

Royal Institute of Technology

MACHINE LEARNING 2 DGM, CH 8

Lecture 6

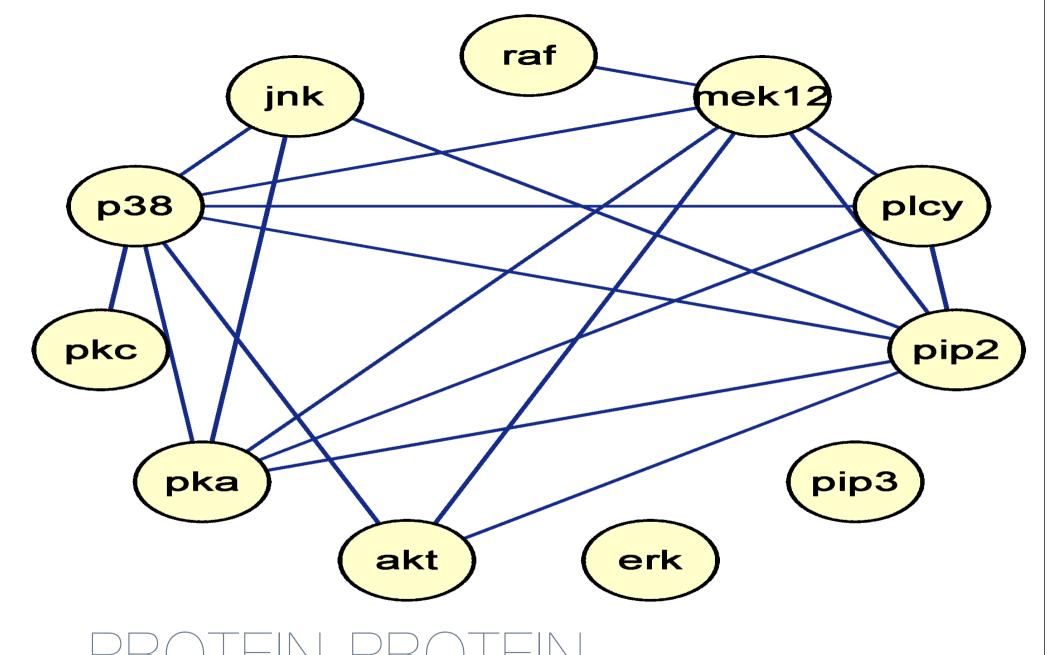
Royal Institute of Technology

Computational Biology

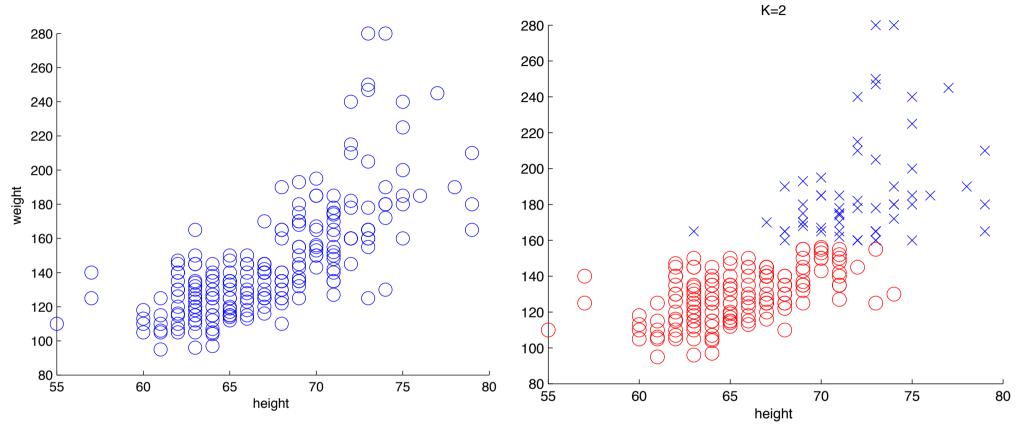
Machine Learning – a main tool

Jens Lagergren





PROTEIN-PROTEIN
INTERACTION NETWORK



- ★ Each subset should contain similar points
- ★ Pairs of subsets should have dissimilar points.

CLUSTERING

K-MEANS

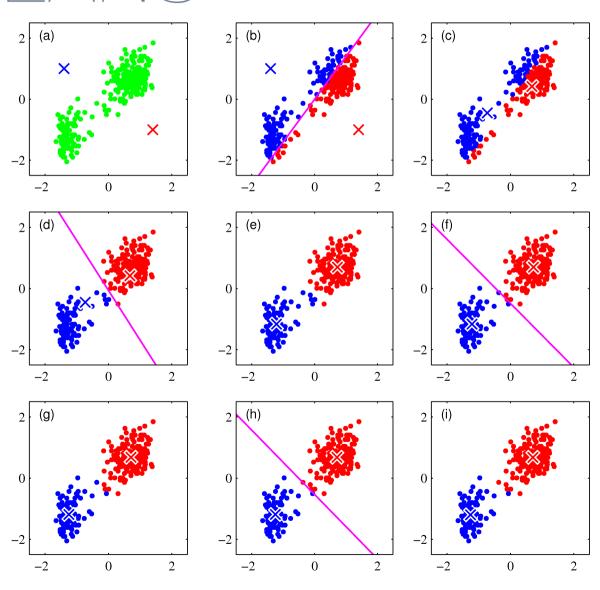
- \bigstar Data vectors D={x₁,...,x_N}
- ★ Randomly selected classes z₁,...,z_N
- ★ Iteratively do

$$\boldsymbol{\mu}_c = rac{1}{N_c} \sum_{n:z_n=c} \boldsymbol{x}_n, \qquad \text{where } N_c = |\{n:z_n=c\}|$$

$$z_n = \operatorname{argmin}_c ||\boldsymbol{x}_n - \boldsymbol{\mu}_c||_2$$

★ One step O(NKD), can be improved

ASSIGN POINT TO MEANS



THIS LECTURE

- Probability?
- ⋆ DGM
- ★ Basic definitions
- * Examples
- Learning parameters given complete data
- Illustrating a known model

BERNOULLIAND CATEGORICAL

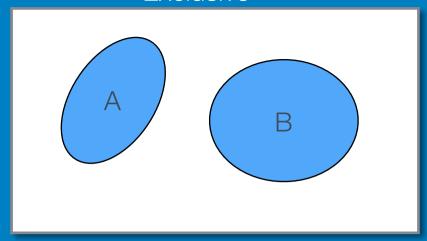
Ber
$$(x|\theta) = \begin{cases} \theta & \text{if } x = 1\\ 1 - \theta & \text{if } x = 0 \end{cases}$$
 Cat $(x|\theta) = \theta_x$

- ★ One or several (unordered) coin tosses
- ★ A dice (possibly biased)

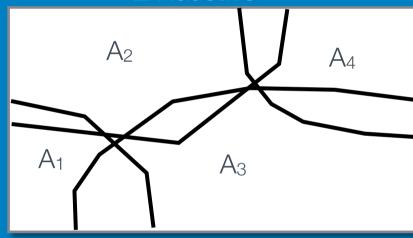
PRODUCT RULE: CONDITIONING

$$p(x,y) = p(y)p(x|y) \qquad \text{or} \qquad p(x|y) = \frac{p(x,y)}{p(y)}$$

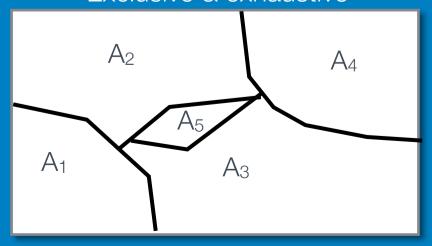
Exclusive



Exhaustive



Exclusive & exhaustive



EXCLUSIVE & EXHAUSTIVE

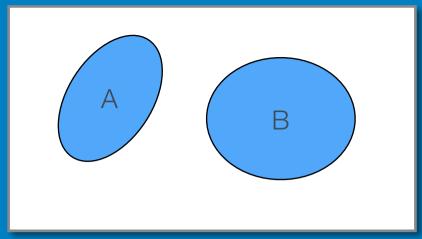
Exclusive

$$p(A \text{ or } B) = p(A) + P(B)$$

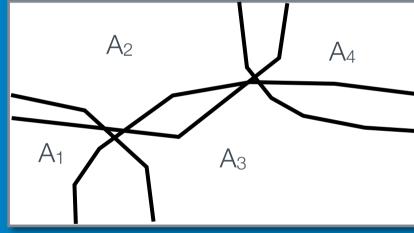
Exclusive & exhaustive

$$\sum_{i} p(A_i) = 1$$

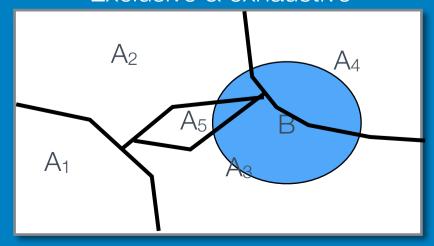
Exclusive



Exhaustive



Exclusive & exhaustive



SUM RULE: EXCLUSIVE & EXHAUSTIVE

Exclusive

$$p(A \text{ or } B) = p(A) + P(B)$$

Exclusive & exhaustive

$$p(B) = \sum_{i} p(B, A_i) = \sum_{i} p(A_i)p(B|A_i)$$

BAYES RULE

$$p(X|Y) = \frac{p(X,Y)}{p(Y)} = \frac{p(X)p(Y|X)}{\sum_{x} p(x)p(Y|x)}$$

ATABLE

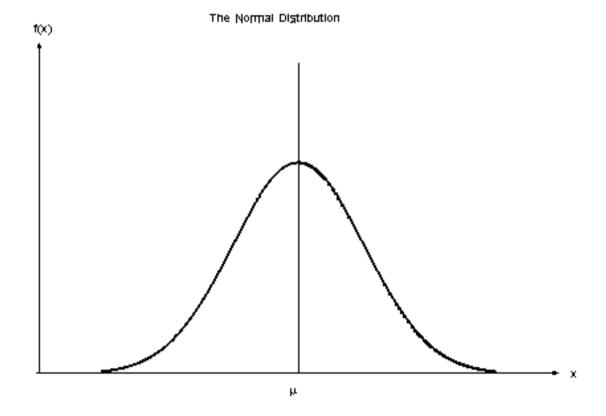
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4	8080.0	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010

ATABLE

Ta	Table A-1 The Standard Normal Distribution									
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010

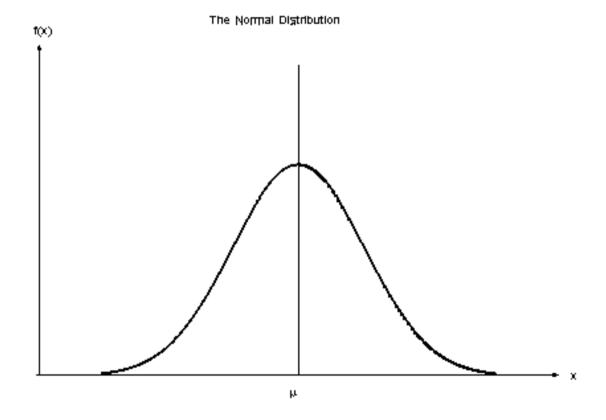
VISUAL ACCESSIBILITY

Table A-1 The Standard Normal Distribution										
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010



MATHEMATICAL TREATMENT

Table A-1 The Standard Normal Distribution										
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010

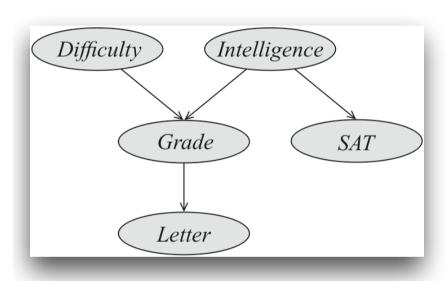


$$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

REPRESENTING AND WORKING WITH DISTRIBUTIONS

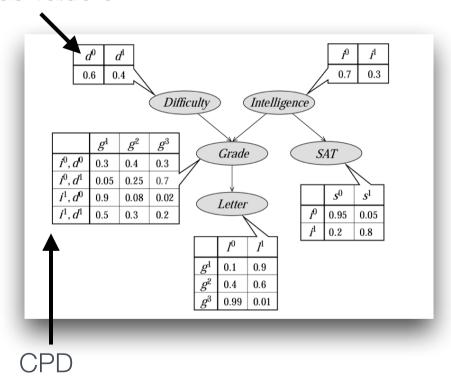
- * For all but the smallest n, the explicit representation of the joint distribution is unmanageable from every perspective.
 - Computationally, it is very expensive to manipulate and generally too large to store in memory.
 - Cognitively, it is impossible to acquire so many numbers from a human expert;
 moreover, the numbers are very small and do not correspond to events that people can reasonably contemplate.
 - Statistically, if we want to learn the distribution from data, we would need ridiculously large amounts of data to estimate this many parameters robustly.
- * These problems were the *main barrier* to the adoption of probabilistic methods for expert systems *until the development of the methodologies we now will consider.*

DGM - GRAPH AND CPDS VS JOINT



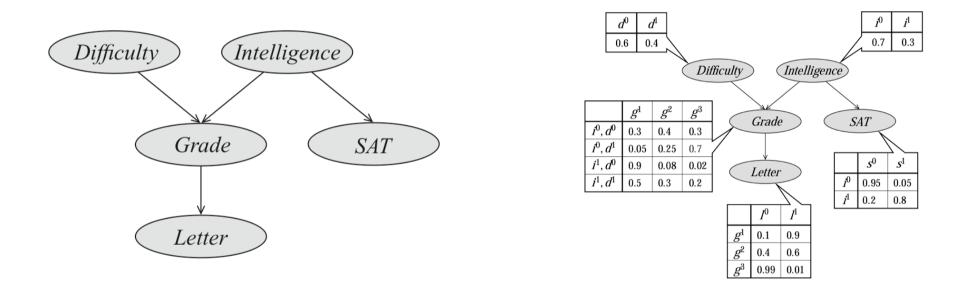
P(D,I,G,S,L)

d has value 0



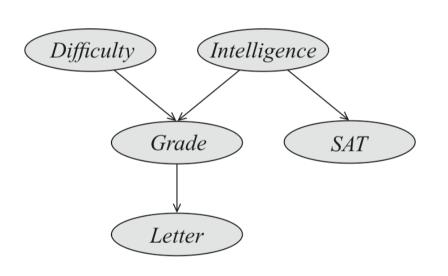
- CPT table, i.e., categorical
- * Gaussian

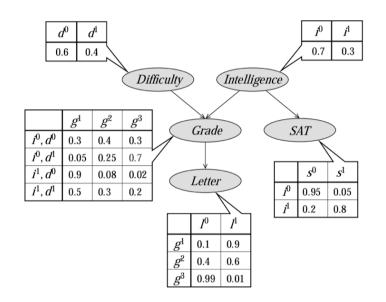
THREE LEVELS OF COMPUTATIONAL PROBLEMS



- Inference: given G and θ, compute probabilities or marginalize
- Parameter learning: given G and D, learn θ
- Structure learning: given D, learn G and θ

THREE LEVELS





- Inference: given G and θ, compute probabilities or marginalize Marginalize often hard
- Parameter learning: given G and D, learn θ
- Structure learning: given D, learn G and θ

Easy for observable data

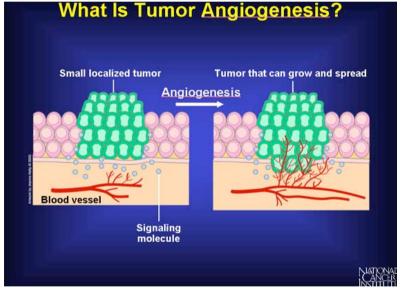
Hard unless tree-like, doable in practice for observable

NOT SO MUCH SEMANTICS

- ★What is the meaning of the underlying DAG? what is the semantics?
- ★Which DAGs can represent a given distribution?

VISUALIZATION

- Another application
 - describe and visualize a "designed model" or a distribution and, in particular, its dependencies



ABERRATION DEPENDENCIES -EX. ANGIOGENESIS

SOMATIC EVOLUTION

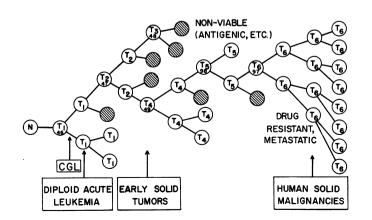
The Clonal Evolution of Tumor Cell Populations

Acquired genetic lability permits stepwise selection of variant sublines and underlies tumor progression.

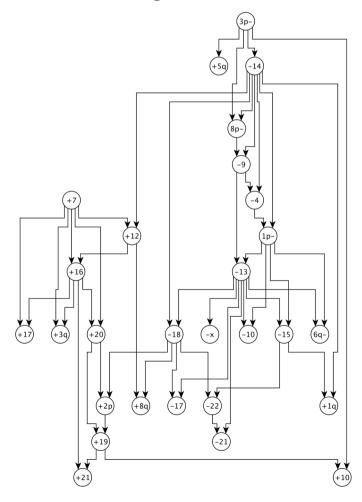
Peter C. Nowell

The author is professor of pathology, School of Medicine, University of Pennsylvania, Philadelphia 19174.

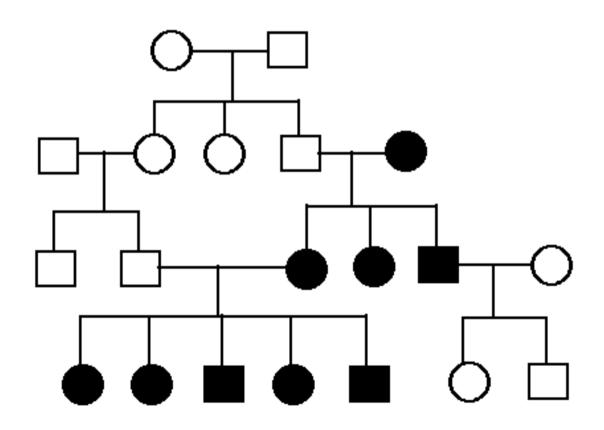
1 OCTOBER 1976 SCIENCE, VOL. 194

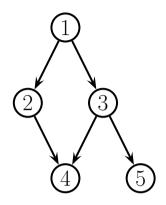


Oncogenetic network



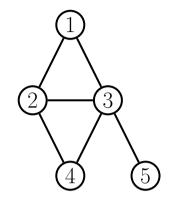
APEDIGREE





Directed graphical model

- DAG
- vertices r.v.s
- equipped with local CPDs
- allows causal like dependencies



Undirected graphical model - Markov Random Fields

- graph
- vertices r.v.s
- equipped with local "factors"

GRAPHICAI MODEI S

TERMINOLOGY

- ★ Parent
- ★ Child
- ★ Family
- ★ Root
- ★ Leaf
- **★**Neighbors

TERMINOLOGY

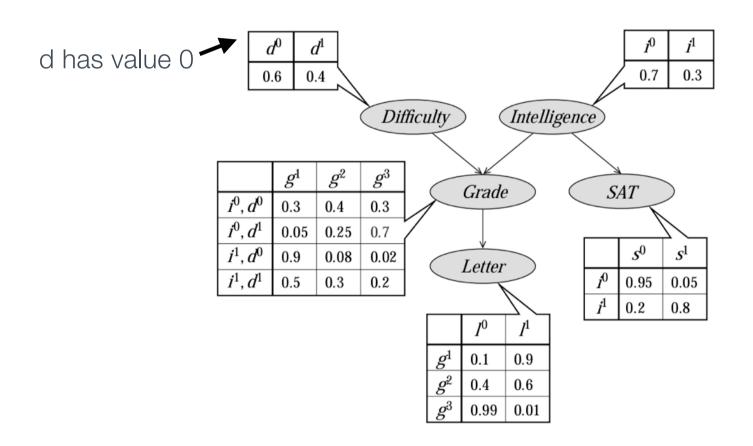
- ★ Degree (in and out)
- ★ Cycle (directed or not)
- ★ Directed Acyclic Graph (DAG)
- ★ Topological order (parents < child)
- ★ Path (directed or not)
- * Ancestors

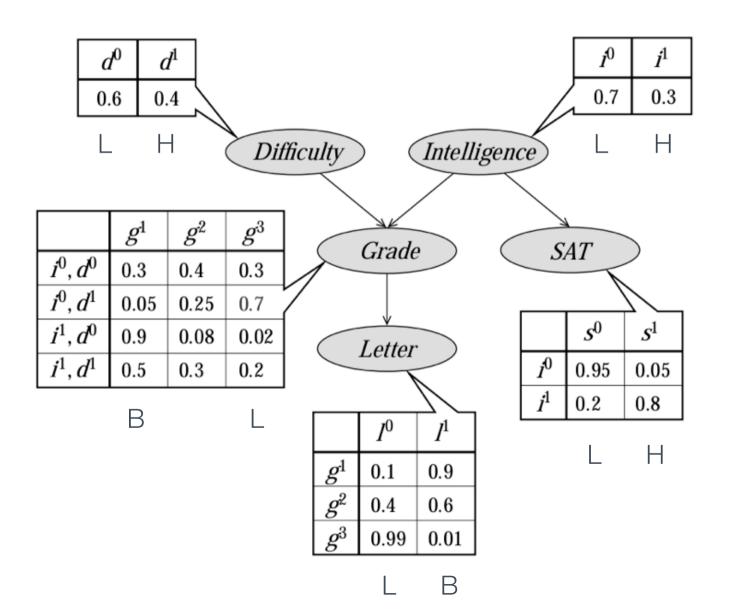
CPD - BERNOULLI OR CATEGORICAL

Ber
$$(x|\theta) = \begin{cases} \theta & \text{if } x = 1 \\ 1 - \theta & \text{if } x = 0 \end{cases}$$
 Cat $(x|\theta) = \theta_x$

- ★ One or several (unordered) coin tosses
- ★ A dice (possibly biased)

MOTATION

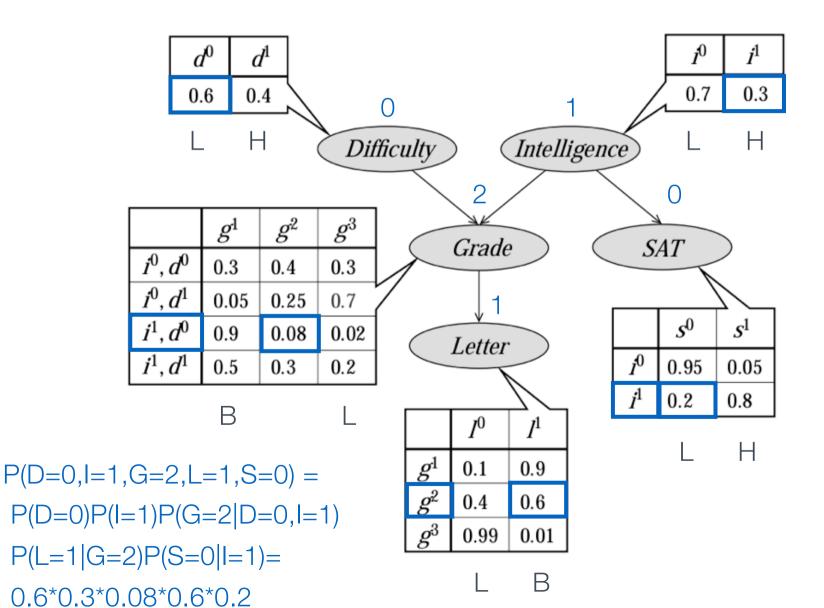




B - better

H - higher

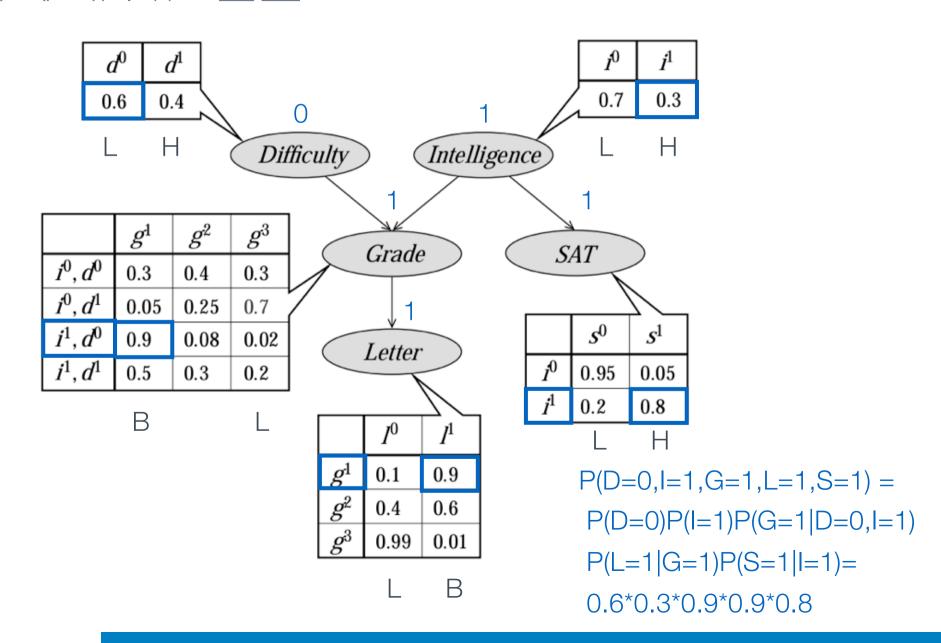
L - less

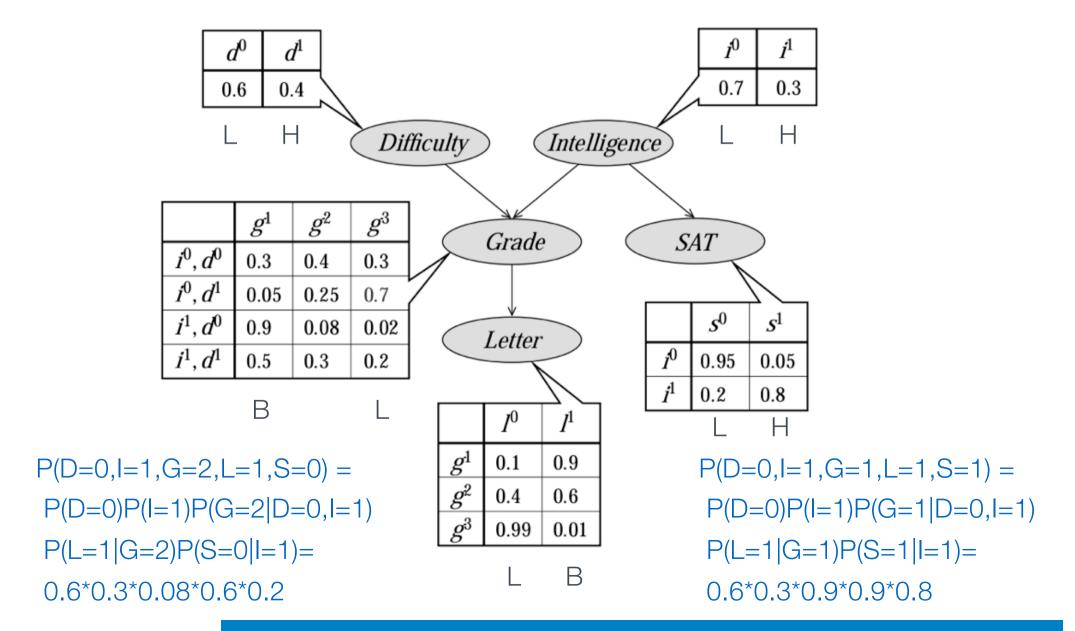


B - better

H - higher

L - less





INFERENCE - THE CHAIN RULE

$$p(\underbrace{\boldsymbol{x}_{[V]}}_{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_V}) = p(\boldsymbol{x}_1)p(\boldsymbol{x}_2|\boldsymbol{x}_1)p(\boldsymbol{x}_3|\boldsymbol{x}_1,\boldsymbol{x}_2)\cdots p(\boldsymbol{x}_V|\boldsymbol{x}_{[V-1]})$$

- * Assuming binary r.v., $p(X_V | X_{[V-1]})$ has 2^{V-1} parameters
- **★** Total # parameters $\sum_{1 \le i \le V} 2^{i-1} = 2^{V}-1$

CONDITIONAL INDEPENDENCE

★ X and Y are conditionally independent given Z iff

$$p(X, Y|Z) = P(X|Z) P(Y|Z)$$

★ Implies

$$p(X|Y, Z) = p(X, Y|Z)/p(Y|Z) = p(X|Z)$$

EX. WHERE IND. OBVIOUSLY FACILITATES

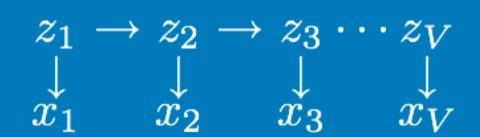
$$p(\underbrace{\boldsymbol{x}_{[V]}}_{\boldsymbol{x}_1,\dots,\boldsymbol{x}_V}) = p(\boldsymbol{x}_1)p(\boldsymbol{x}_2|\boldsymbol{x}_1)p(\boldsymbol{x}_3|\boldsymbol{x}_1,\boldsymbol{x}_2)\cdots p(\boldsymbol{x}_V|\boldsymbol{x}_{[V-1]})$$

 \bigstar Assume first order Markov property $|x_t \perp x_{[t-2]}|x_{t-1}|$

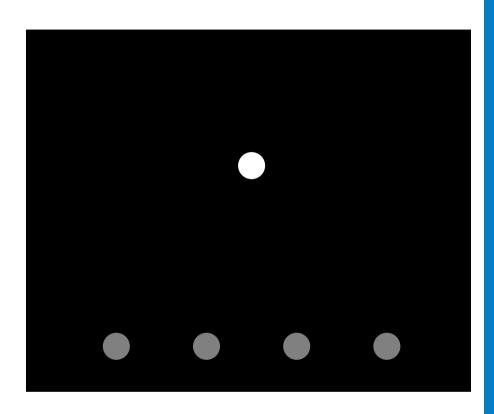
i.e., if time ordered, future independent of past given present

$$m{\star}$$
Then $p(m{x}_{[V]}) = p(m{x}_1) \prod_{t=1}^{V-1} p(m{x}_{t+1} | m{x}_t)$

SPECIAL CASE: HIDDEN MARKOV MODEL (HMM)



- Z_i hidden
- X_i observable
- Hidden often not observable when training, never when applying



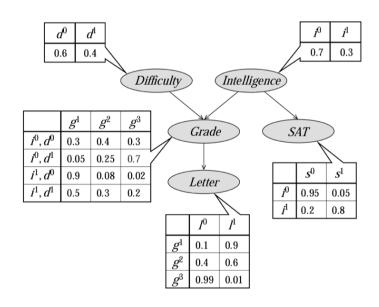
SPECIAL CASE: NAIVE BAYES CLASSIFIER

$$p(\boldsymbol{x}, y) = p(y) \prod_{t=1}^{4} p(x_t|y)$$

FACTORIZATION - A BINARY EXAMPLE

Given data and GM with CPDs (new CPDs on a need to know basis)

D		S	G	L
0	1	1	1	1
1	1	1	0	0
1	1	0	0	1
1	0	0	0	0
1	1 1	0	0	1



FACTORIZATION - AN EXAMPLE

D		S	G	L
0	1	1	1	1
1	1	1	0	0
1	1	0	0	1
1	0	0	0	0
1	1	0	0	1

$$L(\theta; \mathcal{D}) = p(0, 1, 1, 1, 1 | \theta) p(1, 1, 1, 0, 0 | \theta)$$

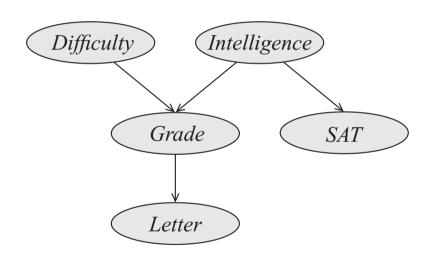
$$p(1, 1, 0, 0, 1 | \theta) p(1, 0, 0, 0, 0 | \theta)$$

$$p(1, 1, 0, 0, 1 | \theta)$$

D		S	G	
0	1	1	1	1
1	1	1	0	0
1	1	O.	0	1
1	0	0	0	0
1	1	0	0	1

$$L(\boldsymbol{\theta}; \mathcal{D}) = p(0, 1, 1, 1, 1|\boldsymbol{\theta})p(1, 1, 1, 0, 0|\boldsymbol{\theta})$$

 $p(1, 1, 0, 0, 1|\boldsymbol{\theta})p(1, 0, 0, 0, 0|\boldsymbol{\theta})$
 $p(1, 1, 0, 0, 1|\boldsymbol{\theta})$
 $= p(D = (0, 1, 1, 1, 1)|\boldsymbol{\theta}_D) \dots$



D		S	G	L
0	1	1	1	1
1	1	1	0	0
1	1	0	0	1
1	0	0	0	0
1	1	0	0	1

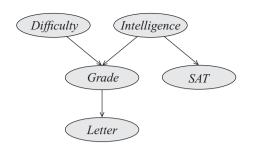
$$L(\boldsymbol{\theta}; \mathcal{D}) = p(D = (0, 1, 1, 1, 1) | \boldsymbol{\theta}_D)$$

$$p(I = (1, 1, 1, 0, 1) | \boldsymbol{\theta}_I)$$

$$p(S = (1, 1, 0, 0, 0) | I = (1, 1, 1, 0, 1), \boldsymbol{\theta}_S)$$

$$p(G = (1, 0, 0, 0, 0) | D = (0, 1, 1, 1, 1), I = (1, 1, 1, 0, 1), \boldsymbol{\theta}_G)$$

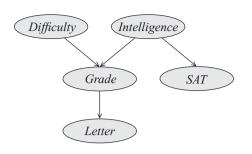
$$p(L = (1, 0, 1, 0, 1) | G = (1, 0, 0, 0, 0), \boldsymbol{\theta}_L)$$



θ_{D}	D=0	D=1
	2/5	3/5

D		S	G	L
0	1	1	1	1
1	1	1	0	0
1	1	0	0	1
1	0	0	0	0
1	1	0	0	1

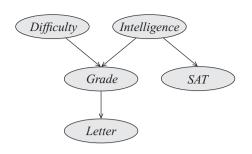
$$\begin{split} L(\boldsymbol{\theta}; \mathcal{D}) &= p(D = (0, 1, 1, 1, 1) | \boldsymbol{\theta}_D) \\ p(I = (1, 1, 1, 0, 1) | \boldsymbol{\theta}_I) \\ p(S = (1, 1, 0, 0, 0) | I = (1, 1, 1, 0, 1), \boldsymbol{\theta}_S) \\ p(G = (1, 0, 0, 0, 0) | D = (0, 1, 1, 1, 1), I = (1, 1, 1, 0, 1), \boldsymbol{\theta}_G) \\ p(L = (1, 0, 1, 0, 1) | G = (1, 0, 0, 0, 0), \boldsymbol{\theta}_L) \end{split}$$



θ_{D}	D=0	D=1
	2/5	3/5

D		S	G	L
0	1	1	1	1
1	1	1	0	0
1	1	0	0	1
1	0	0	0	0
1	1	0	0	1

$$\begin{split} L(\boldsymbol{\theta}; \mathcal{D}) &= \frac{2}{5} \left(\frac{3}{5} \right)^4 \\ p(I = (1, 1, 1, 0, 1) | \boldsymbol{\theta}_I) \\ p(S = (1, 1, 0, 0, 0) | I = (1, 1, 1, 0, 1), \boldsymbol{\theta}_S) \\ p(G = (1, 0, 0, 0, 0) | D = (0, 1, 1, 1, 1), I = (1, 1, 1, 0, 1), \boldsymbol{\theta}_G) \\ p(L = (1, 0, 1, 0, 1) | G = (1, 0, 0, 0, 0), \boldsymbol{\theta}_L) \end{split}$$



θι	I=0	l=1
; ; ; ;	1/4	3/4

D		S	G	L
0	1	1	1	1
1	1	1	0	0
1	1	0	0	1
1	0	0	0	0
1	1	0	0	1

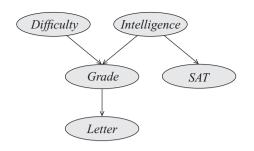
$$L(\boldsymbol{\theta}; \mathcal{D}) = \frac{2}{5} \left(\frac{3}{5}\right)^4$$

$$p(I = (1, 1, 1, 0, 1) | \boldsymbol{\theta}_I)$$

$$p(S = (1, 1, 0, 0, 0) | I = (1, 1, 1, 0, 1), \boldsymbol{\theta}_S)$$

$$p(G = (1, 0, 0, 0, 0) | D = (0, 1, 1, 1, 1), I = (1, 1, 1, 0, 1), \boldsymbol{\theta}_G)$$

$$p(L = (1, 0, 1, 0, 1) | G = (1, 0, 0, 0, 0), \boldsymbol{\theta}_L)$$



θι	I=0	l=1
	1/4	3/4

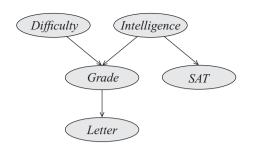
D		S	G	L
0	1	1	1	1
1	1	1	0	0
1	1	0	0	1
1	0	0	0	0
1	1	0	0	1

$$L(\boldsymbol{\theta}; \mathcal{D}) = \frac{2}{5} \left(\frac{3}{5}\right)^4 \frac{1}{4} \left(\frac{3}{4}\right)^4$$

$$p(S = (1, 1, 0, 0, 0) | I = (1, 1, 1, 0, 1), \boldsymbol{\theta}_S)$$

$$p(G = (1, 0, 0, 0, 0) | D = (0, 1, 1, 1, 1), I = (1, 1, 1, 0, 1), \boldsymbol{\theta}_G)$$

$$p(L = (1, 0, 1, 0, 1) | G = (1, 0, 0, 0, 0), \boldsymbol{\theta}_L)$$



θs	S=0	S=1
I=0	1	0
l=1	1/6	5/6

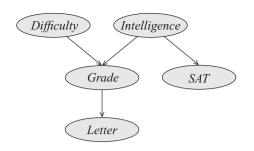
D		S	G	L
0	1	1	1	1
1	1	1	0	0
1	1	0	0	1
1	0	0	0	0
1	1	0	0	1

$$L(\boldsymbol{\theta}; \mathcal{D}) = \frac{2}{5} \left(\frac{3}{5}\right)^4 \frac{1}{4} \left(\frac{3}{4}\right)^4$$

$$p(S = (1, 1, 0, 0, 0) | I = (1, 1, 1, 0, 1), \boldsymbol{\theta}_S)$$

$$p(G = (1, 0, 0, 0, 0) | D = (0, 1, 1, 1, 1), I = (1, 1, 1, 0, 1), \boldsymbol{\theta}_G)$$

$$p(L = (1, 0, 1, 0, 1) | G = (1, 0, 0, 0, 0), \boldsymbol{\theta}_L)$$



θs	S=0	S=1
I=0	1	0
l=1	1/6	5/6

D		S	G	L
0	1	1	1	1
1	1	1	0	0
1	1	0	0	1
1	0	0	0	0
1	1	0	0	1

$$L(\boldsymbol{\theta}; \mathcal{D}) = \frac{2}{5} \left(\frac{3}{5}\right)^4 \frac{1}{4} \left(\frac{3}{4}\right)^4 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^2$$

$$p(G = (1, 0, 0, 0, 0) | D = (0, 1, 1, 1, 1), I = (1, 1, 1, 0, 1), \boldsymbol{\theta}_G)$$

$$p(L = (1, 0, 1, 0, 1) | G = (1, 0, 0, 0, 0), \boldsymbol{\theta}_L)$$

Difficulty (1 diff), Intelligence (1 int), Sat (1 good), Grade (1 good), Letter (1 good)

Less Better

θ_{G}	G=0	G=1
D=0, I=0	1/2	1/2
D=1, I=0	3/5	2/5
D=0, I=1	1/10	9/10
D=1, I=1	2/5	3/5

D		S	G	L
0	1	1	1	1
1	1	1	0	0
1	1	O	0	1
1	0	0	0	0
1	1	0	0	1

$$L(\boldsymbol{\theta}; \mathcal{D}) = \frac{2}{5} \left(\frac{3}{5}\right)^4 \frac{1}{4} \left(\frac{3}{4}\right)^4 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^2$$

$$p(G = (1, 0, 0, 0, 0) | D = (0, 1, 1, 1, 1), I = (1, 1, 1, 0, 1), \boldsymbol{\theta}_G)$$

$$p(L = (1, 0, 1, 0, 1) | G = (1, 0, 0, 0, 0), \boldsymbol{\theta}_L)$$

θ_{G}	G=0	G=1
D=0, I=0	1/2	1/2
D=1, I=0	3/5	2/5
D=0, I=1	1/10	9/10
D=1, I=1	2/5	3/5

D		S	G	L.
0	1	1	1	1
1	1	1	0	0
1	11	0	0	1
1	0	0	0	0
1	1	0	0	1

$$L(\boldsymbol{\theta}; \mathcal{D}) = \frac{2}{5} \left(\frac{3}{5}\right)^4 \frac{1}{4} \left(\frac{3}{4}\right)^4 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^2 \frac{9}{10} \left(\frac{2}{5}\right)^3 \frac{3}{5}$$
$$p(L = (1, 0, 1, 0, 1) | G = (1, 0, 0, 0, 0, 0), \boldsymbol{\theta}_L)$$

θL	L=0	L=1
G=0	2/3	1/3
G=1	0	1

D		S	G	L
0	1	1	1	1
1	1	1	0	0
1	1	0	0	1
1	0	0	0	0
1	1	O	0	1

$$L(\boldsymbol{\theta}; \mathcal{D}) = \frac{2}{5} \left(\frac{3}{5}\right)^4 \frac{1}{4} \left(\frac{3}{4}\right)^4 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^2 \frac{9}{10} \left(\frac{2}{5}\right)^3 \frac{3}{5}$$
$$p(L = (1, 0, 1, 0, 1) | G = (1, 0, 0, 0, 0, 0), \boldsymbol{\theta}_L)$$

θL	L=0	L=1
G=0	2/3	1/3
G=1	0	1

D		S	G	L
0	1	1	1	1
1	1	1	0	0
1	1	0	0	1
1	0	0	0	0
1	1	0	0	1

$$L(\boldsymbol{\theta}; \mathcal{D}) = \frac{2}{5} \left(\frac{3}{5}\right)^4 \frac{1}{4} \left(\frac{3}{4}\right)^4 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^2 \frac{9}{10} \left(\frac{2}{5}\right)^3 \frac{3}{5} \left(\frac{2}{3}\right)^2 \left(\frac{1}{3}\right)^2$$

FACTORIZATION - AN EXAMPLE

"Row wise"

D		S	G	L
0	1	1	1	1
1	1	1	0	0
1	1	0	0	1
1	0	0	0	0
1	1	0	0	1

$$L(\theta; \mathcal{D}) = p(0, 1, 1, 1, 1 | \theta) p(1, 1, 1, 0, 0 | \theta)$$

$$p(1, 1, 0, 0, 1 | \theta) p(1, 0, 0, 0, 0 | \theta)$$

$$p(1, 1, 0, 0, 1 | \theta)$$

"Column wise"

$$\begin{split} L(\boldsymbol{\theta}; \mathcal{D}) &= p(D = (0, 1, 1, 1, 1) | \boldsymbol{\theta}_D) \\ p(I = (1, 1, 1, 0, 1) | \boldsymbol{\theta}_I) \\ p(S = (1, 1, 0, 0, 0) | I = (1, 1, 1, 0, 1), \boldsymbol{\theta}_S) \\ p(G = (1, 0, 0, 0, 0) | D = (0, 1, 1, 1, 1), I = (1, 1, 1, 0, 1), \boldsymbol{\theta}_G) \\ p(L = (1, 0, 1, 0, 1) | G = (1, 0, 0, 0, 0), \boldsymbol{\theta}_L) \end{split}$$

THE LIKELIHOOD FACTORIZES

★ Complete data

$$egin{aligned} \mathcal{D} &= \{oldsymbol{x}_1, \dots, oldsymbol{x}_N \} \ oldsymbol{x}_n &= \{oldsymbol{x}_{n1}, \dots, oldsymbol{x}_{nV} \} \end{aligned}$$

Likelihood $p(\mathcal{D}|\boldsymbol{\theta}) = \prod_{n=1}^{N} p(\boldsymbol{x}_n|\boldsymbol{\theta}) = \prod_{n=1}^{N} \prod_{v=1}^{V} p(\boldsymbol{x}_{nv}|\boldsymbol{x}_{n,\mathrm{pa}(v)},\boldsymbol{\theta})$ $= \prod_{v=1}^{V} \prod_{n=1}^{N} p(\boldsymbol{x}_{nv}|\boldsymbol{x}_{n,\mathrm{pa}(v)},\boldsymbol{\theta}) = \prod_{v=1}^{V} p(\mathcal{D}_v|\boldsymbol{\theta}_v)$

where D_v is values of v together with its parents and θ_v is v's CPD

★ Called: decomposable likelihood (factorizes into family-factors)

MLE FOR CATEGORICAL

$$\qquad \qquad \text{Likelihood} \qquad p(D) = \prod_{i \in [k]} \theta_i^{N_i}$$

* where
$$\sum_{i \in [k]} \theta_i = 1$$

 \star as well as loglikelihood $p(D) = \sum_{i \in [k]} N_i log heta_i$

$$\star$$
 is maximized by $heta_i = rac{N_i}{\sum_{i \in [k]} N_i}$

CATEGORICAL -NOTATION

 \star For a $v \in [V]$,

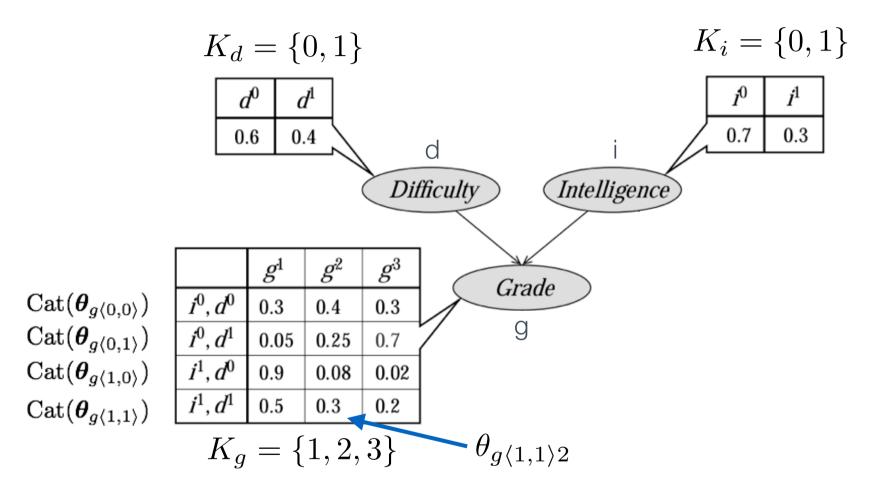
values
$$k \in [K_v]$$
 Cartesian product combined values $c \in C_v = \prod_{s \in \mathrm{pa}(v)} [K_s]$

★ Cat CPDs

where
$$P(x_v|x_{\mathrm{pa}(v)}=c)=\mathrm{Cat}(\boldsymbol{\theta}_{vc})$$

and
$$\theta_{vck} = P(x_v = k | x_{pa(v)} = c)$$

NOTATION EXAMPLE



$$C_g = \prod_{s \in pa(g)} [K_s] = K_i \times K_d = \{\langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 1, 0 \rangle, \langle 1, 1 \rangle, \}$$

EXAMPLE

$$\begin{split} L(\pmb{\theta};\mathcal{D}) &= p(D = (0,1,1,1,1)|\pmb{\theta}_D) \quad \text{"Column wise"} \\ p(I = (1,1,1,0,1)|\pmb{\theta}_I) \\ p(S = (1,1,0,0,0)|I = (1,1,1,0,1), \pmb{\theta}_S) \\ p(G = (1,0,0,0,0)|D = (0,1,1,1,1), I = (1,1,1,0,1), \pmb{\theta}_G) \\ p(L = (1,0,1,0,1)|G = (1,0,0,0,0), \pmb{\theta}_L) \end{split}$$

D		S	G	L
0	1	1	1	1
1	1	1	0	0
1	1	0	0	1
1	0	0	O.	0
1	1	0	0	1

$$N_{v\mathbf{c}k} = \sum_{n=1}^{N} I(x_{nv} = k, x_{n, pa(v)} = \mathbf{c})$$

$$N_{v\mathbf{c}} = \sum_{n=1}^{N} I(x_{n, pa(v)} = \mathbf{c})$$

$$N_{G\langle 1, 1 \rangle 0} = ?$$

FACTORIZATION - AN EXAMPLE

$$L(m{ heta}; \mathcal{D}) = p(D = (0, 1, 1, 1, 1) | m{ heta}_D)$$
 "Column wise" $p(I = (1, 1, 1, 0, 1) | m{ heta}_I)$ $p(S = (1, 1, 0, 0, 0) | I = (1, 1, 1, 0, 1), m{ heta}_S)$ $p(G = (1, 0, 0, 0, 0) | D = (0, 1, 1, 1, 1), I = (1, 1, 1, 0, 1), m{ heta}_G)$ $p(L = (1, 0, 1, 0, 1) | G = (1, 0, 0, 0, 0), m{ heta}_L)$

D		S	G	L
0	1	1	1	1
1	1	1	0	0
1	1	0	0	1
1	0	0	O.	0
1	1	0	0	1

$$N_{v\mathbf{c}k} = \sum_{n=1}^{N} I(x_{nv} = k, x_{n, pa(v)} = \mathbf{c})$$

$$N_{v\mathbf{c}} = \sum_{n=1}^{N} I(x_{n, \text{pa}(v)} = \mathbf{c})$$

$$N_{G\langle 1,1\rangle 0}=3$$

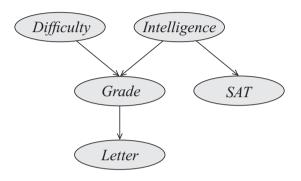
MLE FOR CAT CPDS

- \star Each $P(\mathcal{D}_v|\boldsymbol{\theta}_v)$, i.e., here each $\boldsymbol{\theta}_{v\mathbf{c}}$ can be maximized independently
- ★ So, MLE is

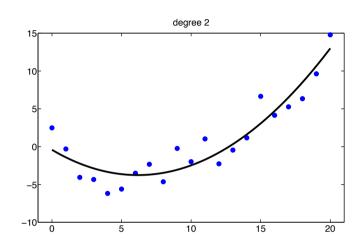
$$\boldsymbol{\theta}_{v\mathbf{c}k} = N_{v\mathbf{c}k}/N_{v\mathbf{c}}$$

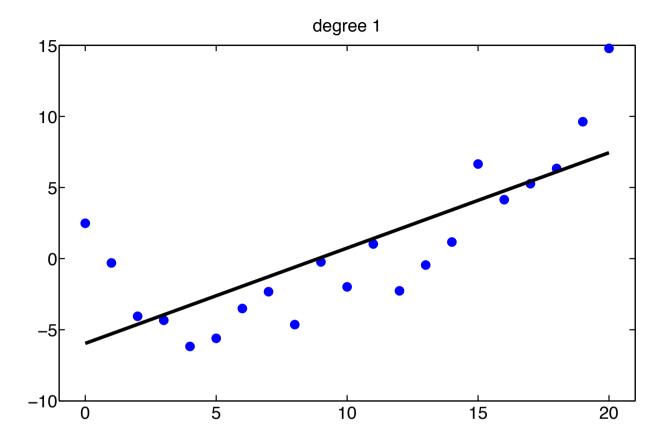
$$N_{v\mathbf{c}k} = \sum_{n=1}^{N} I(x_{nv} = k, x_{n, pa(v)} = \mathbf{c})$$

$$N_{v\mathbf{c}} = \sum_{n=1}^{N} I(x_{n, \text{pa}(v)} = \mathbf{c})$$



$$\mathcal{D} = \{oldsymbol{x}_1, \dots, oldsymbol{x}_N\}$$

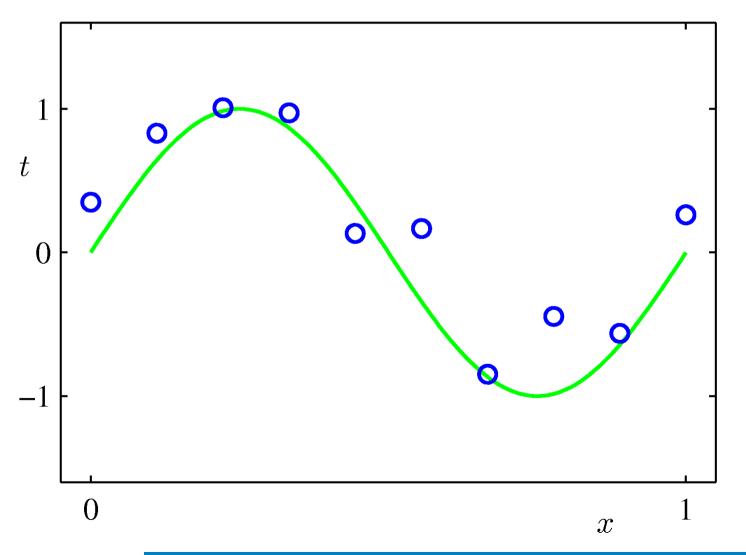




- * Size
- * Floor
- Location

REGRESSION

EXPOLYNOMIAL FITTING - THE DATA

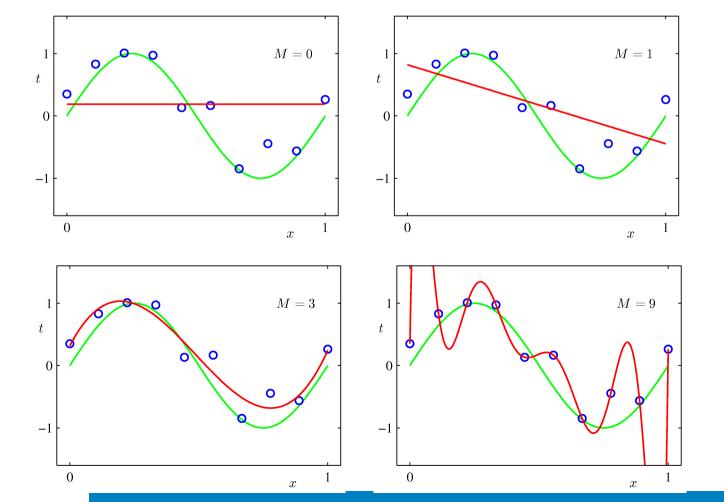


$\sin(2\pi x)$

with additive noise

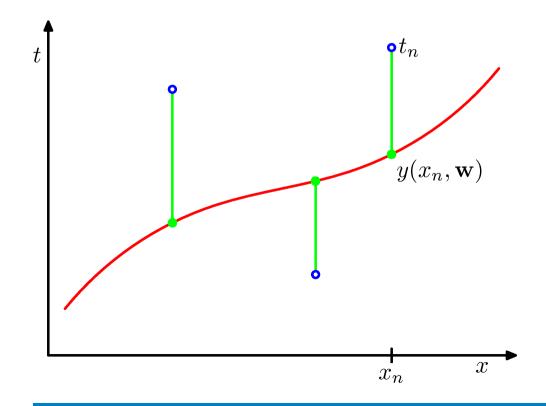
MODELS & PARAMETERS

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$



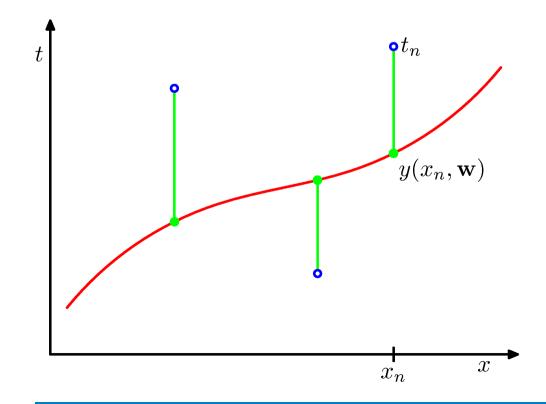
GENERATIVE VIEW

For N data points, t_n is $y(x_n, \mathbf{w})$ plus additive noise from $\mathcal{N}(0, \sigma)$



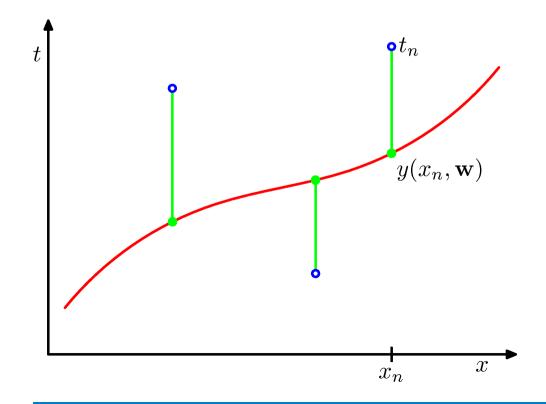
For N data points

$$\prod_{n=1}^{N} \mathcal{N}(y(x_n, \mathbf{w}) - t_n | \sigma)$$



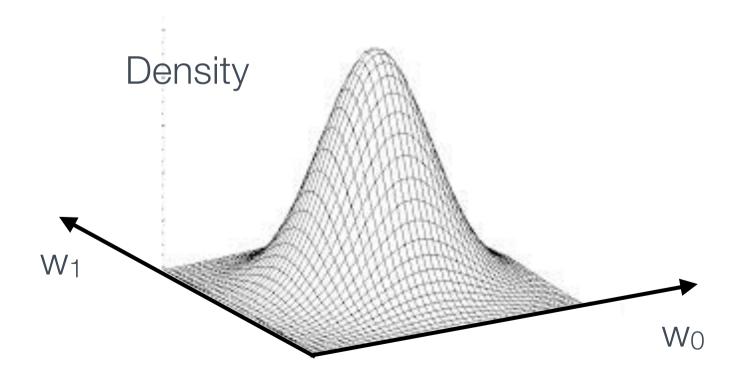
MEASURING ERROR

Sum of squares
$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2$$



PRIOR ON W-TWO PARAMETER CASE

$$y(x, \mathbf{w}) = w_0 + w_1 x$$



VISUALISING A MODEL-POLYNOMIAL REGRESSION

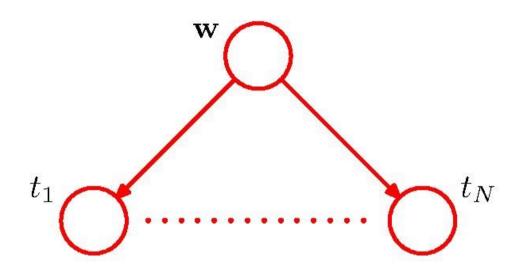
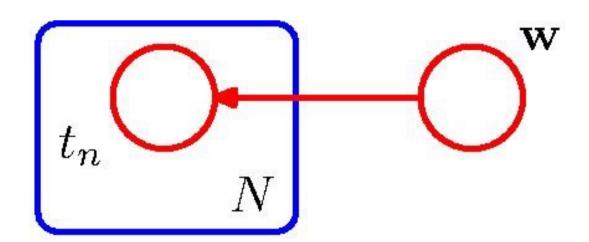
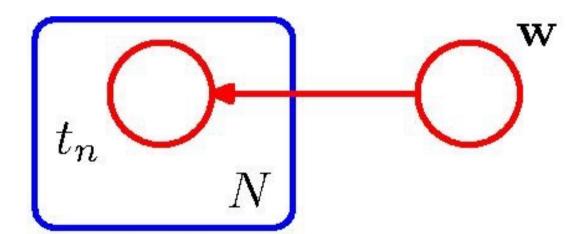


PLATE NOTATION



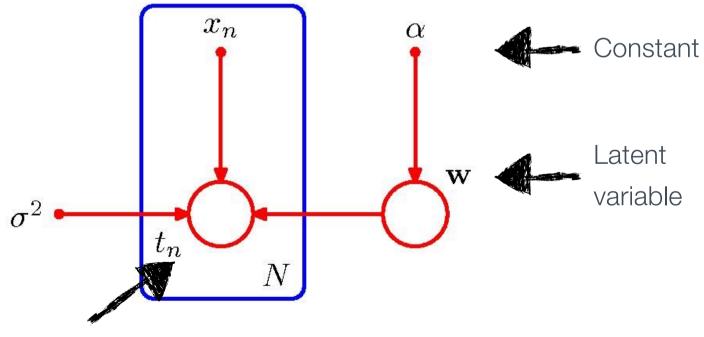
THE JOINT

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n | \mathbf{w})$$



INCLUDING PARAMETERS

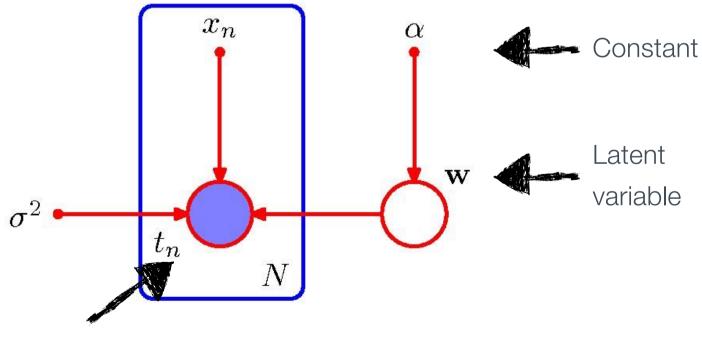
$$p(\mathbf{t}, \mathbf{w} | \mathbf{x}, \alpha, \sigma^2) = p(\mathbf{w} | \alpha) \prod_{n=1}^{N} p(t_n | \mathbf{w}, x_n, \sigma^2)$$



Observable variable

INCLUDING PARAMETERS

$$p(\mathbf{t}, \mathbf{w} | \mathbf{x}, \alpha, \sigma^2) = p(\mathbf{w} | \alpha) \prod_{n=1}^{N} p(t_n | \mathbf{w}, x_n, \sigma^2)$$



Observable variable

JOINT WITH NEW POINT

$$p(\widehat{t}, \mathbf{t}, \mathbf{w} | \widehat{x}, \mathbf{x}, \alpha, \sigma^2) = \left[\prod_{n=1}^N p(t_n | x_n, \mathbf{w}, \sigma^2) \right] p(\mathbf{w} | \alpha) p(\widehat{t} | \widehat{x}, \mathbf{w}, \sigma^2)$$

