

Royal Institute of Technology

MACHINE LEARNING 2 – UGM, HMMS Lecture 7

THIS LECTURE

- DGM semantics
- ★ UGM
- ★ De-noising
- ★ HMMs
 - Applications (interesting probabilities)
 - DP for generation probability etc.
 - (later Baum-Welch)

EXTENDED STUDENT EXAMPLE

B - better H - higher

L - less

EXTENDED STUDENT EXAMPLE

INDEPENDENCE I-MAP

- * I(G) (conditional) independences implied by G (not yet defined)
- ★ I(P) (conditional) independences in the distribution P
- ★ G I-map for P in I(G) \subseteq I(P)

INDEPENDENCE I-MAP

- ★ I(G) independences implied by G (not yet defined)
- ★ I(P) independences in the distribution P
- ★ G I-map for P in I(G) \subseteq I(P)

- * p: X and Y ind. ex. p(X=1) = 0.48 + 0.12 = 0.6, p(Y=1) = 0.8, and p(X=1,Y=1) = 0.48
- ★ q: X and Y are dependent

INDEPENDENCE I-MAP

- ★ I(G) independences implied by G (not yet defined)
- ★ I(P) independences in the distribution P
- ★ G I-map for P in I(G) \subseteq I(P)

- ★ All three graphs are I-maps for p
- * G_1 and G_2 are I-maps for q, but G_3 is not

D-SEPARATION

 \star A path is d-separated by O if it has

- a chain $X \rightarrow Y \rightarrow Z$ where $Y \in O$
- a fork $X \leftarrow Y \rightarrow Z$ where $Y \in O$
- a v-structure $X \rightarrow Y \leftarrow Z$ where $(Y \cup desc(Y)) \cap O = \emptyset$

★ A is d-separated from B given O if
 every undirected path between A and
 B is d-separated by O

★ Cond. ind rel. in DAG G, $oldsymbol{x}_A \perp_G oldsymbol{x}_B | oldsymbol{x}_O$

A is d-separated from B given O

FACTORIZATION OVER G

$$p(x_1,\ldots,x_N) = \prod_{n=1}^N p(x_n | \boldsymbol{x}_{\mathrm{pa}(x_n)})$$

p can be factorized over G if it can be expressed as above

SOUNDNESS AND COMPLETENESS

- * I(G) conditional independence relations implied by d-sep in G
- I(p) conditional independence relations satisfied by p
- ★ Theorem

A distribution P can be factorised over G iff $I(G) \subseteq I(p)$

★ "=" not possible to achieve, ex. clique and independent distribution

- UGMs Undirected graphical models
- What is the direction between 2 pixels, 2 proteins?
- * Probabilistic interpretation?
- p factorizes over G can be
 expressed as normalized product
 over factors associated with
 cliques

EXAMPLE CLIQUE

EXAMPLE MAXIMAL CLIQUE

EXAMPLE MAXIMUM CLIQUE

- * An undirected graph G with so-called factors associated with its maximal cliques C(G) , for $C \in C(G)$ factor ψ_C
- * ψ_C is a function from the clique's variables (the scope) to non-neg real numbers

$$p(x_1, \dots, x_V) = \frac{1}{Z} \prod_{C \in C(G)} \psi_C(x_C)$$
$$Z = \sum_{x_1, \dots, x_V} \prod_{C \in C(G)} \psi_C(x_C)$$

Factors – misconception example

$$P(A, B, C, D) = \frac{1}{Z}\phi_1(A, B)\phi_2(B, C)\phi_3(C, D)\phi_4(D, A)$$

$$Z = \sum_{a,b,c,d} \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(d,a)$$

PROBABILISTIC INTERPRETATION

•

 $\phi_1(A = 1, B = 1)\phi_2(B = 1, C = 0)\phi_3(C = 0, D = 1)\phi_4(D = 1, A = 1)$ $= 10 \cdot 1 \cdot 100 \cdot 100$ = 100000

 $Z = \sum_{a,b,c,d} \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(d,a)$ A FACTOR PRODUCT

DE-NOISING

ISING MODEL-DE-NOISING

Values -1,1

Factors of form

$$e^{\beta x_i x_j}$$

and

$$e^{\eta x_i y_i}$$

p(y | x) ex Gaussian

ISING MODEL-DE-NOISING

Values -1,1

Factors of form

$$e^{eta x_i x_j}$$

and

$$e^{\eta x_i y_i}$$

- ★ Bipartite graph
- ★ Suggests iterative procedu

 Large is the noisy image; upper, UGM de-noised; and lower, graph cut de-noised

$\Box ATENT = HIDDEN$

17 parameters

59 parameters

- ★ Can reduce #parameters
- \star Can represent common causes

MARKOV CHAINS (DISCRETE)

★Directed graph with transition probabilities

★ We observe the sequence of visited vertices

MARKOV CHAINS (DISCRETE)

Probabilities on outgoing edges sum to one

THE OCCASIONALLY DISHONEST CASINO

EMISSION DISTRIBUTIONS

Rolls: 6641532161621152346532143566342616552 Die: LLLLLLLLLLFFFFFFLLLLLLLLLLLFFF

WHAT AN HMM DOES

- \star Starts in the state z₁
- \star When in state z_t
 - outputs $p(x_t|z_t)$
 - moves to $p(z_{t+1}|z_t)$
- Stops after a fixed number of steps or when reaching a stop step

Rolls: 6641532161621152346532143566342616552 Die: LLLLLLLLLLFFFFFFLLLLLLLLLLLFFF

WHAT AN HMM DOES

- \star Starts in the state z₁
- \star When in state z_t
 - outputs $p(\mathbf{x}_t|\mathbf{z}_t)$ B_{x_t,t_t}
 - moves to $p(z_{t+1}|z_t)$ A_{z_{t+1},z_t}
- Stops after a fixed number of steps or when reaching a stop step

The parameters

$p({m{x}}_{1:T}, {m{z}}_{1:T+1})$ $= p(\boldsymbol{x}_{1:T} | \boldsymbol{z}_{1:T}) p(\boldsymbol{z}_{1:T+1})$ $\left| = p(\boldsymbol{z}_1) \left(\prod_{t=1}^T p(\boldsymbol{z}_{t+1} | \boldsymbol{z}_t) \right) \left(\prod_{t=1}^T p(\boldsymbol{x}_t | \boldsymbol{z}_t) \right) \right|$ Categorial or Gaussian

THE JOINT DISTRIBUTION

- \star Starts in the state z₁
- \star When in state z_t
 - emits p(xt|zt)
 - transits to $p(z_{t+1}|z_t)$
- Stops after a fixed number of steps or when reaching a stop step

$p({m{x}}_{1:T}, {m{z}}_{1:T+1})$ $= p(\boldsymbol{x}_{1:T} | \boldsymbol{z}_{1:T}) p(\boldsymbol{z}_{1:T+1})$ $\left| = p(\boldsymbol{z}_1) \left(\prod_{t=1}^T p(\boldsymbol{z}_{t+1} | \boldsymbol{z}_t) \right) \left(\prod_{t=1}^T p(\boldsymbol{x}_t | \boldsymbol{z}_t) \right) \right|$ Categorial or Gaussian

THE JOINT DISTRIBUTION

- \star Starts in the state z₁
- \star When in state z_t
 - emits p(xt|zt)
 - transits to $p(z_{t+1}|z_t)$
- Stops after a fixed number of steps or when reaching a stop step

GAUSSIAN EMISSIONS AND HIDDEN STATES

LAYERED OR NOT

APPLICATIONS OF HMMS

	Х	Х	•	•	•	Х
bat	Α	G	-	-	-	C
rat	Α	-	А	G	-	C
cat	Α	G	-	Α	Α	-
gnat	-	-	А	Α	Α	C
goat	Α	G	-	-	-	C
	1	2	•		•	3

- Automatic speech recognition
- Part of speech tagging
- Gene finding

- Gene family characterization
- Secondary structure prediction

TERMINOLOGY X ABOVE Z BELOW

MORE INFERENCE TYPES

	Х	Х	•	•	•	Х
bat	Α	G	-	-	-	С
rat	Α	-	Α	G	-	С
cat	Α	G	-	A	Α	-
gnat	-	-	Α	A	Α	С
goat	Α	G	-	-	-	С
	1	2		•		3

- Viterbi (MAP)
 argmax p(z_{1:T}|x_{1:T})
- Posterior samples:
 ~p(Z_{1:T}|X_{1:T})
- Probability of data: p(x1:T)

- Parameters:
 - given D & struct.
- Structure and param.:
 given D

INFERENCE IN THE OCCASIONALLY DISHONEST CASINO

Grey regions are states corresponding to biased die

• Filtering: $p(z_t|x_{1:t})$,

online

- Smoothing, MAP state: $p(z_t|x_{1:T})$ offline
- Viterbi, MAP path
 argmax p(z_{1:T}|x_{1:T})

- What is a subproblem?
- What is a subsolution?
- How do we decompose into smaller subproblems?
- How do we combine subsolutions into larger?
- How do we enumerate?
- How many and what time?

Polynomial many

Polynomial time

Polynomial time

Polynomial time

Polynomial time overall

$\Box P$

- What is a subproblem?
- What is a subsolution?
- How do we decompose into smaller subproblems?
- How do we combine subsolutions into larger?
- How do we enumerate?
- How many and what time?

AN HMM CAN BE SEEN AS A DGM

- Z_i hidden
- X_i observable
- Hidden often not observable when training, never when applying

SPECIAL CASE: HIDDEN MARKOV MODEL (HMM)

Combinations of the transition distributions

Combinations of emission the emission distribution

- Z_i hidden
- X_i observable
- Hidden often not observable when training, never when applying

$$p(\boldsymbol{x}_{1:T}) = \sum_{\boldsymbol{z}_{1:T}} p(\boldsymbol{x}_{1:T}, \boldsymbol{z}_{1:T})$$

$$f_t(k) := p(\boldsymbol{x}_{1:t-1}, \boldsymbol{Z}_t = k)$$

"Graphical model"

$$\begin{array}{c} ? \rightarrow ? \rightarrow ? \cdots ? \rightarrow Z_t = k \rightarrow ? \cdots \\ \downarrow & \downarrow & \downarrow & \downarrow \\ x_1 & x_2 & x_3 & x_{t-1} & \downarrow \\ \end{array}$$

JOINT &FORWARD VARIABLE

- Joint is easy to express
- The sum has exponentially many terms
- The forward variable, f_t,
 can be computed with
 DP

Zt-1=K' gives smaller

"Graphical model"

$$\begin{array}{c} ? \rightarrow ? \rightarrow ? \cdots ? \rightarrow Z_t = k \rightarrow ? \cdots \\ \downarrow & \downarrow & \downarrow & \downarrow \\ x_1 & x_2 & x_3 & x_{t-1} & \downarrow \\ \end{array}$$

 $f_t(k) := p(\boldsymbol{x}_{1:t-1}, \boldsymbol{Z}_t = k)$

Knowing also Z_{t-1} breaks it into smaller, i.e., the event

$$\begin{array}{c} ? \rightarrow ? \rightarrow ? \cdots Z_{t-1} = k' \rightarrow Z_t = k \rightarrow ? \cdots \\ \downarrow & \downarrow & \downarrow \\ x_1 & x_2 & x_3 & \downarrow \\ & & & & \downarrow \\ x_{t-1} & & ? \end{array}$$

"is the AND of the events"

Applying sum rule

Notice, by the sum rule,

$$f_t(k) = p(x_{1:t-1}, Z_t = k) = \sum_{k' \in [K]} p(x_{1:t-1}, Z_{t-1} = k', Z_t = k)$$

The set of states

each term in the sum is a probability of an event

$$\begin{array}{c} ? \rightarrow ? \rightarrow ? \cdots Z_{t-1} = k' \rightarrow Z_t = k \rightarrow ? \cdots \\ \downarrow & \downarrow & \downarrow & \downarrow \\ x_1 & x_2 & x_3 & \downarrow & \downarrow \\ x_{t-1} & & ? \end{array}$$

which, as noted, can be broken into smaller

Forward recursion

 $f_t(k) = \sum_{l} \underbrace{f_{t-1}(l)}_{\text{smaller}} \underbrace{p(\boldsymbol{x}_{t-1} | \boldsymbol{Z}_{t-1} = l)}_{\text{emission}} \underbrace{p(\boldsymbol{Z}_t = k | \boldsymbol{Z}_{t-1} = l)}_{\text{transition}}$

Forward recursion

 $f_t(k) = \sum_{l} \underbrace{f_{t-1}(l)}_{\text{smaller}} \underbrace{p(\boldsymbol{x}_{t-1} | \boldsymbol{Z}_{t-1} = l)}_{\text{emission } B_{\boldsymbol{x}_{t-1}, l}} \underbrace{p(\boldsymbol{Z}_t = k | \boldsymbol{Z}_{t-1} = l)}_{\text{transition } A_{lk}}$

Forward recursion

 $f_t(k) = \sum_{l} \underbrace{f_{t-1}(l)}_{\text{smaller}} \underbrace{p(\boldsymbol{x}_{t-1} | \boldsymbol{Z}_{t-1} = l)}_{\text{emission } B_{\boldsymbol{x}_{t-1}, l}} \underbrace{p(\boldsymbol{Z}_t = k | \boldsymbol{Z}_{t-1} = l)}_{\text{transition } A_{lk}}$

Given x_1, \ldots, x_T Forward Algorithm For the start state k^{*} $s(0, k^*) := 1$ For all other states k s(0,k) := 0For t=1 to T For k=1 to K $s(t,k) := \sum s(t-1,l)B_{x_t-1,l}A_{lk}$ $l \in [K]$

Time

Forward Algorithm For the start state k^{*} $s(0, k^*) := 1$ constant time For all other states k s(0,k) := 0For t=1 to T $O(K^{2}) \left\{ For k=1 \text{ to } K \\ s(t,k) := \sum_{l \in [K]} s(t-1,l) B_{x_{t-1,l}} A_{lk} \right\} O(TK^{2})$

So in total time O(TK²)

If layered

If layered, total time O(TK)

Forward Algorithm For the start state k* $s(0, k^*) := 1$ constant time For all other states k s(0,k) := 0For t=1 to T O(K) For k=1 to K $s(t,k) := \sum_{l \in [K]} s(t-1,l) B_{x_{t-1,l}} A_{lk}$ O(TK) Replace by sum over constant number of states in previous layer

$$p(\boldsymbol{x}_{1:T}) = \sum_{k} p(\boldsymbol{x}_{1:T}, z_{T+1} = k)$$

 $f_t(k) = p(\boldsymbol{x}_{1:t-1}, \boldsymbol{Z}_t = k)$

In general, (e.g. t=T)

$$p(\boldsymbol{x}_{1:t}) = \sum_{k} f_{t+1}(k) = \sum_{k} p(\boldsymbol{x}_{1:t}, \boldsymbol{Z}_{t+1} = k)$$

since

OBSERVATION PROBABILITY

The final probability is
 easily obtained

FILTERING

• Filtering: $p(z_t|x_{1:t})$, online

FILTERING

$$p(\mathbf{Z}_t = k | \mathbf{x}_{1:t}) = \frac{p(\mathbf{x}_{1:t}, \mathbf{Z}_t = k)}{p(\mathbf{x}_{1:t})}$$
$$= \frac{p(\mathbf{x}_{1:t-1}, \mathbf{Z}_t = k)p(\mathbf{x}_t | \mathbf{Z}_t = k)}{p(\mathbf{x}_{1:t})} \quad \text{emission}$$
$$= \frac{f_t(k)p(\mathbf{x}_t | \mathbf{Z}_t = k)}{p(\mathbf{x}_{1:t})} \quad \text{data probability}$$

• Filtering: $p(z_t|x_{1:t})$, online

Backward variable

Defined by $b_t(k) := p(oldsymbol{x}_{t+1:T} | oldsymbol{Z}_t = k)$

"Graphical model"

Sum rule gives Zt+1

Defined by

$$b_t(k) := p(x_{t+1:T} | Z_t = k) = \sum_{l \in [K]} p(x_{t+1:T}, Z_{t+1} = l | Z_t = k)$$

Each term in the sum is a probability of an event

"which is an AND of"

$$\begin{aligned} X_{t} = k \to Z_{t+1} = l & Z_{t+1} = l & Z_{t+1} = l \to ? \to \cdots ? \\ \downarrow & \downarrow & \downarrow \\ X_{t+1} & & x_{t+2} \to \cdots ? \\ \end{bmatrix} \end{aligned}$$