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THIS LECTURE
★ DGM semantics 

★ UGM 

★ De-noising  

★ HMMs 

• Applications (interesting probabilities) 

• DP for generation probability etc.  

• (later Baum-Welch) 



EXTENDED STUDENT 
EXAMPLE
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INDEPENDENCE I-MAP
★ I(G) (conditional) independences implied by G (not yet defined) 

★ I(P) (conditional) independences in the distribution P 

★ G I-map for P in I(G) ⊆ I(P)

X Y X Y X Y

p q



INDEPENDENCE I-MAP
★ I(G) independences implied by G (not yet defined) 

★ I(P) independences in the distribution P 

★ G I-map for P in I(G) ⊆ I(P)

★ p: X and Y ind. ex. p(X=1) = 0.48 + 0.12 =0.6, p(Y=1) = 0.8, and p(X=1,Y=1) = 0.48 
★ q: X and Y are dependent

X Y X Y X Y

p q



INDEPENDENCE I-MAP
★ I(G) independences implied by G (not yet defined) 

★ I(P) independences in the distribution P 

★ G I-map for P in I(G) ⊆ I(P)

★ All three graphs are I-maps for p 
★ G1 and G2 are I-maps for q, but G3 is not

X Y X Y X Y

p q

G1 G2 G3



D-SEPARATION
★ A path is d-separated by O if it 
has 

• a chain X → Y → Z where Y ∈ O 

• a fork X ← Y → Z where Y ∈ O 

• a v-structure X → Y ← Z       
where (Y ⋃ desc(Y)) ⋂ O = ∅ 

X Y∈O Z

X
Y∈O

Z

X

Y∉O

Z

 desc ∉O

Chain

Fork

v-struct



D-SEPARATION 
SETS AND CI OF 

DAGS
★ A is d-separated from B given O if 
every undirected path between A and 
B is d-separated by O 

★ Cond. ind rel. in DAG G,  

A is d-separated from B given O

A B

G
O

xA �G xB |xO



FACTORIZATION OVER 
G

p(x1, . . . , xN ) =
N�

n=1

p(xn|xpa(xn))

p can be factorized over G if it can be expressed as above



SOUNDNESS AND 
COMPLETENESS 
★ I(G) conditional independence relations implied by d-sep in G 
★ I(p) conditional independence relations satisfied by p 

★ Theorem 
A distribution P can be factorised over G iff I(G) ⊆ I(p) 

★ “=“ not possible to achieve, ex. clique and independent distribution



UGM
★ UGMs - Undirected graphical 

models 

★ What is the direction between 2 
pixels, 2 proteins? 

★ Probabilistic interpretation? 

★ p factorizes over G – can be 
expressed as normalized product 
over factors associated with 
cliques

Coherence

Difficulty

Grade

Intelligence

SAT

Letter

Happy

Job

lambda=7.00, nedges=18



EXAMPLE CLIQUE
lambda=7.00, nedges=18



EXAMPLE MAXIMAL 
CLIQUE

lambda=7.00, nedges=18



EXAMPLE MAXIMUM 
CLIQUE

lambda=7.00, nedges=18



UGM
★ An undirected graph G with so-called factors associated 

with its maximal cliques            , for                factor  

★      is a function from the clique’s variables (the scope)  to 
non-neg real numbers 



• Probability 

• where

PROBABILISTIC 
INTERPRETATION

Factors – misconception example

P (A,B, C, D) =
1
Z

�1(A,B)�2(B,C)�3(C,D)�4(D,A)

Z =
�

a,b,c,d

�1(a, b)�2(b, c)�3(c, d)�4(d, a)

Scope    A,B             B,C             C,D              D,A



• E.g.

A FACTOR PRODUCT

Misconception

�1(A = 1, B =1)�2(B = 1, C = 0)�3(C = 0, D = 1)�4(D = 1, A = 1)
= 10 · 1 · 100 · 100
= 100000

Z =
�

a,b,c,d

�1(a, b)�2(b, c)�3(c, d)�4(d, a)



DE-NOISING 



ISING MODEL- 
DE-NOISING 

Values -1,1

Factors of form

p(y | x ) ex Gaussian 

and



ISING MODEL- 
DE-NOISING 

Values -1,1

Factors of form

and

★ Bipartite graph  
★ Suggests iterative procedure



• Large is the noisy image; upper, UGM de-noised; and lower,           
graph cut de-noised



LATENT = HIDDEN 

★ Can reduce #parameters 

★ Can represent common causes 

+

���SDUDPHWHUV ���SDUDPHWHUV



MARKOV CHAINS 
(DISCRETE)

p1

q

p2

★Directed graph with 
transition probabilities 

★ We observe the 
sequence of visited vertices



MARKOV CHAINS 
(DISCRETE)

p1

p2

Probabilities on outgoing edges sum to one 

pd

∑i∈[d] pi =1



THE OCCASIONALLY  
DISHONEST CASINO 

Fair Biased/loaded

p

1-p 1-q

q
★ We observe the sequence of dice outcomes of visited vertices



EMISSION  
DISTRIBUTIONS
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WHAT AN  
HMM DOES 
★ Starts in the state z1 

★ When in state zt 

• outputs p(xt|zt) 

• moves to p(zt+1|zt) 

★ Stops after a fixed number 
of steps or when reaching 
a stop step

Fair Biased/loaded

p

1-p
1-q

q



WHAT AN  
HMM DOES 
★ Starts in the state z1 

★ When in state zt 

• outputs p(xt|zt) 

• moves to p(zt+1|zt) 

★ Stops after a fixed number 
of steps or when reaching 
a stop step

Fair Biased/loaded

p

1-p
1-q

q

The parameters



THE JOINT 
DISTRIBUTION
★ Starts in the state z1 

★ When in state zt 

• emits p(xt|zt) 

• transits to p(zt+1|zt) 

★ Stops after a fixed number 
of steps or when reaching 
a stop step

Categorial or Gaussian



THE JOINT 
DISTRIBUTION
★ Starts in the state z1 

★ When in state zt 

• emits p(xt|zt) 

• transits to p(zt+1|zt) 

★ Stops after a fixed number 
of steps or when reaching 
a stop step

Categorial or Gaussian



GAUSSIAN EMISSIONS 
AND HIDDEN STATES
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APPLICATIONS OF 
HMMS

• Automatic speech 
recognition 

• Part of speech tagging 
• Gene finding  

• Gene family characterization 
• Secondary structure 

prediction
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TERMINOLOGY X 
ABOVE Z BELOW
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p(zt|x1:T)

p(zt|x1:t)

p(zt+h|x1:t)

p(zt|x1:t+l)



MORE INFERENCE 
TYPES

• Viterbi (MAP)                 
argmax p(z1:T|x1:T) 

• Posterior samples:      
~p(z1:T|x1:T) 

• Probability of data: p(x1:T) 

• Parameters:                   
given D & struct. 

• Structure and param.:     
given D
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Viterbi

INFERENCE IN THE 
OCCASIONALLY  DISHONEST 
CASINO

0 50 100 150 200 250 300
0

0.5

1

roll number

p
(l
o

a
d

e
d

)
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• Filtering: p(zt|x1:t), 

 online 

Text

Grey regions are states corresponding to biased die

• Smoothing, MAP state:  

p(zt|x1:T) offline 

• Viterbi, MAP path 

 argmax p(z1:T|x1:T) 



DP
• What is a subproblem? 

• What is a subsolution? 

• How do we decompose 
into smaller subproblems? 

• How do we combine 
subsolutions into larger? 

• How do we enumerate?  

• How many and what time? 

abbacd acbadd

abbac acbadd

abbac acbad

abbacd acbad

Pairs of strings

Rooted trees



DP
• What is a subproblem? 

• What is a subsolution? 

• How do we decompose 
into smaller subproblems? 

• How do we comb ine 
subsolutions into larger? 

• How do we enumerate? 

• How many and what time? 

Polynomial time

Polynomial time

Polynomial many

Polynomial time

Polynomial time overall



AN HMM CAN BE SEEN 
AS A DGM

• Zi hidden  

• Xi observable 

• Hidden often not observable when training, never when applying



SPECIAL CASE: HIDDEN 
MARKOV MODEL (HMM)

• Zi hidden  

• Xi observable 

• Hidden often not observable when training, never when applying

Combinations of the transition distributions 

Combinations of emission the emission distribution  



JOINT 
&FORWARD 
VARIABLE 

• Joint is easy to express 

• The sum has 
exponentially many terms 

• The forward variable, ft, 
can be computed with 
DP

“Graphical model”



Zt-1=k’ gives smaller 
“Graphical model”

Knowing also Zt-1 breaks it into smaller, i.e., the event

“is the AND of the events”



Applying sum rule

each term in the sum is a probability of an event 

?
#
x1

! ?
#
x2

! ?
#
x3

· · ·Zt�1 = k

0

#
xt�1

! Zt = k

#
?

!? · · ·

Notice, by the sum rule,

which, as noted, can be broken into smaller

ft(k) = p(x1:t�1, Zt = k) =
X

k02[K]

p(x1:t�1, Zt�1 = k

0
, Zt = k)

The set of states



Forward recursion
ft(k) =

X

l

ft�1

(l)| {z }
smaller

p(xt�1

|Zt�1

= l)| {z }
emission

p(Zt = k|Zt�1

= l)| {z }
transition



Forward recursion



Forward recursion

For the start state k*

For all other states k

Forward Algorithm

For t=1 to T 
    For k=1 to K

s(0, k⇤) := 1

s(0, k) := 0

Given 



Time

For the start state k*

For all other states k

Forward Algorithm

For t=1 to T 
    For k=1 to K

s(0, k⇤) := 1

s(0, k) := 0
} constant time

}O(TK2){O(K2)

O(K)

So in total time O(TK2)



If layered 

For the start state k*

For all other states k

Forward Algorithm

For t=1 to T 
    For k=1 to K

s(0, k⇤) := 1

s(0, k) := 0
} constant time

}O(TK){O(K)

Replace by sum over constant number of states in previous layer

If layered, total time O(TK)
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OBSERVATION 
PROBABILITY

• The final probability is 
easily obtained

In general, (e.g. t=T)

ft(k) = p(x1:t�1,Zt = k)

since



FILTERING

• Filtering: p(zt|x1:t), online 

emission

data probability



FILTERING

• Filtering: p(zt|x1:t), online 

emission

data probability



Backward variable
Defined by

“Graphical model”

? ! Zt = k

#
?

! ?
#

xt+1

! · · · ?
#
xT



Sum rule gives Zt+1 
Defined by

Each term in the sum is a probability of an event

? ! Zt = k

#
?

! Zt+1 = l

#
xt+1

! · · · ?
#
xT

“which is an AND of”

Zt+1 = l

#
xt+1

! ?
#

xt+2

! · · · ?
#
xT


