅ 𝐜𝑓𝑟𝑜𝑛𝑡 + 1 − 𝛼 ⋅ 𝐜𝑏𝑎𝑐𝑘  
   

 Not commutative! (order matters) 

 unless monochrome 

50% red, 
50% green 

0.0
1.0
0.0
0.5

 

1.0
0.0
0.0
0.5

 

back 

front 



Refraction: Snell’s Law 

Refraction 

 Materials of different  
“index of refraction” 

 Light rays change direction 
at interfaces 

Snell’s Law 
sin 𝜃1

sin 𝜃2
=

𝑛2

𝑛1
 

 𝑛1, 𝑛2: indices of refraction 

 vacuum: 1.0, air: 1.000293 

 water: 1.33, glass: 1.45-1.6 

𝐧 

−𝐧 

𝜃1 

𝜃2 

𝑛2 
𝑛1 



Refraction 

Implementation 

 Not a local shading model 

 Global algorithms: mostly raytracing 

 Various “fake” approximations for local shading 

Refraction 

Reflection 

(raytraced) 



Simple Shadows Global Illumination 

3D Rendering 

Visibility Perspective 

Geometric Model 

Local Illumination 

Smooth Shading 

Color 



Shading Algorithms 



Flat Shading 

Flat Shading 

constant color per triangle 



Flat Shading 

“Gouraud Shading” Algorithm 

compute color at vertices, interpolate color for pixels 



Flat Shading 

“Phong Shading” Algorithm 

interpolate normals for each pixel 



Simple Shadows 

Geometric Model 

Perspective Visibility Local Illumination 

Smooth Shading 

3D Rendering 

Global Illumination 

Global Illumination: next lecture 

Color 


