104

and

Theorem 7.3 In a bipartite graph G with $\delta > 0$, the number of vertices in a maximum independent set is equal to the number of edges in a minimum edge covering.

Proof Let G be a bipartite graph with $\delta > 0$. By corollary 7.1 and theorem 7.2, we have

$$\alpha + \beta = \alpha' + \beta'$$

and, since G is bipartite, it follows from theorem 5.3 that $\alpha' = \beta$. Thus $\alpha = \beta'$

Even though the concept of an independent set is analogous to that of a matching, there exists no theory of independent sets comparable to the theory of matchings presented in chapter 5; for example, no good algorithm for finding a maximum independent set in a graph is known. However, there are two interesting theorems that relate the number of vertices in a maximum independent set of a graph to various other parameters of the graph. These theorems will be discussed in sections 7.2 and 7.3.

Exercises

- 7.1.1 (a) Show that G is bipartite if and only if $\alpha(H) \ge \frac{1}{2}\nu(H)$ for every subgraph H of G.
 - (b) Show that G is bipartite if and only if $\alpha(H) = \beta'(H)$ for every subgraph H of G such that $\delta(H) > 0$.
- 7.1.2 A graph is α -critical if $\alpha(G-e) > \alpha(G)$ for all $e \in E$. Show that a connected α -critical graph has no cut vertices.
- 7.1.3 A graph G is β -critical if $\beta(G-e) < \beta(G)$ for all $e \in E$. Show that
 - (a) a connected β -critical graph has no cut vertices;
 - (b)* if G is connected, then $\beta \leq \frac{1}{2}(\varepsilon + 1)$.

7.2 RAMSEY'S THEOREM

In this section we deal only with simple graphs. A clique of a simple graph G is a subset S of V such that G[S] is complete. Clearly, S is a clique of G if and only if S is an independent set of G^c , and so the two concepts are complementary.

If G has no large cliques, then one might expect G to have a large independent set. That this is indeed the case was first proved by Ramsey (1930). He showed that, given any positive integers k and l, there exists a smallest integer r(k, l) such that every graph on r(k, l) vertices contains either a clique of k vertices or an independent set of l vertices. For example, it is easy to see that

$$r(1, l) = r(k, 1) = 1$$
 (7.5)

r(2, l) = l, r(k, 2) = k (7.6)

The numbers r(k, l) are known as the Ramsey numbers. The following theorem on Ramsey numbers is due to Erdös and Szekeres (1935) and Greenwood and Gleason (1955).

Theorem 7.4 For any two integers $k \ge 2$ and $l \ge 2$

$$r(k, l) \le r(k, l-1) + r(k-1, l)$$
 (7.7)

Furthermore, if r(k, l-1) and r(k-1, l) are both even, then strict inequality holds in (7.7).

Proof Let G be a graph on r(k, l-1) + r(k-1, l) vertices, and let $v \in V$. We distinguish two cases:

- (i) v is nonadjacent to a set S of at least r(k, l-1) vertices, or
- (ii) v is adjacent to a set T of at least r(k-1, l) vertices.

Note that either case (i) or case (ii) must hold because the number of vertices to which v is nonadjacent plus the number of vertices to which v is adjacent is equal to r(k, l-1) + r(k-1, l) - 1.

In case (i), G[S] contains either a clique of k vertices or an independent set of l-1 vertices, and therefore $G[S \cup \{v\}]$ contains either a clique of k vertices or an independent set of l vertices. Similarly, in case (ii), $G[T \cup \{v\}]$ contains either a clique of k vertices or an independent set of l vertices. Since one of case (i) and case (ii) must hold, it follows that G contains either a clique of k vertices or an independent set of l vertices. This proves (7.7).

Now suppose that r(k, l-1) and r(k-1, l) are both even, and let G be a graph on r(k, l-1)+r(k-1, l)-1 vertices. Since G has an odd number of vertices, it follows from corollary 1.1 that some vertex v is of even degree; in particular, v cannot be adjacent to precisely r(k-1, l)-1 vertices. Consequently, either case (i) or case (ii) above holds, and therefore G contains either a clique of k vertices or an independent set of l vertices. Thus

$$r(k, l) \le r(k, l-1) + r(k-1, l) - 1$$

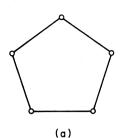
as stated

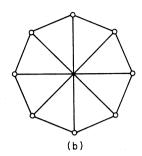
The determination of the Ramsey numbers in general is a very difficult unsolved problem. Lower bounds can be obtained by the construction of suitable graphs. Consider, for example, the four graphs in figure 7.2.

The 5-cycle (figure 7.2a) contains no clique of three vertices and no independent set of three vertices. It shows, therefore, that

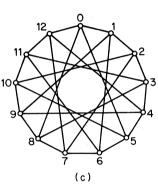
$$r(3,3) \ge 6 \tag{7.8}$$

Independent Sets and Cliques





105



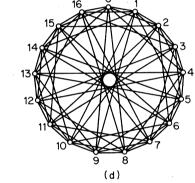


Figure 7.2. (a) A (3,3)-Ramsey graph; (b) a (3,4)-Ramsey graph; (c) a (3,5)-Ramsey graph; (d) a (4,4)-Ramsey graph

The graph of figure 7.2b contains no clique of three vertices and no independent set of four vertices. Hence

$$r(3,4) \ge 9 \tag{7.9}$$

Similarly, the graph of figure 7.2c shows that

$$r(3,5) \ge 14 \tag{7.10}$$

and the graph of figure 7.2d yields

$$r(4,4) \ge 18 \tag{7.11}$$

With the aid of theorem 7.4 and equations (7.6) we can now show that equality in fact holds in (7.8), (7.9), (7.10) and (7.11). Firstly, by (7.7) and (7.6)

$$r(3,3) \le r(3,2) + r(2,3) = 6$$

106

Graph Theory with Applications

and therefore, using (7.8), we have r(3, 3) = 6. Noting that r(3, 3) and r(2, 4) are both even, we apply theorem 7.4 and (7.6) to obtain

$$r(3, 4) \le r(3, 3) + r(2, 4) - 1 = 9$$

With (7.9) this gives r(3, 4) = 9. Now we again apply (7.7) and (7.6) to obtain

$$r(3,5) \le r(3,4) + r(2,5) = 14$$

and

$$r(4, 4) \le r(4, 3) + r(3, 4) = 18$$

which, together with (7.10) and (7.11), respectively, yield r(3, 5) = 14 and r(4, 4) = 18.

The following table shows all Ramsey numbers r(k, l) known to date.

k							
1	1	1	1	1 4 9 18	1	1	1
2	1	2	3	4	5	6	7
3	1	3	6	9	14	18	23
4	1	4	9	18			

A (k, l)-Ramsey graph is a graph on r(k, l)-1 vertices that contains neither a clique of k vertices nor an independent set of l vertices. By definition of r(k, l) such graphs exist for all $k \ge 2$ and $l \ge 2$. Ramsey graphs often seem to possess interesting structures. All of the graphs in figure 7.2 are Ramsey graphs; the last two can be obtained from finite fields in the following way. We get the (3, 5)-Ramsey graph by regarding the thirteen vertices as elements of the field of integers modulo 13, and joining two vertices by an edge if their difference is a cubic residue of 13 (either 1, 5, 8 or 12); the (4, 4)-Ramsey graph is obtained by regarding the vertices as elements of the field of integers modulo 17, and joining two vertices if their difference is a quadratic residue of 17 (either 1, 2, 4, 8, 9, 13, 15 or 16). It has been conjectured that the (k, k)-Ramsey graphs are always self-complementary (that is, isomorphic to their complements); this is true for k = 2, 3 and 4.

In general, theorem 7.4 yields the following upper bound for r(k, l).

Theorem 7.5
$$r(k, l) \le {k+l-2 \choose k-1}$$

Proof By induction on k+l. Using (7.5) and (7.6) we see that the theorem holds when $k+l \le 5$. Let m and n be positive integers, and assume that the theorem is valid for all positive integers k and l such that

 $5 \le k + l < m + n$. Then, by theorem 7.4 and the induction hypothesis

$$r(m, n) \le r(m, n-1) + r(m-1, n)$$

 $\le {m+n-3 \choose m-1} + {m+n-3 \choose m-2} = {m+n-2 \choose m-1}$

Thus the theorem holds for all values of k and l

A lower bound for r(k, k) is given in the next theorem. It is obtained by means of a powerful technique known as the *probabilistic method* (see Erdös and Spencer, 1974). The probabilistic method is essentially a crude counting argument. Although nonconstructive, it can often be applied to assert the existence of a graph with certain specified properties.

Theorem 7.6 (Erdös, 1947) $r(k, k) \ge 2^{k/2}$

Proof. Since r(1, 1) = 1 and r(2, 2) = 2, we may assume that $k \ge 3$. Denote by \mathcal{G}_n the set of simple graphs with vertex set $\{v_1, v_2, \ldots, v_n\}$, and by \mathcal{G}_n^k the set of those graphs in \mathcal{G}_n that have a clique of k vertices. Clearly

$$|\mathcal{G}_{\mathbf{n}}| = 2^{\binom{n}{2}} \tag{7.12}$$

since each subset of the $\binom{n}{2}$ possible edges $v_i v_j$ determines a graph in \mathcal{G}_n . Similarly, the number of graphs in \mathcal{G}_n having a particular set of k vertices as a clique is $2^{\binom{n}{2}-\binom{k}{2}}$. Since there are $\binom{n}{k}$ distinct k-element subsets of $\{v_1, v_2, \ldots, v_n\}$, we have

$$|\mathcal{G}_{n}^{k}| \le {n \choose k} 2^{{n \choose 2} - {k \choose 2}}$$
 (7.13)

By (7.12) and (7.13)

$$\frac{|\mathcal{G}_{n}^{k}|}{|\mathcal{G}_{n}|} \le {n \choose k} 2^{-{k \choose 2}} < \frac{n^{k} 2^{-{k \choose 2}}}{k!} \tag{7.14}$$

Suppose, now, that $n < 2^{k/2}$. From (7.14) it follows that

$$\frac{|\mathcal{G}_{n}^{k}|}{|\mathcal{G}_{n}|} < \frac{2^{k^{2/2}}2^{-\binom{k}{2}}}{k!} = \frac{2^{k/2}}{k!} < \frac{1}{2}$$

Therefore, fewer than half of the graphs in \mathcal{G}_n contain a clique of k vertices. Also, because $\mathcal{G}_n = \{G \mid G^c \in \mathcal{G}_n\}$, fewer than half of the graphs in \mathcal{G}_n contain an independent set of k vertices. Hence some graph in \mathcal{G}_n contains neither a clique of k vertices nor an independent set of k vertices. Because this holds for any $n < 2^{k/2}$, we have $r(k, k) \ge 2^{k/2}$ \square

From theorem 7.6 we can immediately deduce a lower bound for r(k, l).

Corollary 7.6 If $m = \min\{k, l\}$, then $r(k, l) \ge 2^{m/2}$

All known lower bounds for r(k, l) obtained by constructive arguments are much weaker than that given in corollary 7.6; the best is due to Abbott (1972), who shows that $r(2^n+1, 2^n+1) \ge 5^n+1$ (exercise 7.2.4).

The Ramsey numbers r(k, l) are sometimes defined in a slightly different way from that given at the beginning of this section. One easily sees that r(k, l) can be thought of as the smallest integer n such that every 2-edge colouring (E_1, E_2) of K_n contains either a complete subgraph on k vertices, all of whose edges are in colour 1, or a complete subgraph on l vertices, all of whose edges are in colour 2. Expressed in this form, the Ramsey numbers have a natural generalisation. We define $r(k_1, k_2, \ldots, k_m)$ to be the smallest integer n such that every m-edge colouring (E_1, E_2, \ldots, E_m) of K_n contains, for some i, a complete subgraph on k_i vertices, all of whose edges are in colour i.

The following theorem and corollary generalise (7.7) and theorem 7.5, and can be proved in a similar manner. They are left as an exercise (7.2.2).

Theorem 7.7
$$r(k_1, k_2, ..., k_m) \le r(k_1 - 1, k_2, ..., k_m) + r(k_1, k_2 - 1, ..., k_m) + ... + r(k_1, k_2, ..., k_m - 1) - m + 2$$

Corollary 7.7
$$r(k_1+1, k_2+1, ..., k_m+1) \le \frac{(k_1+k_2+...+k_m)!}{k_1! \ k_2! \ ... \ k_m!}$$

Exercises

108

- 7.2.1 Show that, for all k and l, r(k, l) = r(l, k).
- 7.2.2 Prove theorem 7.7 and corollary 7.7.
- **7.2.3** Let r_n denote the Ramsey number $r(k_1, k_2, \ldots, k_n)$ with $k_i = 3$ for all i.
 - (a) Show that $r_n \le n(r_{n-1}-1)+2$.
 - (b) Noting that $r_2 = 6$, use (a) to show that $r_n \le [n! \ e] + 1$.
 - (c) Deduce that $r_3 \le 17$. (Greenwood and Gleason, 1955 have shown that $r_3 = 17$.)
- 7.2.4 The composition of simple graphs G and H is the simple graph G[H] with vertex set $V(G) \times V(H)$, in which (u, v) is adjacent to (u', v') if and only if either $uu' \in E(G)$ or u = u' and $vv' \in E(H)$.
 - (a) Show that $\alpha(G[H]) \leq \alpha(G)\alpha(H)$.
 - (b) Using (a), show that

$$r(kl+1, kl+1) - 1 \ge (r(k+1, k+1) - 1) \times (r(l+1, l+1) - 1)$$

(c) Deduce that $r(2^n + 1, 2^n + 1) \ge 5^n + 1$ for all $n \ge 0$.

(H. L. Abbott)

2. Classical Two-Color Ramsey Numbers

2.1. Values and bounds for R(k, l), $k \le 10$, $l \le 15$

	l	3	4	5	6	7	8	9	10	11	12	13	14	15
k														
3		6	9	14	18	23	28	36	40	47	52	59	66	73
3	3								42	50	59	68	77	87
4	4		18	25	36	49	58	73	92	98	128	133	141	153
4				23	41	61	84	115	149	191	238	291	349	417
5				43	58	80	101	126	144	171	191	213	239	265
)				49	87	143	216	316	442	633	848	1138	1461	1878
6					102	113	132	169	179	253	263	317		401
0					165	298	495	780	1171	1804	2566	3703	5033	6911
7						205	217	241	289	405	417	511		
′						540	1031	1713	2826	4553	6954	10578	15263	22112
8							282	317				817		861
							1870	3583	6090	10630	16944	27485	41525	63609
9								565	581					
9								6588	12677	22325	38832	64864		
10									798					1265
									23556	45881	81123			

Table I. Known nontrivial values and bounds for two color Ramsey numbers R(k, l) = R(k, l; 2).

	l	4	5	6	7	8	9	10	11	12	13	14	15
k													
3	GG	GG	V ś.m.:	Ka2	GR	Ka2	Ex5	Ex20	Ex12	Piw1	Ex8	ww	
3		uu	dd	Kéry	GrY	MZ	GR	GoR1	GoR1	Les	GoR1	GoR1	GoR1
4	CC	Ka1	Ex19	Ex3	Ex20	Ex16	HaKr1	Ex17	SLL	2.3.e	XXR	XXR	
		GG	MR4	MR5	Mac	Mac	Mac	Mac	Spe4	Spe4	Spe4	Spe4	Spe4
5			Ex4	Ex9	CaET	HaKr1	Ex17	Ex17	Gerb	Gerb	Gerb	Gerb	Ex16
			MR5	HZ1	Spe4	Spe4	Mac	Mac	HW+	HW+	HW+	HW+	HW+
6				Ka1	Ex16	XSR2	XXER	Ex16	XXR	XSR2	XXER		2.3.h
				Mac	Mac	Mac	Mac	Mac	HW+	HW+	HW+	HW+	HW+
7					She2	XSR2	XSR2	2.3.h	XXER	XSR2	XXR		
					Mac	Mac	HZ1	Mac	HW+	HW+	HW+	HW+	HW+
8					BR	XXER				XXER		2.3.h	
					Mac	Ea1	HZ1	HW+	HW+	HW+	HW+	HW+	
9						She2	XSR2						
						ShZ1	Ea1	HW+	HW+	HW+			
10							She2					2.3.h	
							Shi2	HW+	HW+				

References for Table I;

HW+ abbreviates HWSYZH, as enhanced by Boza [Boza5], see 2.1.m.