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Theorem 7.3 In a bipartite graph G with § >0, the number of vertices in a

maximum independent set is equal to the number of edges in a minimum
edge covering.

Proof Let G be a bipartite graph with §>0. By corollary 7.1 and
theorem 7.2, we have

at+B=a'+p'

and, since G is bipartite, it follows from theorem 5.3 that a'=B. Thus
a=8" 0

Even though the concept of an independent set is analogous to that of a
matching, there exists no theory of independent sets comparable to the
theory of matchings presented in chapter 5; for example, no good algorithm
for finding a maximum independent set in a graph is known. However, there
are two interesting theorems that relate the number of vertices in a max-
imum independent set of a graph to various other parameters of the graph.
These theorems will be discussed in sections 7.2 and 7.3.

Exercises

7.1.1 (a) Show that G is bipartite if and only if «(H)=3v(H) for every
subgraph H of G.
(b) Show that G is bipartite if and only if a(H)= g'(H) for every
subgraph H of G such that §(H)>0.
7.1.2 A graph is a-critical if a(G—e)>a(G) for all ec E. Show that
a connected a-critical graph has'no cut vertices.
7.1.3 A graph G is B-critical if B(G —e)<B(G) for all e € E. Show that
(a) = connected B-critical graph has no cut vertices;
(b)* if G is connected, then B <X +1).

7.2 RAMSEY'S THEOREM

In this section we deal only with simple graphs. A clique of a simple graph G
is a subset S of V such that G[S] is complete. Clearly, S is a clique of G if
and only if S is an independent set of G°, and so the two concepts are
complementary.

If G has no large cliques, then one might expect G to have a large
independent set. That this is indeed the case was first proved by Ramsey
(1930). He showed that, given any positive integers k and |, there exists a
smallest integer r(k,!) such that every graph on r(k, 1) vertices contains
either a clique of k vertices or an independent set of | vertices. For example,
it is easy to see that

r(1,)=r(k,1)=1 (7.5)
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and
r2,0)=1, r(k,2)=k (7.6)

The numbers r(k,l) are known as the Ramsey numbers. The following
theorem on Ramsey numbers is due to Erdos and Szekeres (1935) and
Greenwood and Gleason (1955).

Theorem 7.4 For any two integers k=2 and =2
r(k, )=r(k, I-1)+r(k—1,1) (7.7)

Furthermore, if r(k, l—1) and r(k — 1, I) are both even, then strict inequality
holds in (7.7).

Proof Let G be a graph on r(k,l—1)+r(k —1, 1) vertices, and let ve V.
We distinguish two cases:

(i) v is nonadjacent to a set S of at least r(k, [—1) vertices, or
(ii) v is adjacent to a set T of at least r(k —1,[) vertices.

Note that either case (i) or case (ii) must hold because the number of
vertices to which v is nonadjacent plus the number of vertices to which v is
adjacent is equal to r(k,l-1)+r(k—1,1)—1.

In case (i), G[S] contains either a clique of k vertices or an independent
set of 1—1 vertices, and therefore G[S U {v}] contains either a clique of k
vertices or an independent set of ! vertices. Similarly, in case (ii), G[T U{v}]
contains either a clique of k vertices or an independent set of | vertices.
Since one of case (i) and case (ii) must hold, it follows that G contains either
a clique of k vertices or an independent set of | vertices. This proves (7.7).

Now suppose that r(k,l—1) and r(k — 1, l) are both evén, and let G be a
graph on r(k,l—1)+r(k—1,1)—1 vertices. Since ‘G has an odd number of
vertices, it follows from corollary 1.1 that some vertex v is of even degree;
in particular, v cannot be adjacent to precisely r(k—1,l)—1 vertices.
Consequently, either case (i) or case (ii) above holds, and therefore G
contains either a clique of k vertices or an independent set of | vertices.
Thus ’

rik, )=r(k,1-1)+r(k—1,0)—-1
as stated O

The determination of the Ramsey numbers in general is a very difficult
unsolved problem. Lower bounds can be obtained by the construction of
suitable graphs. Consider, for example, the four graphs in figure 7.2.

The 5-cycle (figure 7.2a) contains no clique of three vertices and no
independent set of three vertices. It shows, therefore, that

r(3,3)=6 (7.8)
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Figure 7.2. (a) A (3,3)-Ramsey graph; (b) a (3,4)-Ramsey graph; (c) a (3,5)-Ramsey
’ graph; (d) a (4,4)-Ramsey graph

The graph of figure 7.2b contains no clique of three vertices and no
independent set of four vertices. Hence

r(3,4)=9 (7.9)
Similarly, the graph of figure 7.2¢ shows that

r(3,5)=14 (7.10)
and the graph of figure 7.2d yields

r(4,4)=18 (7.11)

With the aid of theorem 7.4 and equations (7.6) we can now show that
equality in fact holds in (7.8), (7.9), (7.10) and (7.11). Firstly, by (7.7) and
(7.6)

r(3,3)=r(3,2)+r(2,3)=6
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and therefore, using (7.8), we have r(3, 3) = 6. Noting that r(3, 3) and r(2, 4)
are both even, we apply theorem 7.4 and (7.6) to obtain

r(3,4)=<r(3,3)+r(2,4)—-1=9
With (7.9) this gives r(3, 4) = 9. Now we again apply (7.7) and (7.6) to obtain

r(3,5)=r(3,4)+r(2,5) =14
and
r(4,4)=<r(4,3)+r(3,4)=18

which, together with (7.10) and (7.11), respectively, yield r(3, 5)=14 and
r(4,4)=18.
The following table shows all Ramsey numbers r(k, I) known to date.

1
k\1234567

11 1 1 1 1 1 1
211 2 3 4 5 6 7
371 3 6 9 14 18 23
411 4 9 18

A (k,l)-Ramsey graph is a graph on r(k,1)—1 vertices that contains
neither a clique of k vertices nor an independent set of | vertices. By
definition of r(k, I) such graphs exist for all k =2 and | =2. Ramsey graphs
often séem to possess interesting structures. All of the graphs in figure 7.2
are Ramsey graphs; the last two can be obtained from finite fields in the
following way. We get the (3, 5)-Ramsey graph by regarding the thirteen
vertices as elements of the field of integers modulo 13, and joining twp
vertices by an edge if their difference is a cubic residue of 13 (either 1, 5, 8
or 12); the (4,4)-Ramsey graph is obtained by regarding the vertices as
elements of the field of integers modulo 17, and joining two vertices if their
difference is a quadratic residue of 17 (either 1, 2, 4, 8, 9, 13, 15 or 16). It
has "been conjectured that the (k, k)-Ramsey graphs are always self-
complementary (that is, isomorphic to their complements); this is true for
k=2, 3 and 4. :

In general, theorem 7.4 yields the following upper bound for r(k, I).
Theorem 7.5 rk, )= (k‘:_i_l 2)

Proof By 'induction on k+1 Using (7.5) and (7.6) we see that the
theorem holds when k +1=5. Let m and n be positive integers, and assume
that the theorem is valid for all positive integers k and | such that
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5=k+1<m+n. Then, by theorem 7.4 and the induction hypothesis
rim,n)sr(m,n—1)+r(m—1, n)
s(m+n—3)+(m+n—3)=(m+n—2)
m-—1 m-—2 m-1
Thus the theorem holds for all values of k and | 0O

A lower bound for r(k, k) is given in the next theorem. It is obtained by
means of a powerful technique known as the probabilistic method (see Erdds
and Spencer, 1974). The probabilistic method is essentially a crude counting
argument. Although nonconstructive, it can often be applied to assert the
existence of a graph with certain specified properties.

Theorem 7.6 (Erdos, 1947) r(k, k) =2*?

Proof. Since r(1,1)=1 and r(2,2)=2, we may assume that k =3. De-
note by 4. the set of simple graphs with vertex set {v,, vz, . . ., v}, and by
%, the set of those graphs in %, that have a clique of k vertices. Clearly

|G| = 2@ (7.12)

since each subset of the (;) possible edges viv; determines a graph in ..

Similarly, the number of graphs in %. having a particular set of k vertices as

a clique is 2-®_ Since there are (:) distinct k-element subsets of
{vy, v, . . ., v.}, we have

!cgﬂs(:)z('z‘)—(‘z‘) (7.13)
By (7.12) and (7.13)
|65 _ (n\,_x _n*2"®
@S(k)z O<r2 (7.14)

Suppose, now, that n <2*?. From (7.14) it follows that

Iisﬂ 2k2/22—(;)_2k/2 .
@<kt T kr<:

Therefore, fewer than half of the graphs in %, contain a clique of k vertices.
Also, because 4,={G|G°e%.}, fewer than half of the graphs in %,
contain an independent set of k vertices. Hence some graph in %, contains
neither a clique of k vertices nor an independent set of k vertices. Because
this holds for any n <2*?, we have r(k, k)=2> 0O

From theorem 7.6 we can immediately deduce a lower bound for r(k, 1).
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Corollary 7.6 If m = min{k, I}, then r(k, [)= 2™

All known lower bounds for r(k,[) obtained by constructive arguments
are much weaker than that given in corollary 7.6; the best is due to Abbott
(1972), who shows that r(2"+1,2"+1)=5"+1 (exercise 7.2.4).

The Ramsey numbers r(k, I) are sometimes defined in a slightly different
way from that given at the beginning of this section. One easily sees that
r(k, 1) can be thought of as the smallest integer n such that every 2-edge
colouring (Ei, E;) of K, contains either a complete subgraph on k vertices,
all of whose edges are in colour 1, or a complete subgraph on [ vertices, all
of whose edges are in colour 2. Expressed in this form, the Ramsey numbers
have a natural generalisation. We define r(ki, ks, . . ., km) to be the smallest
integer n such that every m-edge colouring (E;, E, . . ., Ex) of K, contains,
for some i, a complete subgraph on k; vertices, all of whose edges are in
colour i. '

Thke following theorem and corollary generalise (7.7) and theorem 7.5,
and can be proved in a similar manner. They are left as an exercise (7.2.2).

Theorem 7.7 r(ki, kav..., k;)=<r(ki=1,ka, ..., ka)+
Mky, ka—1, ..., kn)+. .. +r(ky, kzy ..o, km—1)—m+2

!
Corollary 7.7 r(k:+1,k,+1,..., km+1)s(k‘+k2+' ot kg)!

kilky! .. Kn!

Exercises

7.2.1 Show that, for all k and I, r(k, 1) =r(l, k).

7.2.2 Prove theorem 7.7 and corollary 7.7.

7.2.3 Let r, denote the Ramsey number r(k,, ks, . . ., k) with k;=3 for all
i. '
(a) Show that r,=n(r.-,—1)+2.
(b) Noting that r,=6, use (a) to show that r,=<[n!e]+1.
(c) Deduce that r;<17.

(Greenwood and Gleason, 1955 have shown that r;=17.)

7.2.4 The composition of simple graphs G and H is the simple graph G[H]
with vertex set V(G)x V(H), in which (u, v) is adjacent to (u', v') if
and only if either uu'e E(G) or u=u' and vv'e E(H).

(a) Show that a(G[H])= a(G)a(H).
(b) Using (a), show that

r(kl+1,kl+1)-1=((k+1,k+1)=-1)x(r(+1,1+1)-1)

(c) Deduce that r(2"+1,2"+1)=5"+1 for all n=0.
(H. L. Abbott)
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2. Classical Two-Color Ramsey Numbers

2.1. Values and bounds for R(k,l), k <10, <15

1 3 4| s 6 7 8 9 10 11 12 13 14 15
k
3 6| 9| 14 18 23 28 36 40 4 32 > 66 3
4 50 59 68 77 87
36 | 49 58 73 92 98 128 133 141 153
4 185 41 61 84 115 149 191 238 291 349 417
43 58 80 101 126 144 171 191 213 239 265
> 49 87 | 143 216 316 442 633 848 1138 1461 1878
102 | 113 132 169 179 253 263 317 401
6 165 | 298 | 495 780 1171 1804 | 2566 3703 5033 6911
205 217 241 289 405 417 511
! 540 | 1031 | 1713 2826 | 4553 6954 | 10578 | 15263 | 22112
282 317 817 861
8 1870 | 3583 6090 | 10630 | 16944 | 27485 | 41525 | 63609
565 581
? 6588 | 12677 | 22325 | 38832 | 64864
0 798 1265
23556 | 45881 | 81123
Table I. Known nontrivial values and bounds for two color
Ramsey numbers R (k,l) = R(k,l ;2).
! 4 5 6 7 8 9 10 11 12 13 14 15
k
5 66 | 66 | Key Ka2 GR Ka2 Ex5 Ex20 | ExI2 Piwl Ex8 WW
GrY MZ GR GoR1 GoR1 Les GoR1 GoR1 GoR1
Kal | BEx19 | Ex3 Ex20 Ex16 | HaKrl | Ex17 SLL 23e | XXR | XXR
4 a6 MR4 MR5 Mac Mac Mac Mac Spe4 Spe4 Spe4 Spe4 Spe4
5 Ex4 Ex9 CaET HaKrl Ex17 Ex17 Gerb Gerb Gerb Gerb Ex16
MRS | HZ1 | Spe4 Sped Mac Mac HW+ | HW+ | HW+ | HW+ | HW+
Kal | Bxl6 | XSR2 | XXER | Exl6 XXR | XSR2 | XXER 23h
6 Mac | Mac Mac Mac Mac HW+ | HW+ | HW+ | HW+ | HW+
She2 | XSR2 | XSR2 23h | XXER | XSR2 | XXR
! Mac Mac HZ1 Mac HW+ | HW+ | HW+ | HW+ | HW+
BR XXER XXER 23h
8 Mac Eal HZ1 HW+ | HW+ | HW+ | HW+ | HW+
She2 | XSR2
? ShZ1 Eal HW+ | HW+ | HW+
She2 23h
10 Shi2 HW+ | HW+

References for Table I;
HW+ abbreviates HWSYZH, as enhanced by Boza [Boza5], see 2.1.m.



