Royal Institute of
Technology
 UGM,HMMS Lecture 7

* DGM semantics
* UGM
* De-noising
* HMMs
- Applications (interesting probabilities)
- DP for generation probability etc.
- (later Baum-Welch)

B - better
H - higher
L - less

EXTENDED STUDENT EXAMPLE

Difficulty
Intelligence

* $\quad \mathrm{I}(\mathrm{G})$ (conditional) independences implied by G (not yet defined)
* $\quad \mathrm{I}(\mathrm{P})$ (conditional) independences in the distribution P
* GI-map for P in $I(G) \subseteq I(P)$

$$
\begin{array}{ccc|c}
\mathrm{p} & X & Y & P(X, Y) \\
\hline & x^{0} & y^{0} & 0.08 \\
x^{0} & y^{1} & 0.32 \\
x^{1} & y^{0} & 0.12 \\
x^{1} & y^{1} & 0.48
\end{array}
$$

$$
\mathrm{q} \begin{array}{cc|c}
X & Y & P(X, Y) \\
\hline x^{0} & y^{0} & 0.4 \\
x^{0} & y^{1} & 0.3 \\
x^{1} & y^{0} & 0.2 \\
x^{1} & y^{1} & 0.1
\end{array}
$$

* $\quad \mathrm{I}(\mathrm{G})$ independences implied by G (not yet defined)
* $\quad I(P)$ independences in the distribution P
* GI-map for P in $I(G) \subseteq I(P)$

$\mathrm{p} \quad$| X | Y | $P(X, Y)$ |
| :---: | :---: | :---: |
| x^{0} | y^{0} | 0.08 |
| x^{0} | y^{1} | 0.32 |
| x^{1} | y^{0} | 0.12 |
| x^{1} | y^{1} | 0.48 |

व | X | Y | $P(X, Y)$ |
| :---: | :---: | :---: |
| x^{0} | y^{0} | 0.4 |
| x^{0} | y^{1} | 0.3 |
| x^{1} | y^{0} | 0.2 |
| x^{1} | y^{1} | 0.1 |

* $p: X$ and Y ind. ex. $p(X=1)=0.48+0.12=0.6, p(Y=1)=0.8$, and $p(X=1, Y=1)=0.48$
* $\mathrm{q}: \mathrm{X}$ and Y are dependent

* $\quad \mathrm{I}(\mathrm{G})$ independences implied by G (not yet defined)
* $\quad I(P)$ independences in the distribution P
* GI-map for P in $I(G) \subseteq I(P)$

$$
\begin{aligned}
& \begin{array}{ccc|c}
X & Y & P(X, Y) \\
\hline x^{0} & y^{0} & 0.08
\end{array} \\
& \begin{array}{ll|l}
x^{0} & y^{1} & 0.32 \\
x^{1} & y^{0} & 0.12
\end{array} \\
& \begin{array}{ll|l}
x^{1} & y^{0} & 0.12 \\
x^{1} & y^{1} & 0.48
\end{array}
\end{aligned}
$$

* All three graphs are I-maps for p
* G_{1} and G_{2} are I-maps for q, but G_{3} is not

D-SEPARATION

\star A path is d-separated by O if it has

- a chain $X \rightarrow Y \rightarrow Z$ where $Y \in O$
- a fork $X \leftarrow Y \rightarrow Z$ where $Y \in O$
- a v-structure $X \rightarrow Y \leftarrow Z$ where $(Y \cup \operatorname{desc}(Y)) \cap O=\varnothing$

D-SEPARATION SETS AND CI OF DAGS

\star A is d-separated from B given O if every undirected path between A and B is d-separated by O

* Cond. ind rel. in DAG G,

$$
x_{A} \perp_{G} x_{B} \mid x_{O}
$$

A is d-separated from B given O

$$
p\left(x_{1}, \ldots, x_{N}\right)=\prod_{n=1}^{N} p\left(x_{n} \mid x_{\mathrm{pa}\left(x_{n}\right)}\right)
$$

p can be factorized over G if it can be expressed as above

* $\quad \mathrm{I}(\mathrm{G})$ conditional independence relations implied by d -sep in G
* I(p) conditional independence relations satisfied by p
* Theorem

A distribution P can be factorised over G iff l(G) \subseteq l(p)

* "=" not possible to achieve, ex. clique and independent distribution

UGM

* UGMs - Undirected graphical models
* What is the direction between 2 pixels, 2 proteins?
* Probabilistic interpretation?
* p factorizes over G - can be expressed as normalized product over factors associated with cliques

EXAMPLE CLIQUE

EXAMPLE MAXIMAL

 CLIQUE

EXAMPLE MAXIMUM CLIQUE

* An undirected graph G with so-called factors associated with its maximal cliques $C(G)$, for $C \in C(G)$ factor ψ_{C}
* ψ_{C} is a function from the clique's variables (the scope) to non-neg real numbers

$$
\begin{aligned}
& p\left(x_{1}, \ldots, x_{V}\right)=\frac{1}{Z} \prod_{C \in C(G)} \psi_{C}\left(x_{C}\right) \\
& Z=\sum_{x_{1}, \ldots, x_{V}} \prod_{C \in C(G)} \psi_{C}\left(x_{C}\right)
\end{aligned}
$$

$\begin{array}{rrrr}\text { Scope } \mathrm{A}, \mathrm{B} & \mathrm{B}, \mathrm{C} & \mathrm{C}, \mathrm{D} & \mathrm{D}, \mathrm{A} \\ \phi_{1}(A, B) & \phi_{2}(B, C) & \phi_{3}(C, D) & \phi_{4}(D, A)\end{array}$

a^{0}	b^{0}	30	b^{0}	c^{0}	100	c^{0}	d^{0}	1	d^{0}	a^{0}	100
a^{0}	b^{1}	5	b^{0}	c^{1}	1	c^{0}	d^{1}	100	d^{0}	a^{1}	1
a^{1}	b^{0}	1	b^{1}	c^{0}	1	c^{1}	d^{0}	100	d^{1}	a^{0}	1
a^{1}	b^{1}	10	b^{1}	c^{1}	100	c^{1}	d^{1}	1	d^{1}	a^{1}	100

(a)
(b)
(c)
(d)

Factors - misconception example

$$
P(A, B, C, D)=\frac{1}{Z} \phi_{1}(A, B) \phi_{2}(B, C) \phi_{3}(C, D) \phi_{4}(D, A)
$$

$$
Z=\sum_{a, b, c, d} \phi_{1}(a, b) \phi_{2}(b, c) \phi_{3}(c, d) \phi_{4}(d, a)
$$

Misconception

$$
\begin{aligned}
\phi_{1}(A=1, B= & 1) \phi_{2}(B=1, C=0) \phi_{3}(C=0, D=1) \phi_{4}(D=1, A=1) \\
& =10 \cdot 1 \cdot 100 \cdot 100 \\
& =100000
\end{aligned}
$$

$$
Z=\sum_{a, b, c, d} \phi_{1}(a, b) \phi_{2}(b, c) \phi_{3}(c, d) \phi_{4}(d, a)
$$

A FACTOR

$$
\begin{aligned}
& \phi_{1}(A, B) \quad \phi_{2}(B, C) \quad \phi_{3}(C, D) \quad \phi_{4}(D, A) \\
& \begin{array}{rrr|rrr|rrr|rrr}
a^{0} & b^{0} & 30 & b^{0} & c^{0} & 100 & c^{0} & d^{0} & 1 & d^{0} & a^{0} & 100 \\
a^{0} & b^{1} & 5 & b^{0} & c^{1} & 1 & c^{0} & d^{1} & 100 & d^{0} & a^{1} & 1 \\
a^{1} & b^{0} & 1 & b^{1} & c^{0} & 1 & c^{1} & d^{0} & 100 & d^{1} & a^{0} & 1 \\
a^{1} & b^{1} & 10 & b^{1} & c^{1} & 100 & c^{1} & d^{1} & 1 & d^{1} & a^{1} & 100
\end{array} \\
& \text { (a) } \\
& \text { (b) } \\
& \text { (c) } \\
& \text { (d) }
\end{aligned}
$$

Bayes'
Theorem

ISING MODEL DE-NOISING

Values - 1,1

Factors of form

$$
e^{\beta x_{i} x_{j}}
$$

and

$$
e^{\eta x_{i} y_{i}}
$$

$p(y \mid x)$ ex Gaussian

ISING MODEL DE-NOISING

Values - 1,1

Factors of form

$$
e^{\beta x_{i} x_{j}}
$$

and

$$
e^{\eta x_{i} y_{i}}
$$

* Bipartite graph
* Suggests iterative procedl

Bayes' Theorem
Bayes' Theorem
:---

17 parameters

59 parameters

* Can reduce \#parameters

ڤ Can represent common causes

*Directed graph with transition probabilities

* We observe the
sequence of visited vertices

Probabilities on outgoing edges sum to one

\star We observe the sequence of dice outcomes of visited vertices
Rolls:
66415321616211523465 5ॅ3214356634261655234232315142464156663246
Die:
LLLLLLLLLLLLLLFFFFFFLLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFLLLLLLLL

Rolls:	6641532161621152346532143566342616552
Die:	LLLLLLLLLLLLLLFFFFFFLLLLLLLLLLLLLLFFF

\star Starts in the state z_{1}

* When in state Z_{t}
- outputs $\mathrm{p}\left(\mathrm{x}_{\mathrm{t}} \mid \mathrm{zt}_{\mathrm{t}}\right) \quad B_{x_{t}, t_{t}}$
- moves to $\mathrm{p}\left(\mathrm{Z}_{\mathrm{t}+1} \mid \mathrm{zt}_{\mathrm{t}}\right)$
* Stops after a fixed nurnbe
of steps or when reaqhind
a stop step

The parameters

$p\left(\boldsymbol{x}_{1: T}, \boldsymbol{z}_{1: T+1}\right)$

$$
=p\left(\boldsymbol{x}_{1: T} \mid \boldsymbol{z}_{1: T}\right) p\left(z_{1: T+1}\right)
$$

* Starts in the state z_{1}

$$
=p\left(z_{1}\right)\left(\prod_{t=1}^{T} p\left(\boldsymbol{z}_{t+1} \mid z_{t}\right)\right)\left(\prod_{t=1}^{T} p\left(\boldsymbol{x}_{t} \mid z_{t}\right)\right)
$$

* When in state Z_{t}
- emits $\mathrm{p}\left(\mathrm{X}_{\mathrm{t}} \mid Z_{t}\right)$
- transits to $\mathrm{p}\left(\mathrm{Z}_{\mathrm{t}+1} \mid Z_{t}\right)$

Categorial or Gaussian

* Stops after a fixed number of steps or when reaching a stop step

$p\left(\boldsymbol{x}_{1: T}, \boldsymbol{z}_{1: T+1}\right)$

$$
=p\left(\boldsymbol{x}_{1: T} \mid \boldsymbol{z}_{1: T}\right) p\left(z_{1: T+1}\right)
$$

* Starts in the state z_{1}

$$
=p\left(z_{1}\right)\left(\prod_{t=1}^{T} p\left(\boldsymbol{z}_{t+1} \mid z_{t}\right)\right)\left(\prod_{t=1}^{T} p\left(\boldsymbol{x}_{t} \mid z_{t}\right)\right)
$$

* When in state Z_{t}
- emits $\mathrm{p}\left(\mathrm{X}_{\mathrm{t}} \mid Z_{t}\right)$
- transits to $\mathrm{p}\left(\mathrm{Z}_{\mathrm{t}+1} \mid Z_{t}\right)$

Categorial or Gaussian

* Stops after a fixed number of steps or when reaching a stop step

GAUSSIAN EMISSIONS AND HIDDEN STATES

- Automatic speech
recognition
- Part of speech tagging
- Gene finding
- Gene family characterization
- Secondary structure prediction

$$
\begin{aligned}
& \text { MORE INFERENCE } \\
& \text { TYPES }
\end{aligned}
$$

- Viterbi (MAP)
$\operatorname{argmax} \mathrm{p}\left(\mathrm{z}_{1: T} \mid \mathrm{x}_{1: \mathrm{T}}\right)$
- Posterior samples:
$\sim p\left(Z_{1: T} \mid \mathrm{x}_{1: T}\right)$
- Probability of data: $\mathrm{p}\left(\mathrm{x}_{1: T}\right)$
- Parameters:
given D \& struct.
- Structure and param.: given D

Grey regions are states corresponding to biased die

- Filtering: $\mathrm{p}\left(z_{\mathrm{t}} \mid \mathrm{x}_{1: t}\right)$, online

- Smoothing, MAP state: $p\left(z t \mid x_{1: T}\right)$ offline
- Viterbi, MAP path $\operatorname{argmax} \mathrm{p}\left(\mathrm{Z}_{1: \mathrm{T}} \mid \mathrm{X}_{1: \mathrm{T}}\right)$

Pairs of strings abbacd acbadd | abbac acbadd |
| :---: |
| abbacd acbad |
| abbac acbad |

Rooted trees

- What is a subproblem?
- What is a subsolution?
- How do we decompose into smaller subproblems?
- How do we combine subsolutions into larger?
- How do we enumerate?
- How many and what time?

Polynomial many • What is a subproblem?

- What is a subsolution?

Polynomial time

Polynomial time - How do we combine subsolutions into larger?

Polynomial time • How do we enumerate?

Polynomial time overall • How many and what time?

$$
\begin{aligned}
& Z_{1} \rightarrow Z_{2} \rightarrow Z_{3} \rightarrow \cdots \rightarrow Z_{T} \rightarrow Z_{T+1} \\
& x_{1} \\
& \stackrel{\downarrow}{x_{3}} \\
& x_{T}^{\downarrow}
\end{aligned}
$$

- Z_{i} hidden
- X_{i} observable
- Hidden often not observable when training, never when applying

Combinations of the transition distributions

Combinations of emission the emission distribution

- Zi hidden
- X_{i} observable
- Hidden often not observable when training, never when applying

$$
\begin{aligned}
& p\left(\boldsymbol{x}_{1: T}\right)=\sum_{\boldsymbol{z}_{1: T}} p\left(\boldsymbol{x}_{1: T}, \boldsymbol{z}_{1: T}\right) \\
& f_{t}(k):=p\left(\boldsymbol{x}_{1: t-1}, \boldsymbol{Z}_{t}=k\right)
\end{aligned}
$$

"Graphical model"

- Joint is easy to express
- The sum has exponentially many terms
- The forward variable, ft_{t}, can be computed with DP

"Graphical model"

$$
\begin{aligned}
& \begin{array}{cccc}
? \\
x_{1} & \rightarrow \\
x_{2} & ? & x_{3} & x_{t-1}
\end{array} \\
& f_{t}(k):=p\left(\boldsymbol{x}_{1: t-1}, \boldsymbol{Z}_{t}=k\right)
\end{aligned}
$$

Knowing also Z_{t-1} breaks it into smaller, i.e., the event
"is the AND of the events"

$$
\begin{gathered}
Z_{t-1}=k^{\prime} \quad Z_{t-1}=k^{\prime} \rightarrow Z_{t}=k \\
\begin{array}{c}
\downarrow \\
x_{t-1}
\end{array} \\
x_{1} \\
x_{2}
\end{gathered} \underset{x_{3}}{\downarrow} \rightarrow ? \cdots Z_{t-1}^{\downarrow}=k^{\prime} \rightarrow ?
$$

Applying sum rule

Notice, by the sum rule,

$$
f_{t}(k)=p\left(x_{1: t-1}, Z_{t}=k\right)=\sum_{k^{\prime} \in[K]} p\left(x_{1: t-1}, Z_{t-1}=k^{\prime}, Z_{t}=k\right)
$$

each term in the sum is a probability of an event
which, as noted, can be broken into smaller

Forward recursion

$$
f_{t}(k)=\sum_{l} \underbrace{f_{t-1}(l)}_{\text {smaller }} \underbrace{p\left(x_{t-1} \mid Z_{t-1}=l\right)}_{\text {emisision }} \underbrace{p\left(\boldsymbol{Z}_{t}=k \mid Z_{t-1}=l\right)}_{\text {transition }}
$$

$$
f_{t}(k)=\sum_{l} \underbrace{f_{t-1}(l)}_{\text {smaller }} \underbrace{p\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{Z}_{t-1}=l\right)}_{\text {emission } B_{x_{t-1}, l}} \underbrace{p\left(\boldsymbol{Z}_{t}=k \mid \boldsymbol{Z}_{t-1}=l\right)}_{\text {transition } \boldsymbol{A}_{l k}}
$$

$$
f_{t}(k)=\sum_{l} \underbrace{f_{t-1}(l)}_{\text {smaller }} \underbrace{p\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{Z}_{t-1}=l\right)}_{\text {emission } B_{x_{t-1}, l}} \underbrace{p\left(\boldsymbol{Z}_{t}=k \mid \boldsymbol{Z}_{t-1}=l\right)}_{\text {transition } A_{l k}}
$$

Given x_{1}, \ldots, x_{T}
Forward Algorithm
For the start state k .

$$
s\left(0, k^{*}\right):=1
$$

For all other states k

$$
s(0, k):=0
$$

For $\mathrm{t}=1$ to T
For $\mathrm{k}=1$ to K

$$
s(t, k):=\sum_{l \in[K]} s(t-1, l) B_{x_{t-1, l}} A_{l k}
$$

Forward Algorithm
For the start state k $s\left(0, k^{*}\right):=1$
For all other states k $s(0, k):=0$ $\}$
constant time

For $\mathrm{t}=1$ to T
$\mathrm{O}\left(\mathrm{K}^{2}\right)\left\{\begin{aligned} & \text { For } \mathrm{k}=1 \text { to K } \\ & s(t, k): \\ &=\sum_{l \in[K]} s(t-1, l) B_{x_{t-1, l}} A_{l k} \\ & \mathrm{O}(\mathrm{K})\end{aligned}\right\} \mathrm{O}\left(\mathrm{TK}^{2}\right)$
So in total time O(TK²)

If layered

If layered, total time O(TK)

Forward Algorithm
For the start state k $s\left(0, k^{*}\right):=1$
For all other states k $s(0, k):=0$ constant time
For $\mathrm{t}=1$ to T
$\mathrm{O}(\mathrm{K})\left\{\begin{array}{l}\text { For } \mathrm{k}=1 \text { to } \mathrm{K} \\ s(t, k):=\sum_{l \in[K]} s(t-1, l) B_{x_{t-1, l}} A_{l k}\end{array}\right\} \mathrm{O}(\mathrm{TK})$
Replace by sum over constant number of states in previous layer

$$
p\left(x_{1: T}\right)=\sum_{k} p\left(x_{1: T}, z_{T+1}=k\right)
$$

$$
f_{t}(k)=p\left(\boldsymbol{x}_{1: t-1}, \boldsymbol{Z}_{t}=k\right)
$$

In general, (e.g. t=T)

$$
p\left(x_{1: t}\right)=\sum_{k} f_{t+1}(k)=\sum_{k} p\left(x_{1: t}, Z_{t+1}=k\right)
$$

since

$$
\begin{gathered}
Z_{1} \rightarrow Z_{2} \rightarrow Z_{3} \rightarrow \cdots \rightarrow Z_{T} \rightarrow Z_{T+1} \\
\downarrow \begin{array}{l}
\downarrow \\
x_{1} \\
x_{2}
\end{array} \underset{x_{3}}{\downarrow} \quad \underset{x_{T}}{\downarrow}
\end{gathered}
$$

- The final probability is easily obtained

$$
p\left(\boldsymbol{Z}_{t}=k \mid x_{1: t}\right)
$$

- Filtering: $\mathrm{p}\left(\mathrm{zt}_{\mathrm{t}} \mid \mathrm{x}_{1: t}\right)$, online
FILTERING

$$
\begin{aligned}
& p\left(\boldsymbol{Z}_{t}=k \mid \boldsymbol{x}_{1: t}\right)=\frac{p\left(\boldsymbol{x}_{1: t}, \boldsymbol{Z}_{t}=k\right)}{p\left(\boldsymbol{x}_{1: t}\right)} \\
&=\frac{p\left(\boldsymbol{x}_{1: t-1}, \boldsymbol{Z}_{t}=k\right) p\left(\boldsymbol{x}_{t} \mid \boldsymbol{Z}_{t}=k\right)}{p\left(\boldsymbol{x}_{1: t}\right)} \\
&=\frac{f_{t}(k) p\left(\boldsymbol{x}_{t} \mid \boldsymbol{Z}_{t}=k\right)}{p\left(\boldsymbol{x}_{1: t}\right)} \text { emission } \\
& \text { data probability }
\end{aligned}
$$

- Filtering: $p\left(z_{t} \mid x_{1: t}\right)$, online

Backward variable

Defined by

$$
b_{t}(k):=p\left(\boldsymbol{x}_{t+1: T} \mid \boldsymbol{Z}_{t}=k\right)
$$

"Graphical model"

Sum rule gives Z_{t+1}

Defined by

$$
b_{t}(k):=p\left(x_{t+1: T} \mid Z_{t}=k\right)=\sum_{l \in[K]} p\left(x_{t+1: T}, Z_{t+1}=l \mid Z_{t}=k\right)
$$

Each term in the sum is a probability of an event
"which is an AND of"

$$
\begin{gathered}
Z_{t+1}^{\downarrow}=l \\
x_{t+1}^{\downarrow}
\end{gathered} Z_{t+1}=l \rightarrow \underset{x_{t+2}^{\downarrow}}{?} \rightarrow \underset{x_{T}}{\downarrow}
$$

