Royal Institute of
Technology

Lecture 8

* DGM semantics
* UGM
* De-noising
* HMMs
- Applications (interesting probabilities)
- DP for generation probability etc.

Grey regions are states corresponding to biased die

- Filtering: $\mathrm{p}\left(z_{\mathrm{t}} \mid \mathrm{x}_{1: t}\right)$, online

- Smoothing, MAP state: $p\left(z t \mid x_{1: T}\right)$ offline
- Viterbi, MAP path $\operatorname{argmax} \mathrm{p}\left(\mathrm{Z}_{1: \mathrm{T}} \mid \mathrm{X}_{1: \mathrm{T}}\right)$

* Backward
* Smoothing
* Sampling
* Viterbi
* K-means (inspiration)
* GMM (towards EM)

Probabilities on outgoing edges sum to one

\star We observe the sequence of dice outcomes of visited vertices
Rolls:
66415321616211523465 5ॅ3214356634261655234232315142464156663246
Die:
LLLLLLLLLLLLLLFFFFFFLLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFLLLLLLLL

Rolls:	6641532161621152346532143566342616552
Die:	LLLLLLLLLLLLLLFFFFFFLLLLLLLLLLLLLLFFF

\star Starts in the state z_{1}

* When in state Z_{t}
- outputs $\mathrm{p}\left(\mathrm{x}_{\mathrm{t}} \mid \mathrm{zt}_{\mathrm{t}}\right) \quad B_{x_{t}, t_{t}}$
- moves to $\mathrm{p}\left(\mathrm{Z}_{\mathrm{t}+1} \mid \mathrm{zt}_{\mathrm{t}}\right)$
* Stops after a fixed nurnbe
of steps or when reaqhind
a stop step

The parameters

AN HMM CAN BE SEEN AS A DGM

$$
\begin{aligned}
& Z_{1} \rightarrow Z_{2} \rightarrow Z_{3} \rightarrow \cdots \rightarrow Z_{T} \rightarrow Z_{T+1} \\
& \stackrel{\downarrow}{x_{1}} \quad \underset{x_{2}}{\downarrow} \quad \stackrel{x_{3}}{\downarrow} \quad \stackrel{x_{T}}{\downarrow}
\end{aligned}
$$

Chain

Fork

v-struct

Combinations of the transition distributions

Combinations of emission the emission distribution

TRANSITION PROBABILITIES FOR 4 STATES HMM

EMISSION PROBABILITIES - HMM WITH 4 STATES \& 3 SYMBOLS

$$
Z_{1} \rightarrow Z_{2} \rightarrow Z_{3} \rightarrow \cdots \rightarrow Z_{T} \rightarrow Z_{T+1}
$$

State $1 \quad 2 \quad 3$

All the same

1	B_{11}	B_{21}	B_{31}
$\mathbf{2}$	$\mathrm{~B}_{12}$	$\mathrm{~B}_{22}$	$\mathrm{~B}_{32}$
$\mathbf{3}$	$\mathrm{~B}_{13}$	$\mathrm{~B}_{23}$	$\mathrm{~B}_{33}$
$\mathbf{4}$	$\mathrm{~B}_{14}$	$\mathrm{~B}_{24}$	$\mathrm{~B}_{34}$

Sum rule gives Z_{t+1}

Defined by

$$
b_{t}(k):=p\left(x_{t+1: T} \mid Z_{t}=k\right)=\sum_{l \in[K]} p\left(x_{t+1: T}, Z_{t+1}=l \mid Z_{t}=k\right)
$$

Each term in the sum is a probability of an event
"which is an AND of"

$$
\begin{gathered}
Z_{t+1}^{\downarrow}=l \\
x_{t+1}^{\downarrow}
\end{gathered} Z_{t+1}=l \rightarrow \underset{x_{t+2}^{\downarrow}}{?} \rightarrow \underset{x_{T}}{\downarrow}
$$

Backward recursion

$$
b_{t}(k):=p\left(x_{t+1: T} \mid Z_{t}=k\right)
$$

- DP also for the backward variable b_{t}

$$
b_{t}(k)=\sum_{l} \underbrace{p\left(\boldsymbol{Z}_{t+1}=l \mid \boldsymbol{Z}_{t}=k\right)}_{\text {transition }} \underbrace{b_{t+1}(l)}_{\text {"smaller" }} \underbrace{p\left(x_{t+1} \mid \boldsymbol{Z}_{t+1}=l\right)}_{\text {emission }}
$$

- Implementation analogous, complexity same

OFF-LINE SMOOTHING

$$
p\left(\boldsymbol{Z}_{t}=k \mid \boldsymbol{x}_{1: T}\right) \propto f_{t}(k) \underbrace{p\left(\boldsymbol{x}_{t} \mid \boldsymbol{Z}_{t}=k\right)}_{\text {emission }} b_{t}(k)
$$

$$
p\left(\boldsymbol{Z}_{t}=k \mid x_{1: T}\right) \propto f_{t}(k) \underbrace{p\left(x_{t} \mid \boldsymbol{Z}_{t}=k\right)}_{\text {emission }} b_{t}(k)
$$

TWO SLICED SMOOTH MARGINALS - MARGINAL OVER PAIRS OF STATES

$$
p\left(\boldsymbol{Z}_{t}=k, \boldsymbol{Z}_{t+1}=l \mid \boldsymbol{x}_{1: T}\right)
$$

- Can be computed from forward and backward similarly

SAMPLING FROM POSTERIOR

How much did each previous state contribute to the probability mass of the present state?

Forward recursion

$$
f_{t}(k)=\sum_{l} \underbrace{f_{t-1}(l)}_{\text {smaller }} \underbrace{p\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{Z}_{t-1}=l\right)}_{\text {emission } B_{x_{t-1}, l}} \underbrace{p\left(\boldsymbol{Z}_{t}=k \mid \boldsymbol{Z}_{t-1}=l\right)}_{\text {transition } A_{l k}}
$$

OF POSTERIOR

Sample $z_{1: T+1}^{s} \sim p\left(\mathbb{Z}_{1: T+1}=k \mid x_{1: T}\right)$ by
(i) $\quad z_{T+1}^{s} \sim p\left(\boldsymbol{Z}_{T+1}=k \mid \boldsymbol{x}_{1: T}\right) \propto p\left(\boldsymbol{Z}_{T+1}=k, \boldsymbol{x}_{1: T}\right)$
(ii) $\quad z_{t}^{s} \sim p\left(\boldsymbol{Z}_{t}=k \mid \boldsymbol{Z}_{t+1}=l, \boldsymbol{x}_{1: t}\right)$

$$
\propto f_{t}(k) p\left(\boldsymbol{Z}_{t+1}=l \mid \boldsymbol{Z}_{t}=k\right) p\left(\boldsymbol{x}_{t} \mid \boldsymbol{Z}_{t}=k\right)
$$

- Sample from posterior
- Sample in order $\mathrm{Z}_{\mathrm{T}}, \ldots, \mathrm{Z}_{1}$
- Start somewhat differently

We want
$\operatorname{argmax}_{\boldsymbol{z}_{1: T}} p\left(\boldsymbol{z}_{1: T} \mid \boldsymbol{x}_{1: T}\right)$
Not!
$\left(\operatorname{argmax}_{z_{1}} p\left(\boldsymbol{z}_{1} \mid x_{t+1: T}\right), \ldots, \operatorname{argmax}_{z_{T}} p\left(\boldsymbol{z}_{T} \mid x_{t+1: T}\right)\right)$
Viterbi variable

$$
v_{t}(k):=\max _{\boldsymbol{z}_{1: t-1}} p\left(\boldsymbol{z}_{1: t-1}, \boldsymbol{Z}_{t}=k, \boldsymbol{x}_{1: t}\right)
$$

It gives what we want

$$
\max _{k} v_{T}(k)
$$

- MAP path
- Viterbi learning: used, as approximation, to speed up parameter learning
- Again DP now with Viterbi variable
- For the path, use back pointers

Chapter 3

EXPECTATIONMAXIMIZATION THEORY

3.1 Introduction

Learning networks are commonly categorized in terms of supervised and unsupervised networks. In unsupervised learning, the training set consists of input training patterns only. In contrast, in supervised learning networks, the training data consist

$$
\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

TWO DIMENSIONAL NORMAL

* Data vectors $\mathrm{D}=\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{N}}\right\}$
* Randomly selected classes $\mathrm{z}_{1}, \ldots, \mathrm{Z}_{\mathrm{N}}$
* Iteratively do

$$
\begin{aligned}
\boldsymbol{\mu}_{c} & =\frac{1}{N_{c}} \sum_{n: z_{n}=c} \boldsymbol{x}_{n}, \quad \text { where } N_{c}=\left|\left\{n: z_{n}=c\right\}\right| \\
z_{n} & =\operatorname{argmin}_{c}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{c}\right\|_{2}
\end{aligned}
$$

* One step O(NKD), can be improved

ASSIGNING POINTS TO MULTIPLE MEANS

\star Fixed variance, a Gaussian and mean per cluster, i.e., $\quad \theta_{c}=\left(\mu_{c}, \sigma^{2}\right)$

* Idea: each point can belong to several means (clusters)
* Use responsibilities to find means

$$
\begin{aligned}
& r_{n c}=p\left(z_{n}=c \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)=\frac{p\left(z_{n}=c \mid \boldsymbol{\theta}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}=c, \boldsymbol{\theta}\right)}{\sum_{c=1}^{C} p\left(z_{n}=c \mid \boldsymbol{\theta}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}=c, \boldsymbol{\theta}\right)} \\
& \boldsymbol{\mu}_{c}=\frac{1}{N_{c}} \sum_{n} r_{n c} \boldsymbol{x}_{n}, \quad \quad \text { where } N_{c}=\sum_{n} r_{n c}
\end{aligned}
$$

IMAGE SEGMENTATION WITH K-MEANS

Original image

$$
\begin{aligned}
& \text { GAUSSIAN } \\
& \text { MODELS (GMMM) } \\
& \mathcal{D}=\left(x_{1}, \ldots, x_{N}\right) \\
& x_{n}=\left(x_{n 1}, \ldots, x_{n D}\right) \\
& Z \sim \operatorname{Cat}(\boldsymbol{\pi}) \\
& p(\boldsymbol{X} \mid Z=c)=p_{c}(\boldsymbol{X})=\mathcal{N}\left(\boldsymbol{X} \mid \boldsymbol{\mu}_{c}, \Sigma_{c}\right)
\end{aligned}
$$

Z hidden $\sim \operatorname{Cat}(\boldsymbol{\pi})$

$$
\begin{aligned}
& \text { GAUSSIAN } \\
& \mathcal{D}=\left(x_{1}, \ldots, x_{N}\right) \\
& Z \sim \operatorname{Cat}(\boldsymbol{\pi}) \\
& p(\boldsymbol{X} \mid Z=c)=p_{c}(\boldsymbol{X})=\mathcal{N}\left(\boldsymbol{X} \mid \boldsymbol{\mu}_{c}, \sigma_{c}\right) \\
& \boldsymbol{\theta}_{c}=\left(\boldsymbol{\mu}_{c}, \sigma_{c}\right)
\end{aligned}
$$

Z_{n} is red with probability $1 / 2$, green with probability $3 / 10$, blue with probability $1 / 5$

$$
z_{n}=\text { blue }
$$

x_{n} is generated from the Gaussian indicated by Zn_{n}

We get x_{1}, \ldots, x_{N}

So,

$$
p\left(x_{n}, z_{n}\right)=p\left(z_{n}\right) p\left(x_{n} \mid z_{n}\right)
$$

and

$$
p\left(x_{n}\right)=\sum_{c=1}^{C} p\left(z_{n}=c\right) p\left(x_{n} \mid z_{n}=c\right)=\sum_{c=1}^{C} \pi_{c} p\left(x_{n} \mid z_{n}=c\right)
$$

and

$$
p\left(z_{n}=c \mid x_{n}\right)=\frac{p\left(z_{n}=c, x_{n}\right)}{p\left(x_{n}\right)}=\frac{\pi_{c} p\left(x_{n} \mid z_{n}=c\right)}{\sum_{c=1}^{C} \pi_{c} p\left(x_{n} \mid z_{n}=c\right)}
$$

$$
\left.\mathcal{D}=\left(z_{1}, x_{1}\right), \ldots,\left(z_{N}, x_{N}\right)\right)
$$

- Maximizing the complete log likelihood

$$
l\left(\theta^{\prime} ; \mathcal{D}\right)=\sum_{c} N_{c} \log \pi_{c}^{\prime}+\sum_{c} \sum_{n: I\left(z_{n}=c\right)} \log p\left(\boldsymbol{x}_{n} \mid \theta_{c}^{\prime}\right)
$$

- Boils down to maximizing

$$
\sum_{n: z_{n}=c} \log p\left(x_{n} \mid \theta_{c}^{\prime}\right)
$$

that is

$$
\sum_{n: z_{n}=c}^{\text {is }} \log \frac{1}{\sqrt{2 \pi \sigma_{c}^{\prime 2}}} \exp \left(-\frac{1}{2 \sigma_{c}^{\prime 2}}\left(x_{n}-\mu_{c}^{\prime}\right)^{2}\right)
$$

\ldots and $\sum_{n: I\left(x_{n}=c\right)} \log \frac{1}{\sqrt{2 \pi \sigma_{c}^{\prime \prime}}} \exp \left(-\frac{1}{2 \sigma_{c}^{(2}}\left(x_{n}-\mu_{c}^{\prime}\right)^{2}\right)$ is maximized by
by $\mu_{c}^{\prime}=\frac{\sum_{n i l\left(z_{n}=c\right.} x^{x_{n}}}{N_{c}}$ where $N_{c}=\sum_{n} I\left(z_{n}=c\right)$

- Iteratively maximizing the expected log likelihood in practice always leads to a local maxima
- The expectation is over latent variables given data and current parameters
- We maximize the expression by choosing new parameters.

