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LAST LECTURE
★ DGM semantics 

★ UGM 

★ De-noising  

★ HMMs 

• Applications (interesting probabilities) 

• DP for generation probability etc. 
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Viterbi

INFERENCE IN THE 
OCCASIONALLY  DISHONEST 
CASINO
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• Filtering: p(zt|x1:t), 

 online 

Text

Grey regions are states corresponding to biased die

• Smoothing, MAP state:  

p(zt|x1:T) offline 

• Viterbi, MAP path 

 argmax p(z1:T|x1:T) 



THIS LECTURE
★ Backward 

★ Smoothing 

★ Sampling  

★ Viterbi 

★ K-means (inspiration) 

★ GMM (towards EM)



MARKOV CHAINS 
(DISCRETE)

p1

p2

Probabilities on outgoing edges sum to one 

pd

∑i∈[d] pi =1



THE OCCASIONALLY  
DISHONEST CASINO 

Fair Biased/loaded

p

1-p 1-q

q
★ We observe the sequence of dice outcomes of visited vertices



WHAT AN  
HMM DOES 
★ Starts in the state z1 

★ When in state zt 

• outputs p(xt|zt) 

• moves to p(zt+1|zt) 

★ Stops after a fixed number 
of steps or when reaching 
a stop step

Fair Biased/loaded

p

1-p
1-q

q

The parameters
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AN HMM CAN BE SEEN 
AS A DGM
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SPECIAL CASE: HIDDEN 
MARKOV MODEL (HMM)

Combinations of the transition distributions 

Combinations of emission the emission distribution  



TRANSITION PROBABILITIES 
FOR 4 STATES HMM

All the same

Stat
e

1 2 3 4
1 A11 A21 A3

1

A41
2 A12 A22 A3

2

A42
3 A13 A23 A3

3

A43
4 A14 A24 A3

4

A44



EMISSION PROBABILITIES - HMM 
WITH 4 STATES & 3 SYMBOLS

State 1 2 3
1 B11 B21 B31
2 B12 B22 B32

3 B13 B23 B33

4 B14 B24 B34

All the same



Sum rule gives Zt+1 
Defined by

Each term in the sum is a probability of an event

? ! Zt = k

#
?

! Zt+1 = l

#
xt+1

! · · · ?
#
xT

“which is an AND of”

Zt+1 = l

#
xt+1

! ?
#

xt+2

! · · · ?
#
xT



Backward recursion

• DP also for the backward variable bt

bt(k) =
X

l

p(Zt+1

= l|Zt = k)| {z }
transition

bt+1

(l)| {z }
”smaller”

p(xt+1

|Zt+1

= l)| {z }
emission

• Implementation analogous, complexity 
same



OFF-LINE SMOOTHING



OFF-LINE SMOOTHING

Up to a constant



TWO SLICED SMOOTH 
MARGINALS - MARGINAL OVER 
PAIRS OF STATES

• Can be computed from forward and backward similarly



SAMPLING FROM 
POSTERIOR 
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(b) Profile-HMM architecture:
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(a) Multiple alignment:
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model position
(c) Observed emission/transition counts
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How much did each previous state contribute  
to the probability mass of the present state?



Forward recursion



BACKWARDS SAMPLING 
OF POSTERIOR

• Sample from posterior  

• Sample in order zT,…,z1 

• Start somewhat differently

Sample by

(i)

(ii)



VITERBI
• MAP path  

• Viterbi learning: used, as 
approximation, to speed 
up parameter learning  

• Again DP now with Viterbi 
variable 

• For the path, use back 
pointers

Not!

We want

Viterbi variable

It gives what we want

vt(k) := max
z1:t�1

p(z1:t�1,Zt = k, x1:t)



Chapter 3

EXPECTATION-
MAXIMIZATION

THEORY

3.1 Introduction

Learning networks are commonly categorized in terms of supervised and unsuper-
vised networks. In unsupervised learning, the training set consists of input training
patterns only. In contrast, in supervised learning networks, the training data consist
of many pairs of input/output patterns. Therefore, the learning process can benefit
greatly from the teacher’s assistance. In fact, the amount of adjustment of the up-
dating coe±cients often depends on the diÆerence between the desired teacher value
and the actual response. As demonstrated in Chapter 5, many supervised learning
models have been found to be promising for biometric authentication; their imple-
mentation often hinges on an eÆective data-clustering scheme, which is perhaps the
most critical component in unsupervised learning methods. This chapter addresses
a data-clustering algorithm, called the expectation-maximization (EM) algorithm,
when complete or partial information of observed data is made available.

3.1.1 K-Means and VQ algorithms

An eÆective data-clustering algorithm is known as K-means [85], which is very sim-
ilar to another clustering scheme known as the vector quantization (VQ) algorithm
[118]. Both methods classify data patterns based on the nearest-neighbor criterion.

Verbally, the problem is to cluster a given data set X = {xt; t = 1, . . . , T} into
K groups, each represented by its centroid denoted by µ(j), j = 1, . . . ,K. The task
is (1) to determine the K centroids {µ(1), µ(2), . . . , µ(K)} and (2) to assign each
pattern xt to one of the centroids. The nearest-neighbor rule assigns a pattern x to
the class associated with its nearest centroid, say µ(i).

Mathematically speaking, one denotes the centroid associated with xt as µt,
where µt 2 {µ(1), µ(2), . . . , µ(K)}. Then the objective of the K-means algorithm is

50



GAUSSIAN – MVN
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TWO DIMENSIONAL NORMAL 
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K-MEANS
★ Data vectors D={x1,…,xN} 

★ Randomly selected classes z1,…,zN 

★ Iteratively do 

★ One step O(NKD), can be improved

µc =
1

Nc

�

n:zn=c

xn, where Nc = |{n : zn = c}|

zn = argminc||xn � µc||2



ASSIGN POINT TO 
MEANS 



ASSIGNING POINTS TO 
MULTIPLE MEANS

9.2. Mixtures of Gaussians 437
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Figure 9.8 Illustration of the EM algorithm using the Old Faithful set as used for the illustration of the K-means
algorithm in Figure 9.1. See the text for details.

and the M step, for reasons that will become apparent shortly. In the expectation
step, or E step, we use the current values for the parameters to evaluate the posterior
probabilities, or responsibilities, given by (9.13). We then use these probabilities in
the maximization step, or M step, to re-estimate the means, covariances, and mix-
ing coefficients using the results (9.17), (9.19), and (9.22). Note that in so doing
we first evaluate the new means using (9.17) and then use these new values to find
the covariances using (9.19), in keeping with the corresponding result for a single
Gaussian distribution. We shall show that each update to the parameters resulting
from an E step followed by an M step is guaranteed to increase the log likelihood
function. In practice, the algorithm is deemed to have converged when the changeSection 9.4
in the log likelihood function, or alternatively in the parameters, falls below some
threshold. We illustrate the EM algorithm for a mixture of two Gaussians applied to
the rescaled Old Faithful data set in Figure 9.8. Here a mixture of two Gaussians
is used, with centres initialized using the same values as for the K-means algorithm
in Figure 9.1, and with precision matrices initialized to be proportional to the unit
matrix. Plot (a) shows the data points in green, together with the initial configura-
tion of the mixture model in which the one standard-deviation contours for the two



K-MEANS AS GMM
★ Fixed variance, a Gaussian and mean per cluster, i.e.,  

★ Idea: each point can belong to several means (clusters) 

★ Use responsibilities to find means

rnc = p(zn = c|xn,�) =
p(zn = c|�)p(xn|zn = c,�)

�C
c=1 p(zn = c|�)p(xn|zn = c,�)

µc =
1

Nc

�

n

rncxn, where Nc =
�

n

rnc

�c = (µc,�
2)



IMAGE SEGMENTATION 
WITH K-MEANS



 GAUSSIAN 
MIXTURE 

MODELS (GMM)

Z hidden � Cat(�)D = (x1, . . . ,xN )

xn = (xn1, . . . , xnD)

X � N (µc,�c)

p(X|Z = c) = pc(X) = N (X|µc,�c)



 1-DIM  
GAUSSIAN 

MIXTURE MODELS

Z hidden � Cat(�)D = (x1, . . . ,xN )

p(X|Z = c) = pc(X) = N (X|µc,�c)

X � N (µc,�c)



EXAMPLE
zn is red with probability 1/2, green with probability 3/10, blue with probability 1/5

xn is generated from the Gaussian indicated by zn

We get x1,…,xN

zn = blue

xn 



GMM

and

and

So,

p(xn, zn) = p(zn)p(xn|zn)



• Boils down to maximizing 

MLE  -COMPLETE 
DATA FOR GAUSSIAN

• Maximizing the complete log likelihood
l(��;D) =

�

c

Nc log ��
c +

�

c

�

n:I(zn=c)

log p(xn|��
c)

that is



MLE FOR GAUSSIAN
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EM & EXPECTED LOG 
LIKELIHOOD (Q-TERM)

• Iteratively maximizing the expected log likelihood 
in practice always leads to a local maxima 

• The expectation is over latent variables given 
data and current parameters 

• We maximize the expression by choosing new 
parameters.



THE END


