
Java Database Connectivity (JDBC)

Java Persistence API (JPA)

Leif Lindbäck and Vladimir Vlassov

KTH/ICT/SCS

HT 2015

ID2212 Network Programming with Java
Lecture 9

Lecture 9: JDBC and JPA 2

JDBC: Java Database Connectivity

java.sql

https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/index.html

Lecture 9: JDBC and JPA 3

Java program

JDBC Driver

JDBC API

Database

Java Database Connectivity (JDBC)

• An API for unified
connectivity to
relational databases
– Establish a connection

with a data source

– Execute SQL queries
on the data source

– Get and process results

Lecture 9: JDBC and JPA 4

Database

• A database is essentially a smart container for tables.

• A table is a named container comprised of rows.

• A row is (conceptually) a container comprised of
columns.

• A column is a single data item having a name, type, and
value.

SQL

• SQL (Structured Query Language)
– An industry-standard language for creating, updating and,

querying relational DBMS.

– Developed by IBM in the 1970s

– A single SQL statement can be very expressive and can
initiate high-level actions, such as sorting and merging.

Lecture 9: JDBC and JPA 5

Lecture 9: JDBC and JPA 6

SQL Primer

• Create a table in SQL:
CREATE TABLE <table name> (<column element> [,

<column element>]...)
• where column element is of the form:

<column name> <data type> [DEFAULT <expression>] [<column
constraint> [, <column constraint>]...]

• where column constraint is of the form:
 NOT NULL | UNIQUE | PRIMARY KEY

• Example:
CREATE TABLE participants (ID char(5), NAME char(64), GENDER

char(1), COUNTRY char(32), BIRTHDAY date, HEIGHT double,
WEIGHT double, SUBJECT char(32));

• Drop a table:
DROP TABLE <table name>

Lecture 9: JDBC and JPA 7

SQL Primer (cont)

• Retrieve a set of columns from one or more tables:
SELECT [ALL | DISTINCT] <select list> FROM <table reference

list>
WHERE <search condition list> [ORDER BY <column
designator>
[ASC | DESC] [, <column designator> [ASC | DESC]]...]

– Example:
SELECT NAME, COUNTRY from participants WHERE GENDER=‘F’;

Lecture 8: JDBC and JPA 8

SQL Primer (cont)

• Insert rows:
INSERT INTO <table name> [(<column name> [, <column

name>]...)] VALUES (<expression> [,
<expression>]...)

– Example:
INSERT INTO participants VALUES (50044, ‘Wahlström,

Robert’, ‘M’,’Sweden’, 1979-05-03, 177.0, 61.0,
‘Skijumping’);

• Update rows:
UPDATE <table name> SET <column name = {<expression>

| NULL} [, <column name = {<expression> | NULL}]...
WHERE <search condition>

• Delete rows:
DELETE FROM <table name> WHERE <search condition>

Lecture 9: JDBC and JPA 9

JDBC Code Fragment
// Connect to the data source
Connection connection =
DriverManager.getConnection(

“jdbc:derby://localhost:1527/mydb”, “user”,
“pass”);
// Create SQL statement
Statement stmt = connection.createStatement();
// Send a query to the data source, get results
ResultSet rs = stmt.executeQuery(“SELECT a, b, c
FROM Table1”);
// Process results
 while (rs.next()) {
 int x = rs.getInt(“a”);
 String s = rs.getString(“b”);
 float f = rs.getFloat(“c”);
 }

Lecture 9: JDBC and JPA 10

JDBC Programming Concepts

• Data Source

• Driver

• Driver
Manager

• Connection

• Statement

• Result set

• Metadata

• Transactions

Java
Application

Driver
Manager

Derby
driver

Derby
driver

MySql
driver

MySql
driver

Oracle
driver

Oracle
driver

Connection
object

Connection
object

Connection
object

Derby

Oracle

MySql

jdbc:derby

derby

Lecture 9: JDBC and JPA 11

A Data Source
• A database, a file system, a (tab-separated-value) file.

• A data source is pointed to by an URL of the form
jdbc:<Sub-Protocol>:<Datasource-Name>

– For example:
• jdbc:derby://localhost:1527/myDataBase
• jdbc:mysql://localhost:3306/myDataBase

– A sub-protocol name
• indicates the type of data source, e.g. derby
• defines a driver to handle the data source.

• used by DriverManager to lookup a driver.

• User name and password might be required to connect to the data
source.

Lecture 9: JDBC and JPA 12

A JDBC Driver

• An object that opens connection to a data source and handles
the connection.

• A JDBC driver class
– implements the JDBC Driver interface and can convert program

(and typically SQL) requests for a particular database.

• Loading a driver class. Two options
– Put name of the driver in the jdbc.drivers System property, e.g.

jdbc.drivers=org.apache.derby.jdbc.ClientXADataSource

• Will be checked by the DriverManager

– Load class explicitly, e.g.
Class.forName(“org.apache.derby.jdbc.ClientXADataSource”);

Lecture 9: JDBC and JPA 13

Driver Manager

• Driver Manager
– Parses URL of a data source, look for a driver to handle the

source, returns a Connection object, e.g.

Connection connection =
DriverManager.getConnection (url,
username, password);

Lecture 9: JDBC and JPA 14

Connection

• Represents a session with a data source.

• Used
– to create and prepare SQL statements and calls,

– to retrieve the meta data regarding the connection's database,

– to commit or to drop (rollback) all changes made to the
connection's database.

• Any number of SQL statements can be executed over the
connection.

• An application can have one or more connections to a
single data source or to several databases.

Lecture 9: JDBC and JPA 15

Connection (cont)

• To connect to a data source, you supply the following
information
– URL of a data source (database, file),
– class names of drivers,
– user name and password (both are optional)

• This info can be
– “hard-coded” in the code,
– passed as arguments to the application,
– loaded as Properties at run time from a configuration file of the form:

jdbc.drivers=org.apache.derby.jdbc.ClientXADataSource
jdbc.url=jdbc:derby://localhost:1527/myDataBase
db.username=user
db.password=pass

Lecture 9: JDBC and JPA 16

Using Configuration Properties.
Connecting to a Data Source.

FileInputStream in = new FileInputStream(configFileName);
Properties props = new Properties();
props.load(in);

String drivers = props.getProperty("jdbc.drivers");
System.setProperty("jdbc.drivers", drivers);
String url = props.getProperty("jdbc.url");
String username = props.getProperty("jdbc.username");
String password = props.getProperty("jdbc.password");
in.close();
Connection connection =
 DriverManager.getConnection(url, username, password);

Lecture 9: JDBC and JPA 17

Database Meta-Data

• If necessary, query the Connection for meta-data about the
database structure:
– tables, supported SQL grammar, stored procedures,
– capabilities of the connection (e.g. supported isolation levels), etc.

DatabaseMetaData dbm = connection.getMetaData();

• The DatabaseMetaData interface defines various get and
checking methods, e.g.

ResultSet rs =
 dbm.getTables(null, null, null, null);
System.out.println(“Table Name\tTable Type”);
while (rs.next()) {

System.out.println(rs.getString(3) + “\t” +
rs.getString(4));

}

Lecture 9: JDBC and JPA 18

Statement

• Create a SQL statement object from the
Connection object for sending commands and SQL
statements to the data source.
– Statement is like an envelope for SQL,

– Connection is like the transport to deliver the statement
to the driver,

– The driver forwards the SQL to the database and returns
results.

Lecture 9: JDBC and JPA 19

Statement (cont’d)

• Create a statement using the Connection object
– createStatement()

• Creates a Statement object for sending SQL statements
to the database

– prepareStatement(String sql)
• Creates a PreparedStatement object for sending

parameterized SQL statements to the database.

– prepareCall(String sql)
• Creates a CallableStatement object for calling

stored procedures.

Lecture 9: JDBC and JPA 20

Executing A Statement

• Four methods of Statement for sending SQL to the
database and executing database calls:
– ResultSet executeQuery(String sql)

– Executes an SQL statement that returns a single ResultSet object.

– int executeUpdate(String sql)
– Executes an SQL INSERT, UPDATE or DELETE statement.

Lecture 9: JDBC and JPA 21

Result Set

• Result Set
– A table of data representing a database result set, which is

usually generated by executing a statement that queries the
database.

Statement stmt = con.createStatement();
ResultSet rs =
 stmt.executeQuery("SELECT a, b FROM TABLE2”);

– Organized into logical rows and columns of data.

– Maintains a cursor to a current row

Lecture 9: JDBC and JPA 22

Result Set (cont’d)

• The ResultSet interface contains methods for
– getting values from the set by name or position,

– traversing to the next, previous, first, and last row of the set,

– deleting current row, jumping to the insert row, and so on,

– getting result set meta-data.

Lecture 9: JDBC and JPA 23

Result Set Meta-Data

• Result set meta-data
– number of columns, names and types of columns.

Get from the result set of an execute method. For example:
ResultSetMetaData rsmd = rs.getMetaData();
int columnCount = rsmd.getColumnCount();
// Iterate through the columns
// and print each column name
for (int i = 1; i <= columnCount; i++) {

String columnName = rsmd.getColumnName(i);
System.out.print(columnName +"\t");

}
System.out.println("");

Lecture 9: JDBC and JPA 24

Iterating Though A Result Set
// Execute a SELECT query, get result set and
// meta-data.
ResultSet rs = stmt.executeQuery(sqlStr);
ResultSetMetaData rsmd = rs.getMetaData();
// Get the column count.
int columnCount = rsmd.getColumnCount();
// Iterate through each row printing the values.
// Print a $ if the column type is CURRENCY.
while (rs.next()) {
 for (int i =1; i <= columnCount; i++) {
 if (rsmd.getColumnTypeName(i).
 equals("CURRENCY")) {
 System.out.print("$");
 }
 System.out.print(rs.getString(i) +"\t");
 }
 System.out.println("");
}

Lecture 9: JDBC and JPA 25

PreparedStatement

PreparedStatement pstmt = con.prepareStatement(

"UPDATE EMPLOYEES SET SALARY = ? WHERE ID = ?”);

pstmt.setBigDecimal(1, 153833.00);

pstmt.setInt(2, 110592);

int insCount = pstmt.executeUpdate();

System.out.println(“Updated ” + insCount +“rows”);

 Represents a precompiled SQL statement

prepared using the Connection object.

Lecture 9: JDBC and JPA 26

PreparedStatement, Cont'd

• PreparedStatement has the following
advantages above Statement:

• Faster execution since the statement is not interpreted
and compiled at each call.

• More secure since SQL injection is not possible when
using a prepared statement.

Mitigation

Lecture 9: JDBC and JPA 27

Summary
• Steps for accessing and working with a data source

– Load (specify) a JDBC driver, URL of the source, username and password

– Create a connection to the data source pointed to by the URL:
Connection con =

DriverManager.getConnection(url, user, password)

– If necessary query the Connection for meta-data about the database:
DatabaseMetaData dbm = con.getMetaData();

– Create a SQL statement from the connection
Statement stmt = con.createStatement();

– Use the statement object to execute SQL query(ies)
ResultSet rs =

stmt.executeQuery("SELECT a, b FROM TABLE2”);

– Check for SQLWarning, if any, or ignore
SQLWarning warning = stmt.getWarnings();

– Get and process the results from the query

– Finally close the database connection: con.close();

28

Transactions

 A transaction is a group of operations that are:
 Atomic, either all or no of the operations are

performed.

 Consistent, The data is left in a valid state.

 Isolated, transactions do not affect each other even

if they are concurrent.

 Durable, once a transaction has finished the data is

saved, no matter what happens afterwards.

 These four properties are referred to as ACID.
Lecture 9: JDBC and JPA 28

29

Transactions, Cont'd

 There are two operations that can end a transaction:
 Commit, all changes made during the transaction

are saved permanently.

 Rollback, All changes made during the transaction

are unmade and the data is left in the same state it

had before the transaction started.

Lecture 9: JDBC and JPA 29

Lecture 9: JDBC and JPA 30

Auto Commit

• By default, an active database connection is set to
auto commit
– all connection’s SQL statements are executed and

committed as individual transactions.

– The commit occurs when the statement completes or the
next execute occurs,

• If a statement returns a ResultSet, the statement completes
when the last row of the ResultSet has been retrieved or
the ResultSet has been closed.

Lecture 9: JDBC and JPA 31

Managing Transactions

• To enable/disable auto commit, call on the
Connection
– setAutoCommit(boolean)

• If auto commit is disabled, call on the Connection
– rollback()

• To drop all changes made since the previous commit/rollback and
releases any database locks currently held by the Connection.

– commit()
• To make all changes made since the previous commit/rollback

permanent and releases any database locks currently held by the
Connection.

Lecture 9: JDBC and JPA 32

Transaction Isolation Level

• Specifies to which extent transactions avoid
sharing data. Different isolation levels allow
different sets of the following phenomena.

– Phantom read - finding data (in where clause) added by
another transaction

– Dirty read - reading data not committed yet by another
transaction

– Non-repeatable read - rereading different data within
the same transaction

Lecture 9: JDBC and JPA 33

Transaction Isolation Level (cont’d)

• To control isolation level of the Connection, use
– getTransactionIsolation()
– setTransactionIsolation(int level)

• May use also
DatabaseMetaData.
supportsTransactionIsolationLevel(int)

Lecture 9: JDBC and JPA 34

Transaction Isolation Level (cont’d)
• Levels are defined as integer constants in the Connection

interface
TRANSACTION_NONE

• Transactions are not supported.

TRANSACTION_READ_UNCOMMITTED
• Dirty reads, non-repeatable reads and phantom reads can occur.

TRANSACTION_READ_COMMITTED
• Dirty reads are prevented; non-repeatable and phantom reads can occur.

TRANSACTION_REPEATABLE_READ
• Dirty and non-repeatable reads are prevented; phantom reads can occur.

TRANSACTION_SERIALIZABLE
• Dirty reads, non-repeatable reads and phantom reads are prevented.

Lecture 9: JDBC and JPA 35

JPA: Java Persistence API

javax.persistence

JPA Home Page:
https://docs.oracle.com/javaee/7/tutorial/partpersist.htm#BNBPY

Lecture 9: JDBC and JPA 36

What is JPA?

• Persists plain Java objects, no need to write SQL
• Object/relational (O/R) mapping, relations

between objects are managed by JPA.
– Possible to store and load entire object graphs

with one command.
• Uses post-compilation (when needed)

package account;

import javax.persistence.Entity;

import javax.persistence.Id;

@Entity

public class Account {

 @Id

 private int acctNo;

 private String firstName;

 private String lastName;

 private int balance;

Lecture 9: JDBC and JPA 37

The first example (1/2)
• The @Entity and @Id annotations are all that is needed to

turn a plain Java object into an entity managed by JPA.

Lecture 9: JDBC and JPA 38

The first example (2/2)

public Account() {}

public Account(int acctNo, String firstName,
 String lastName, int balance) {

 this.acctNo = acctNo;

 this.firstName = firstName;

 this.lastName = lastName;

 this.balance = balance;

}

public int getAcctNo() {

 return acctNo;

}

// More business methods.

Lecture 9: JDBC and JPA 39

• Entity

– A persistent abstraction.

– Represented as Java class in the program and (typically but not necessarily) as

table in the database.

– An entity instance is a Java object in the program and a row in the database

table(s).

– Either fields or properties (JavaBeans style) are persisted. If fields or properties

are persisted is decided by the location of annotations (close to fields or close to

properties).

– Must have no-argument public or protected constructor.

– Fields may not be public and may not be accessed by other objects than the

entity instance itself.

– Must have the @Entity annotation.

– Object/Relational (O/R) mapping with annotations to map objects to underlying

relational data store.

Main JPA Concepts

Lecture 9: JDBC and JPA 40

• Primary key

– Identifies an entity instance, must be unique for each instance.

– A simple (non-composite) primary key must correspond to a single

persistent field or property of the entity class.

– The @Id annotation is used to denote a simple primary key.

• Context

– A set of managed entity instances that exist in a particular data store.

– The scope under which entity instances exist.

• Entity manager

– An interface that defines the methods used to interact with the context, for

example create, remove and find.

– Each EntityManager instance is associated with a single context.

Main JPA Concepts (cont)

Lecture 9: JDBC and JPA 41

• Persistence unit

– Defines the entities that are managed by an entity manager.

– Defines where to store the entities persistently.

• Relation

– A relation between entity instances that is persisted together with the

entity instances.

• Query

– The data store can be searched for entity instances using the find

method in EntityManager or using the JPA Query Language (JPQL).

• Transaction

– JPA is transaction aware. Transaction can be either container-managed or

application-managed.

Main JPA Concepts (cont)

How to Start JPA

Applications that are not container-managed, for

example Java SE applications, must use the classes

javax.persistence.Persistence and

javax.persistence.EntityManagerFactory to

create an entity manager:

Lecture 9: JDBC and JPA 42

EntityManagerFactory emf =
Persistence.createEntityManagerFactory("MyPU");

EntityManager em = emf.createEntityManager();

Lecture 9: JDBC and JPA 43

Entity Instance's Life cycle

• The life cycle of an entity instance is managed by
the EntityManager .

• Entity instances are in one of four states: new,
managed, detached, or removed.

Lecture 9: JDBC and JPA 44

Entity Instance's Life cycle (cont)

• New entity instances have no persistent identity
and are not yet associated with a persistence
context.

• Managed entity instances have a persistent
identity and are associated with a persistence
context.

Lecture 9: JDBC and JPA 45

Entity Instance's Life cycle (cont)

• Detached entity instances have a persistent
identify and are not currently associated with a
persistence context.

• Removed entity instances have a persistent
identity, are associated with a persistent context,
and are scheduled for removal from the data store.

Lecture 9: JDBC and JPA 46

How to Create a New Entity

@PersistenceContext
EntityManager em;
...
public LineItem createLineItem(Order order, Product product,
 int quantity) {
 LineItem li = new LineItem(order, product,
 quantity); // new
 order.getLineItems().add(li);
 em.persist(li); // managed
}

The entity (li) is new after this statement.

The entity is managed after this statement.

Lecture 9: JDBC and JPA 47

How to Find and Remove an
Existing Entity

public void removeOrder(Integer orderId) {
try {
 Order order = em.find(Order.class,
 orderId);
 em.remove(order);
}

 Entities are looked up with the EntityManager

method find (more on queries below).
 Entities are removed with the EntityManager

method remove .

Container-Managed Transactions

• The preferred way.

• Can only be used when JPA entities stays in a

transaction aware container (e.g EJB or Spring)

• Transactions propagate from the calling container and

are not handled by JPA code.

• Use declarative transaction demarcation in the

container.

Lecture 9: JDBC and JPA 48

Application-Managed Transactions

• The only choice when there is no transaction aware

container. This is the case with plain Java SE applications.

• Transaction must be started and stopped programmatically

through the EntityTransaction interface.

• Easy to make mistakes!

Lecture 9: JDBC and JPA 49

Application-Managed Transaction

Example

Lecture 9: JDBC and JPA 50

EntityManager em = emFactory.createEntityManager();

EntityTransaction transaction = em.getTransaction();

transaction.begin();

// Update entities here.

em.getTransaction().commit();

Synchronization With Database

• The state of persistent entities is synchronized to

the database when the transaction with which the

entity is associated commits.

• To force synchronization of the managed entity to

the database before transaction commit, invoke the

flush method of the EntityManager.

Lecture 9: JDBC and JPA 51

Lecture 9: JDBC and JPA 52

• Relationships are persisted by JPA and recreated
when an entity instance is read from the database.

• Can be unidirectional or bidirectional.

• Can be one-to-one, one-to-many, many-to-one or
many-to-many

• Entity updates (adding/removing entities or
changing entity state) can cascade along relations
when synchronizing with the database.

Relationships

Lecture 9: JDBC and JPA 53

Relationship Example
@Entity
public class Employee {
 private Cubicle assignedCubicle;

 @OneToOne
 public Cubicle
getAssignedCubicle() {
 return assignedCubicle;
 }

 public void setAssignedCubicle(
Cubicle cubicle) {

 assignedCubicle = cubicle;
 }
 ...
}

@Entity
public class Cubicle {
private Employee residentEmployee;

@OneToOne(mappedBy="assignedCubicle")
public Employee getResidentEmployee()
{
 return residentEmployee;
}

public void setResidentEmployee(
Employee employee) {

 residentEmployee = employee;
}
 ...
}

Lecture 9: JDBC and JPA 54

• Unidirectional relationships can only be navigated in

one direction.

– Have relationship annotation only on one side.

• Bidirectional relationships can be navigated in

both directions.

– Have relationship annotations on both sides.

– Inverse (not owning) side specifies that it is mapped

by the property or field on the owning side:
@OneToOne(mappedBy="assignedCubicle")

Relationship Direction

Lecture 9: JDBC and JPA 55

• The relationship is persisted based on the owning

side.

• The owning side has the foreign key.

Persisting Relationships

Lecture 9: JDBC and JPA 56

• The following annotations exist:

– OneToOne

– OneToMany

– ManyToOne

– ManyToMany

• For OneToOne and ManyToMany relationships, any

side may be the owning side.

• For OneToMany and ManyToOne relationships, the

many side must be the owning side.

Relationship Multiplicities

Lecture 9: JDBC and JPA 57

OneToMany/ManyToOne Example
(1/2)

@Entity
public class Employee {
 private Department department;

 @ManyToOne
 public Department getDepartment() {
 return department;
 }

 public void setDepartment(Department department)
{
 this.department = department;
 }
 ...
}

@Entity
public class Department {
 private Collection<Employee> employees = new HashSet();

 @OneToMany(mappedBy="department")
 public Collection<Employee> getEmployees() {
 return employees;
 }

 public void setEmployees(Collection<Employee> employees) {
 this.employees = employees;
 }
 ...
}

Lecture 9: JDBC and JPA 58

OneToMany/ManyToOne Example
(2/2)

Lecture 9: JDBC and JPA 59

Cascading Updates

• Updates to the database may cascade along
relationships.
– Specified by the cascade element of the relationships

annotations. The following cascade types can be
specified:

– ALL, Cascade all operations

– MERGE, Cascade merge operation

– PERSIST , Cascade persist operation

– REFRESH , Cascade refresh operation

– REMOVE , Cascade remove operation

Lecture 9: JDBC and JPA 60

Cascading Updates Example

@OneToMany(cascade=ALL,

 mappedBy="customer")
public Set<Order> getOrders() {
 return orders;
}

Queries

• Query methods are in the EntityManager.

• The find method can be used to find instances by

primary key:

Lecture 9: JDBC and JPA 61

em.find(Order.class, orderId);

Java Persistence Query Language, JPQL

• JPQL is a language with many similarities to SQL.

• JPQL is used to create, search, update or delete JPA entities.

• Has object-like syntax, the query below declares the

variable c, which has the type Customer (must be an

entity). Then searches for all instances of Customer that has

the property name equal to the parameter custName . The

custName parameter must be assigned a value before the

query is executed.

Lecture 9: JDBC and JPA 62

SELECT c FROM Customer c
WHERE c.name LIKE :custName

JPQL Example 1
• The createQuery method is used to create dynamic queries, queries that

are defined directly within an application's business logic.

Lecture 9: JDBC and JPA 63

public EntityManager em;

public List findWithName(String name) {

 Query query = em.createQuery(
 "SELECT c FROM Customer c WHERE c.name LIKE :custName");
 query.setParameter("custName", name);
 return query.getResultList();
}

JPQL Example 2
• The createNamedQuery method is used to create static queries, queries

that are defined in meta data using the NamedQuery annotation.

Lecture 9: JDBC and JPA 64

@NamedQuery(
 name="findCustomersByName",
 query="SELECT c FROM Customer c WHERE c.name LIKE :custName"
)

public EntityManager em;

public List findWithName(String name) {
 Query query = em.createNamedQuery("findCustomersByName");
 query.setParameter("custName", name);
 return query.getResultList();
}

Lecture 9: JDBC and JPA 65

• The criteria API provides a way to generate queries in an

object-oriented way with ordinary method calls, as

opposed to the string manipulation used by JPQL.

• The advantage over JPQL is that it is type safe and that it is

not required to know field names at compile time.

• The disadvantage is that notably more code is required to

generate queries and that it is harder to read the queries.

• The Criteria API is not part of this course.

Criteria API

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

