
Introduction to Visualization and Computer Graphics

DH2320, Fall 2015

Prof. Dr. Tino Weinkauf

Introduction to Visualization and

Computer Graphics

Raytracing

Basic Raytracing

Central Projection

Central Projection

Ray Tracing

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Ray Tracing

Some light rays (like A and E) never reach the image plane at all.

Others follow simple (like C) or complicated routes. In general, it

would be impractical to analyze all possible light paths because

most of them do not have any practical influence on the generated

image (do not intersect the image plane). In ray tracing, light rays

are processed in inverse direction. It is assumed that all rays start at

the eye of an observer (the viewing point), pass through the image

plane toward objects in a scene, and finally reach the light sources.

This approach reduces the number of traced light rays.

Ray Tracing

Primary Rays

 Rays through each pixel

Local Illumination

𝐧
view ray

light ray

Primary Rays

 Rays through each pixel

 (Basic trigonometry)

Shadows

𝐧
view ray

light ray

Shadow rays

 Blocked by occluders (hard shadows)

Reflection

𝐧

view rays

Reflection

 Reflect ray across normal at intersection point

 (Basic linear algebra)

Multiple Reflections: Recursion

𝐧
view rays
(primary rays)

𝐧

secondary
rays

Multiple Reflections

 Call algorithm recursively for secondary rays

 (Terminate after n levels, for safety)

view rays
(primary rays)

Refraction

secondary
rays

Refraction

 Same story

 New rays: Snellius’ law

Recursive Raytracing

Worst-case complexity

 𝒪(𝑛 ⋅ 𝑚 ⋅ 2𝑟)

 n = Triangles, m = Pixels, r = maximum recursion depth

reflection ray

reflection rays

Shadow rays

Primary Rays

refraction
ray

refraction
ray

Raytracing in a Nutshell

Intersection Tests

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

● Ray-Plane

● Ray-Triangle

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Ray-Plane Intersection

Introduction to Visualization and Computer Graphics, Tino Weinkauf, KTH Stockholm, Fall 2015

Ray-Triangle Intersection

Ray-Sphere Intersection

0

t
𝐩

Parametric line equation:

𝐱 𝜆 = 𝐩𝑟 + 𝜆𝐭𝑟

𝜆 ≥ 0

𝐱 𝜆 − 𝐜, 𝐱 𝜆 − 𝐜 − 𝑟2 = 0

𝐩𝑟 + 𝜆𝐭𝑟 − 𝐜, 𝐩𝑟 + 𝜆𝐭𝑟 − 𝐜 − 𝑟2 = 0

Sphere (Implicit!)

𝐱 − 𝐜, 𝐱 − 𝐜 = 𝑟2

x2

y2
r2

𝐜

Derivation

Solving the equation:

𝐱 𝜆 − 𝐜, 𝐱 𝜆 − 𝐜 − 𝑟2 = 0

𝐱 𝜆 − 𝐜 2 − 𝑟2 = 0

𝐩𝑟 + 𝜆𝐭𝑟 − 𝐜 2 − 𝑟2 = 0

𝜆𝐭𝑟 + 𝐩𝑟 − 𝐜
2

− 𝑟2 = 0

Result: 1D Quadratic equation in 𝜆

𝜆2𝐭𝑟
2 + 𝜆2 𝐭𝑟 ⋅ 𝐩𝑟 − 𝐜 + 𝐩𝑟 − 𝐜 2 − 𝑟2 = 0

Ray-Sphere Intersection (unit sphere)

For the unit sphere: center at origin, radius=1

𝜆2𝐭𝑟
2 + 𝜆2 𝐭𝑟 ⋅ 𝐩𝑟 + 𝐩𝑟

2 − 1 = 0

Spatial Data Structures
Range Queries

Spatial Data Structures

Range Queries

 Common problems

 Raytracing

 Select object by mouse click

 Collision detection

 This should work on large models

 Scale to billions of primitives

 Asymptotic complexity

Spatial Data Structures

Basic Idea: Hierarchical decomposition

 If number objects too large:

 Form spatially coherent groups

 For each group:

– Simple bounding volume

– Apply recursively

Result

 We obtain a tree of
bounding volumes

 “Bounding volume hierarchy”

Bounding Volumes

Axis-Aligned Bounding Box

 Store minimum x,y,z-coord

 and

 maximum x,y,z-coord

Bounding Sphere

 Store radius, center

 Such that all geometry
is contained

axis-aligned
bounding box

bounding sphere

Variants
Variants:

 Bounding volume hierarchy

 General definition

 Any bounding volumes

 Image: spheres

 BSP-tree

 Split planes (half-spaces)

 “Binary space partition tree”

 Arbitrary planes

Variants
Variants

 Axis aligned BSP tree / kD-tree

 Axis-parallel splitting planes

 Special case: kD-tree

– Alternating splitting dimensions

– Median cut:
split at median coordinate

 Quadtrees / Octrees

 Divide into 4/8 cubes

 Special case of the above
(no binary tree though)

Extended Objects

Extended objects (other than points)

 Extended objects:

 Triangles

 Polygons

 etc...

 Division of space might intersect with object

 Three solutions

 Split objects (expensive, uncommon)

 Overlapping nodes (common)

 Storage multiple times (also common)

Splitting Objects

First solution: splitting

 Example: Triangles in BSP tree

 Split at plane

 Aim at few splits

 (Rather) easy to see:

 General BSP tree needs still 𝒪(𝑛2) fragments
(worst case, n triangles; practice:  𝒪(𝑛 log 𝑛))

 Lower bound for kD trees, octrees, etc...

 Splitting usually too expensive

 Used in early low-polygon 3D engines (BSP-visibility)

Overlapping Regions

Second Solution: overlap

 Permit overlapping
bounding volumes

 E.g., second bounding box (octree)

 Possible strategy:

 Up to 10% oversize (in each direction)

 No fit into leaf nodes: use an inner node

 Overlap reduces efficiency

 Multi-coverage of volume

 10% in each direction means 1.23  1.7

 Effect on algorithms might vary

Overlapping Regions

Third Solution: store multiple times

 Store primitive multiple times

 Disadvantages

 Reduced efficiency

 Additional memory

 Advantages

 Regular structures

 No additional bounding boxes

 Common for raytracing

Range Queries

Range Query Algorithm

Start at root node: Then, recursively

 If range overlaps bounding box
 Test node primitives

– Report if within range

 Call recursively for child nodes

 If range does not overlap bounding box
 End recursion

Nodes overlapping
the geometric range

algorithm
works for
all hierarchy
types

Examples

Range
Range Range

Nodes overlapping
the geometric range

Raytracing

Raytracing: special case

 Ray is the range

 Early ray termination

 Sorted recursion (child closer to the camera: first)

 Stop after hit

Range

In Practice

Significant Speedup

 Simple implementation

 Axis-aligned BSP tree

 Single-core C++

 1.000.000 triangle scene

 ~500.000 triangle-ray intersections per second

 If you work harder...

 Optimized software ~15M

 GPU implementations up to 100M

 Optimized versions:
Performance also depends on ray coherence

Brigade Renderer

0.5-1 sec/frame on 2 × GeFoce GTX Titan – http://raytracey.blogspot.nl/

Brigade Renderer

realtime (youtube compression artifacts!) – Samuel Lapere / Youtube

