[D2212 Network Programming with Java
Lecture 9

Java Database Connectivity (JDBC)
Java Persistence API (JPA)

Leif Lindback and Vladimir Vlassov
KTH/ICT/SCS
HT 2015

JDBC: Java Database Connectivity

java.sql
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/index.html

Lecture 9: JDBC and JPA 2

Java Database Connectivity (JDBC)

* An API for unified Java program

connectivity to :
relational databases @E
— Establish a connection
with a data source

JDBC Driver

— Execute SQL queries
on the data source v

— Get and process results

Lecture 9: JDBC and JPA

Database

A database 1s essentially a smart container for tables.
A table 1s a named container comprised of rows.

A row 1s (conceptually) a container comprised of
columns.

A column 1s a single data item having a name, type, and
value.

Lecture 9: JDBC and JPA 4

SQL

* SQL (Structured Query Language)

— An industry-standard language for creating, updating and,
querying relational DBMS.

— Developed by IBM in the 1970s

— A single SQL statement can be very expressive and can
initiate high-level actions, such as sorting and merging.

Lecture 9: JDBC and JPA

SQL Primer

* Create a table in SQL:

CREATE TABLE <table name> (<column element> [,
<column element>]...)

* wherecolumn element is of the form:

<column name> <data type> [DEFAULT <expression>] [<column
constraint> [, <column constraint>]...]

* where column constraint is of the form:
NOT NULL | UNIQUE | PRIMARY KEY

* Example:

CREATE TABLE participants (ID char(5), NAME char(64), GENDER
char(1), COUNTRY char(32), BIRTHDAY date, HEIGHT double,
WEIGHT double, SUBJECT char(32));

* Drop a table:

DROP TABLE <table name>

Lecture 9: JDBC and JPA 6

SQL Primer (cont)

* Retrieve a set of columns from one or more tables:
SELECT [ALL | DISTINCT] <select list> FROM <table reference
list>
WHERE <search condition list> [ORDER BY <column
designator>
[ASC | DESC] [, <column designator> [ASC | DESC]]...]

- Example:
SELECT NAME, COUNTRY from participants WHERE GENDER=‘F’;

Lecture 9: JDBC and JPA 7

SQL Primer (cont)

* Insert rows:

INSERT INTO <table name> [(<column name> [, <column
name>]...)] VALUES (<expression> [,
<expression>]...)

- Example:

INSERT INTO participants VALUES (50044, ‘Wahlstrdm,
Robert’, ‘M’', 'Sweden’, 1979-05-03, 177.0, 61.0,
‘Skijumping’);

* Update rows:

UPDATE <table name> SET <column name = {<expression>
| NULL} [, <column name = {<expression> | NULL}]...
WHERE <search condition>

* Delete rows:
DELETE FROM <table name> WHERE <search condition>

Lecture 8: JDBC and JPA 8

JDBC Code Fragment

// Connect to the data source

Connection connection =
DriverManager.getConnection(

“jdbc:derby://localhost:1527/mydb”, "user”,
“pass”);

// Create SQL statement
Statement stmt = connection.createStatement();
// Send a query to the data source, get results

ResultSet rs = stmt.executeQuery(“SELECT a, b, c
FROM Tablel1”);

// Process results
while (rs.next()) {
int x = rs.getInt("a");
String s = rs.getString(“b");
float f = rs.getFloat("“c");

Lecture 9: JDBC and JPA

JDBC Programming Concepts

Data Source
Driver

Driver
Manager

Connection
Statement
Result set
Metadata

Transactions

jdbc:derby//

Java
Application

Driver
Manager AN
I \
| \
| \
I \
| AN
| N derby
h 4
Connection Derby
object driver
‘(Connection MySql
L object driver
fConnection Oracle
L object driver

Oracle

Lecture 9: JDBC and JPA

~

10

A Data Source

* A database, a file system, a (tab-separated-value) file.

* A data source 1s pointed to by an URL of the form
jdbc:<Sub-Protocol>:<Datasource-Name>

- For example:
* jdbc:derby://localhost:1527/myDataBase
* jdbc:mysql://localhost:3306/myDataBase

— A sub-protocol name
* indicates the type of data source, e.g. derby
* defines a driver to handle the data source.
* used by DriverManager to lookup a driver.
* User name and password might be required to connect to the data
SOurce.

Lecture 9: JDBC and JPA 11

A JDBC Driver

* An object that opens connection to a data source and handles
the connection.

* A JDBC driver class

- implements the JDBC Driver interface and can convert program
(and typically SQL) requests for a particular database.

* Loading a driver class. Two options

— Put name of the driver in the jdbc.drivers System property, e.g.
jdbc.drivers=org.apache.derby.jdbc.ClientXADataSource

* Will be checked by the DriverManager

- Load class explicitly, e.g.
Class.forName(“org.apache.derby.jdbc.ClientXADataSource”);

Lecture 9: JDBC and JPA 12

Driver Manager

* Driver Manager

— Parses URL of a data source, look for a driver to handle the
source, returns a Connection object, e.g.

Connection connection =
DriverManager.getConnection (url,
username, password);

Lecture 9: JDBC and JPA 13

Connection

Represents a session with a data source.
Used

- to create and prepare SQL statements and calls,
- to retrieve the meta data regarding the connection's database,
— to commit or to drop (rollback) all changes made to the
connection's database.
Any number of SQL statements can be executed over the
connection.

An application can have one or more connections to a
single data source or to several databases.

Lecture 9: JDBC and JPA

14

Connection (cont)

* To connect to a data source, you supply the following
information
— URL of a data source (database, file),
- class names of drivers,
— user name and password (both are optional)

* This info can be
- “hard-coded” in the code,
— passed as arguments to the application,

- loaded as Properties at run time from a configuration file of the form:

jdbc.drivers=org.apache.derby.jdbc.ClientXADataSource
jdbc.url=jdbc:derby://localhost:1527/myDataBase
db.username=user

db.password=pass

Lecture 9: JDBC and JPA 15

Using Configuration Properties.
Connecting to a Data Source.

FileInputStream in = new FileInputStream(configFileName);
Properties props = new Properties();

props.load(in);

String drivers = props.getProperty("jdbc.drivers");
System.setProperty("jdbc.drivers"”, drivers);
String url = props.getProperty("jdbc.url");
String username = props.getProperty("jdbc.username");
String password = props.getProperty("jdbc.password");
in.close();
Connection connection =

DriverManager.getConnection(url, username, password);

Lecture 9: JDBC and JPA 16

Database Meta-Data

* If necessary, query the Connection for meta-data about the
database structure:

- tables, supported SQL grammar, stored procedures,

— capabilities of the connection (e.g. supported isolation levels), etc.
DatabaseMetaData dbm = connection.getMetaData();

* The DatabaseMetaData interface defines various get and
checking methods, e.g.
ResultSet rs =
dbm.getTables(null, null, null, null);

System.out.println(“Table Name\tTable Type”);
while (rs.next()) {

System.out.println(rs.getString(3) + “\t" +
rs.getString(4)),;

Lecture 9: JDBC and JPA 17

Statement

* Create a SQL statement object from the
Connection object for sending commands and SQL
statements to the data source.

— Statement is like an envelope for SQL,

— Connection 1s like the transport to deliver the statement
to the driver,

— The driver forwards the SQL to the database and returns
results.

Lecture 9: JDBC and JPA 18

Statement (cont’d)

* Create a statement using the Connection object

-CcreateStatement()

* Creates a Statement object for sending SQL statements
to the database

- prepareStatement(String sql)

* Creates a PreparedStatement object for sending
parameterized SQL statements to the database.

-prepareCall(String sql)

* Creates a CallableStatement object for calling
stored procedures.

Lecture 9: JDBC and JPA 19

Executing A Statement

* Four methods of Statement for sending SQL to the
database and executing database calls:

- ResultSet executeQuery(String sql)

— Executes an SQL statement that returns a single ResultSet object.

- int executeUpdate(String sql)
— Executes an SQL INSERT, UPDATE or DELETE statement.

Lecture 9: JDBC and JPA 20

Result Set

* Result Set

— A table of data representing a database result set, which 1s
usually generated by executing a statement that queries the

database.
Statement stmt = con.createStatement();

ResultSet rs =
stmt.executeQuery("SELECT a, b FROM TABLE2");

— Organized into logical rows and columns of data.

— Maintains a cursor to a current row

Lecture 9: JDBC and JPA 21

Result Set (cont’d)

* The ResultSet interface contains methods for

— getting values from the set by name or position,
- traversing to the next, previous, first, and last row of the set,
- deleting current row, jumping to the insert row, and so on,

— getting result set meta-data.

Lecture 9: JDBC and JPA 22

Result Set Meta-Data

* Result set meta-data

- number of columns, names and types of columns.

Get from the result set of an execute method. For example:
ResultSetMetaData rsmd = rs.getMetaData();
int columnCount = rsmd.getColumnCount();

// Iterate through the columns

// and print each column name

for (int i = 1; i <= columnCount; i++) {
String columnName = rsmd.getColumnName(i);
System.out.print(columnName +"\t");

}
System.out.println("");

Lecture 9: JDBC and JPA 23

Iterating Though A Result Set

// Execute a SELECT query, get result set and
// meta-data.

ResultSet rs = stmt.executeQuery(sqlStr);
ResultSetMetaData rsmd = rs.getMetaData();
// Get the column count.
int columnCount = rsmd.getColumnCount();
// Iterate through each row printing the values.
// Print a $ if the column type is CURRENCY.
while (rs.next()) {

for (int i =1; i <= columnCount; i++) {

if (rsmd.getColumnTypeName(i).

equals("CURRENCY")) {
System.out.print("$");

}
System.out.print(rs.getString(i) +"\t");

}
System.out.println("");

Lecture 9: JDBC and JPA 24

PreparedStatement

* Represents a precompiled SQL statement
prepared using the Connection object.

PreparedStatement pstmt = con.prepareStatement(
"UPDATE EMPLOYEES SET SALARY = ? WHERE ID = ?");
pstmt.setBigDecimal(1, 153833.00);

pstmt.setInt(2, 110592);

int insCount = pstmt.executeUpdate();
System.out.println(“Updated ” + insCount +"“rows”);

Lecture 9: JDBC and JPA 25

PreparedStatement, Cont'd

* PreparedStatement has the following
advantages above Statement:

* Faster execution since the statement 1s not interpreted
and compiled at each call.

* More secure since SQL 1njection 1s not possible when
using a prepared statement.

Lecture 9: JDBC and JPA 26

Summary

* Steps for accessing and working with a data source
- Load (specify) a JDBC driver, URL of the source, username and password

— Create a connection to the data source pointed to by the URL:
Connection con =
DriverManager.getConnection(url, user, password)

— If necessary query the Connection for meta-data about the database:
DatabaseMetaData dbm = con.getMetaData();

— Create a SQL statement from the connection
Statement stmt = con.createStatement();

— Use the statement object to execute SQL query(ies)
ResultSet rs =
stmt.executeQuery("SELECT a, b FROM TABLE2");

— Check for SQLWarning, if any, or ignore
SQLWarning warning = stmt.getWarnings();

— Get and process the results from the query
- Finally close the database connection: con.close();

Lecture 9: JDBC and JPA 27

Transactions

* A transaction 1s a group of operations that are:

* Atomic, either all or no of the operations are
performed.

* Consistent, The data 1s left in a valid state.

* Isolated, transactions do not affect each other even 1f

they are concurrent.

* Durable, once a transaction has finished the data 1s
saved, no matter what happens afterwards.

* These four properties are referred to as ACID.

Lecture 9: JDBC and JPA 28

Transactions. Cont'd

* There are two operations that can end a transaction:

* Commit, all changes made during the transaction are
saved permanently.

* Rollback, All changes made during the transaction are
unmade and the data 1s left in the same state it had
before the transaction started.

Lecture 9: JDBC and JPA 29

Auto Commit

* By default, an active database connection 1s set to
auto commit

— all connection’s SQL statements are executed and
committed as individual transactions.

- The commit occurs when the statement completes or the
next execute occurs,

* If a statement returns a ResultSet, the statement completes
when the last row of the ResultSet has been retrieved or
the ResultSet has been closed.

Lecture 9: JDBC and JPA 30

Managing Transactions

* To enable/disable auto commit, call on the
Connection

- setAutoCommit(boolean)

* [If auto commiut 1s disabled, call on the Connection
- rollback()

* To drop all changes made since the previous commit/rollback and
releases any database locks currently held by the Connection.

- commit()

* To make all changes made since the previous commit/rollback
permanent and releases any database locks currently held by the
Connection.

Lecture 9: JDBC and JPA 31

Transaction Isolation I evel

* Specifies to which extent transactions avoid
sharing data. Different 1solation levels allow
different sets of the following phenomena.

— Phantom read - finding data (in where clause) added by
another transaction

— Dirty read - reading data not committed yet by another
transaction

— Non-repeatable read - rereading different data within
the same transaction

Lecture 9: JDBC and JPA 32

Transaction Isolation Level (cont’d)

* To control 1solation level of the Connection, use

- getTransactionIsolation()
- setTransactionIsolation(int level)

* May use also

DatabaseMetaData.
supportsTransactionIsolationLevel(int)

Lecture 9: JDBC and JPA 33

Transaction Isolation Level (cont’d)

* Levels are defined as integer constants in the Connection
interface

TRANSACTION_NONE

* Transactions are not supported.

TRANSACTION_READ_UNCOMMITTED

* Dirty reads, non-repeatable reads and phantom reads can occur.

TRANSACTION_READ_COMMITTED

* Dirty reads are prevented; non-repeatable and phantom reads can occur.

TRANSACTION_REPEATABLE_READ

* Dirty and non-repeatable reads are prevented; phantom reads can occur.

TRANSACTION_SERIALIZABLE

* Dirty reads, non-repeatable reads and phantom reads are prevented.

Lecture 9: JDBC and JPA 34

JPA: Java Persistence API

javax.persistence

JPA Home Page:

https://docs.oracle.com/javaee/7/tutorial/doc/partpersist. htm#BNBPY

Lecture 9: JDBC and JPA 35

What 1s JPA?

* Persists plain Java objects, no need to write SQL

* Object/relational (O/R) mapping, relations
between objects are managed by JPA.

— Possible to store and load entire object graphs
with one command.

* Uses post-compilation (when needed)

Lecture 9: JDBC and JPA

36

The first example (1/2)

* The @Entity and @Id annotations are all that 1s needed to
turn a plain Java object into an entity managed by JPA.

package account;

import javax.persistence.Entity;
import javax.persistence.Id;

@Entity

public class Account {
@eId
private int acctNo;
private String firstName;
private String lastName;
private int balance;

Lecture 9: JDBC and JPA 37

The first example (2/2)

public Account() {}

public Account(int acctNo, String firstName,
String lastName, int balance) {

this.acctNo = acctNo;

firstName;
this.lastName = lastName;
this.balance = balance;

this.firstName

}
public int getAcctNo() {

return acctNo;

}

// More business methods.

* Entity

Main JPA Concepts

A persistent abstraction.

Represented as Java class in the program and (typically but not necessarily) as
table in the database.

An entity instance is a Java object in the program and a row in the database
table(s).

Either fields or properties (JavaBeans style) are persisted. If fields or properties
are persisted is decided by the location of annotations (close to fields or close to
properties).

Must have no-argument public or protected constructor.

Fields may not be public and may nor be accessed by other objects than the
entity instance itself.

Must have the @Entity annotation.

Object/Relational (O/R) mapping with annotations to map objects to underlying
relational data store.

Lecture 9: JDBC and JPA 39

Main JPA Concepts (cont)

* Primary key
— Identifies an entity instance, must be unique for each instance.

— A simple (non-composite) primary key must correspond to a single
persistent field or property of the entity class.

— The @Id annotation is used to denote a simple primary key.

* Context
— A set of managed entity instances that exist in a particular data store.
— The scope under which entity instances exist.

* Entity manager

— An interface that defines the methods used to interact with the context, for

example create, remove and find.

— Each EntityManager instance is associated with a single context.

Lecture 9: JDBC and JPA 40

Main JPA Concepts (cont)

Persistence unit

— Defines the entities that are managed by an entity manager.

— Defines where to store the entities persistently.

Relation
— Arelation between entity instances that is persisted together with the
entity instances.
Query
— The data store can be searched for entity instances using the find
method in EntityManager or using the JPA Query Language (JPQL).
Transaction

— JPAis transaction aware. Transaction can be either container-managed or
application-managed.

Lecture 9: JDBC and JPA 41

How to Start JPA

Applications that are not container-managed, for
example Java SE applications, must use the classes
javax.persistence.Persistence and
javax.persistence.EntityManagerFactory to
create an entity manager:

EntityManagerFactory emf =
Persistence.createEntityManagerFactory("MyPU");

EntityManager em = emf.createEntityManager();

Lecture 9: JDBC and JPA 42

Entity Instance's Life cycle

* The life cycle of an entity instance 1s managed by
the EntityManager.

* Entity instances are in one of four states: new,
managed, detached, or removed.

Lecture 9: JDBC and JPA

43

Entity Instance's Life cycle (cont)

* New entity instances have no persistent identity
and are not yet associated with a persistence
context.

* Managed entity instances have a persistent
1dentity and are associated with a persistence
context.

Lecture 9: JDBC and JPA

44

Entity Instance's Life cycle (cont)

* Detached entity instances have a persistent
identify and are not currently associated with a
persistence context.

* Removed entity instances have a persistent
1dentity, are associated with a persistent context,
and are scheduled for removal from the data store.

Lecture 9: JDBC and JPA 45

How to Create a New Entity

@PersistenceContext
EntityManager em;

public LineItem createLineItem(Order order, Product product,
int quantity) {
LineItem 1i = new LineItem(order, product,
quantity); // new
order.getLinelItems().add(1li);
em.persist(li); // managed

The entity (11) 1s new after this statement.

The entity 1s managed after this statement.

Lecture 9: JDBC and JPA 46

How to Find and Remove an
Existing Entity

public void removeOrder(Integer orderId) {

try {
Order order = em.find(Order.class,

orderId);

em.remove(order);

}

* Entities are looked up with the EntityManager
method find (more on queries below).

* Entities are removed with the EntityManager

method remove.
Lecture 9: JDBC and JPA

47

Container-Managed Transactions

* The preferred way.

* Can only be used when JPA entities stays 1n a
transaction aware container (e.g EJB or Spring)

* Transactions propagate from the calling container and
are not handled by JPA code.

* Use declarative transaction demarcation in the

container.

Lecture 9: JDBC and JPA 48

Application-Managed Transactions

* The only choice when there 1s no transaction aware
container. This 1s the case with plain Java SE applications.

* Transaction must be started and stopped programmatically
through the EntityTransaction interface.

* Easy to make mistakes!

Lecture 9: JDBC and JPA

49

Application-Managed Transaction

Example

EntityManager em = emFactory.createEntityManager();

EntityTransaction transaction em.getTransaction();

transaction.begin();

// Update entities here.

em.getTransaction().commit();

Lecture 9: JDBC and JPA 50

Synchronization With Database

* The state of persistent entities 1s synchronized to
the database when the transaction with which the
entity 1s associated commits.

* To force synchronization of the managed entity to
the database before transaction commit, invoke the
flush method of the EntityManager.

Lecture 9: JDBC and JPA 51

Relationships

Relationships are persisted by JPA and recreated
when an entity instance is read from the database.

Can be unidirectional or bidirectional.

Can be one-to-one, one-to-many, many-to-one or
many-to-many

Entity updates (adding/removing entities or
changing entity state) can cascade along relations
when synchronizing with the database.

Lecture 9: JDBC and JPA 52

Relationship Example

@Entity
public class Employee {
private Cubicle assignedCubicle;

@0neToOne
public Cubicle
getAssignedCubicle() {
return assignedCubicle;
}

public void setAssignedCubicle(
Cubicle cubicle) {
assignedCubicle = cubicle;

@Entity
public class Cubicle {
private Employee residentEmployee;

@OneToOne(mappedBy="assignedCubicle")
public Employee getResidentEmployee()
{

return residentEmployee;

}

public void setResidentEmployee(
Employee employee) {
residentEmployee = employee;

Lecture 9: JDBC and JPA 53

Relationship Direction

* Unidirectional relationships can only be navigated in
one direction.

— Have relationship annotation only on one side.

* Bidirectional relationships can be navigated in
both directions.
— Have relationship annotations on both sides.

— Inverse (not owning) side specifies that it 1s mapped

by the property or field on the owning side:
@OneToOne(mappedBy="assignedCubicle")

Lecture 9: JDBC and JPA 54

Persisting Relationships

* The relationship is persisted based on the owning
side.

* The owning side has the foreign key.

Lecture 9: JDBC and JPA

55

Relationship Multiplicities

* The following annotations exist:
—OneToOne
—OneToMany
—ManyToOne
—ManyToMany

* ForOneToOne and ManyToMany relationships, any
side may be the owning side.

* ForOneToMany and ManyToOne relationships, the
many side must be the owning side.

Lecture 9: JDBC and JPA

56

OneToMany/ManyToOne Example
(1/2)
@Entity

public class Employee {
private Department department;

@ManyToOne
public Department getDepartment() {
return department;

}

public void setDepartment(Department department)
{ this.department = department;

}
} e

Lecture 9: JDBC and JPA 57

OneToMany/ManyToOne Example
(2/2)

@Entity
public class Department {
private Collection<Employee> employees = new HashSet();

@OnETOMany(maPPEdBy="departmentu)
public Collection<Employee> getEmployees() {
return employees;

}

public void setEmployees(Collection<Employee> employees) {
this.employees = employees;

}

Lecture 9: JDBC and JPA 58

Cascading Updates

* Updates to the database may cascade along
relationships.

- Specified by the cascade element of the relationships
annotations. The following cascade types can be
specified:

- ALL, Cascade all operations

- MERGE, Cascade merge operation

- PERSIST, Cascade persist operation
- REFRESH, Cascade refresh operation

- REMOVE, Cascade remove operation
Lecture 9: JDBC and JPA 59

Cascading Updates Example

@OneToMany(cascade=ALL,

mappedBy="customer")
public Set<Order> getOrders() {
return orders;

}

Lecture 9: JDBC and JPA

60

Queries

* Query methods are in the EntityManager.

* The find method can be used to find instances by
primary key:

em.find(Order.class, orderId);

Lecture 9: JDBC and JPA 61

Java Persistence Query Language, JPQL

* JPQL 1s a language with many similarities to SQL.
* JPQL 1s used to create, search, update or delete JPA entities.

* Has object-like syntax, the query below declares the
variable ¢, which has the type Customer (must be an
entity). Then searches for all instances of Customer that has
the property name equal to the parameter custName. The
custName parameter must be assigned a value before the

query 1s executed.

SELECT ¢ FROM Customer c
WHERE c.name LIKE :custName

Lecture 9: JDBC and JPA 62

JPOQL Example 1

* The createQuery method is used to create dynamic queries, queries that

are defined directly within an application's business logic.

public EntityManager em;

public List findWithName(String name) {

Query query = em.createQuery(

"SELECT c¢ FROM Customer c WHERE c.name LIKE :custName");
query.setParameter("custName"”, name);
return query.getResultList();

Lecture 9: JDBC and JPA 63

JPOQL Example 2

* The createNamedQuery method is used to create static queries, queries
that are defined in meta data using the NamedQuery annotation.

@NamedQuery(
name="findCustomersByName",

query="SELECT c FROM Customer c WHERE c.name LIKE :custName"
)

public EntityManager em;

public List findWithName(String name) {

Query query = em.createNamedQuery("findCustomersByName");
query.setParameter("custName", name);
return query.getResultList();

Lecture 9: JDBC and JPA 64

Criteria API

The criteria API provides a way to generate queries in an
object-oriented way with ordinary method calls, as
opposed to the string manipulation used by JPQL.

The advantage over JPQL i1s that it is type safe and that it

1s not required to know field names at compile time.

The disadvantage 1s that notably more code 1s required to
generate queries and that 1t 1s harder to read the queries.

The Criteria API is not part of this course.

Lecture 9: JDBC and JPA 65

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

