Lecture 7

Methods and problems in
Computer Science

Scientific Methods, General

Theoretical methods:

Create formal models (mathematics, logic)
Define concepts within these

Prove properties of the concepts

Abstraction, hide details to make the whole more understandable (and to
make it possible to prove properties of it)

Proofs of properties by deductive methods

CDT403 lecture 2012-10-25

Empirical methods:

Perform experiments

See how it turned out

Draw conclusions

Simulation:

Start with a formal model at some "easy-to-understand"” level
Make "artificial experiments" in your computer

Collect statistics and draw conclusions

CDT403 lecture 2012-10-25

In physics:

Make hypotheses about the surrounding world (theory), observe it
(experiment)

Relate the result of experiment to theory
Adjust the theory if it doesn’t predict the reality well enough

Theory is used to predict the future (e.g., if a bridge will hold for a certain
load, or an asteroid fall down on our heads)

CDT403 lecture 2012-10-25

Common pattern in Computer Science:
The system is constructed to behave according to some theoretical model

Deviations are seen as construction errors rather than deficiencies in the
theory (hardware error, bug in OS, ..)

In both cases: the theory helps us understand and predict, but in different
ways!

CDT403 lecture 2012-10-25

Theoretical vs. Empirical Methods in Computer Science

Computer Science really has a “spectrum”, from “extreme constructivism” to
a use of theory close the one in physics:

“Extreme constructivism”: (ideal) programming language design:

e Formal semantics for the language, pure construction of model defining
the mathematical meaning of each program

e Abstraction of details to make the meaning of the language simpler (for
instance, assume that data structures can grow arbitrarily big)

e Implement the language according to the semantics

One can prove formally within the model that a program is correct — valuable!

But the model does not cover all kinds of errors. E.g., hardware errors, or
stack overflow (or an asteroid falling down on the computer)

CDT403 lecture 2012-10-25 6

Extreme “physics” approach: performance modelling of complex computer-
and communication systems

e Extremely hard to make analytical calculations

e Simplified performance models, tested against experiments (e.g., long
suites of benchmarks)

e Discrepancy leads to a modified theory, as in physics

e Often simulation (desire to evaluate systems before building them)

CDT403 lecture 2012-10-25

In-between: algorithm analysis

e Build on some form of formal model for how the algorithm executed
(metalanguage with formal semantics), and some performance model
(how long does a step in the algorithm take, how much memory is needed
to store an entity)

e Performance model often of type “one arithmetic operation = one time
unit”

e Given that the performance model is correct, one proves mathematically
that the algorithm needs certain resources (time, memory) to be carried
out

e But the performance model is often very approximate

e Sometimes possible to refine the performance model, but this can make it
impossible to calculate the resource needs of the algorithm

CDT403 lecture 2012-10-25 8

Data mining
observational vs. experimental data

Data mining

The process of automatically discovering non-
trivial useful information in large data
repositories.

Two aspects of data mining

 Predictive
— Classification
— Regression

* Descriptive
— Association rules
— Clustring
— Anomaly detection
— Visualisation

Why data mining?

Scientific answer:
* Huge amounts of data are continuously being

collected (GB/h)

— satellite sensors
— radar telescopes
— simulation data

— DNA experiments

 Traditional statistical methods impractical
* Data mining can help scientists to

— explore, cluster and classify data
— formulate hypotheses

Why data mining?

Commercial answer:

* Huge amounts of data concerning:
— purchases
— surfing och searching the Internet
— bank and credit card transactions 4 .

« Computers have become and more powerful

 Commercial pressure to provide better and
customized services

Data mining?

Exercise:

Give an example of something you did today or
yesterday that resulted in data that could be
mined to discover useful information.

Classification:
Finding tax evaders

1 Yes Single 600K No

2 No Married 400K No

3 No Single 300K No

4 Yes Married 420K No

5 No Skild 380K -
6 No Married 220K No

7 Yes Skild 800K No

8 No Single 360K

9 No Married 240K “
10 No Single 340K

Jim: No refund, divorced,
earns 120K?

Classification

1 Yes Single 600K No algoritm
2 No Married 400K No
3 No Single 300K No
4 Yes Married 420K No
5 No Skild 380K Yes
6 No Married 220K No .
Train
7 Yes Skild 800K No model
8 No Single | 260K Yes \
9 No Married 240K No
10 No Single 360K Yes /

Use model

11 No Married 250K ? /

Decision tree

1 Yes Single 600K No
2 No Married 400K No
3 No Single 300K No
4 Yes Married 420K No
5 No Skild 380K
6 No Married 220K
7 Yes Skild 800K
8 No Single 360K
9 No Married 240K
10 No Single 340K

Traningsdata Modell: beslutstrad

Using the tree for classification

Observational vs. experimental data

« Data mining yields observational data

« Observational data can be user to infer
correlations between variables

« Experimental data can be used to infer causal
relationships (cause — effect)

Experiments vs. data mining

Experiments: Data mining:
 We know what we are « We do not know what
looking for we are looking for
— Formulate null hypothesis Data come from
- ;amplt‘”g - uncontrolled
— Reject or accep e .
hypothesis observations

« Systematically vary the
predictor variables and
study the effect on the
result variable.

Observational data

* Which conclusions can be drawn from the following
observations:

— Autopsies show that deceased patients who have
suffered from Alzheimer’s disease have high levels of
aluminium residues in their brains.

Observational data

* Which conclusions can be drawn from the following
observations:

— Historical data show high levels of CO, in the

atmosphere during periods of increased average
temperature.

Observational data

* Which conclusions can be drawn from the following
observations:

— A questionnaire show that obese persons tend to prefer
Coke Light before ordinary Coke.

Observational data

* Which conclusions can be drawn from the following
observations:

— A French consumer organisation reported that owners of
red cars were more likely to default on their car loans.

Experiment

Will a daily dosis of vitamin C lead to fewer
infections?

How can we desigh an experiment to test this?

Suggestion 1: Do a web questionnaire
— "Vitamin C makes me healthier.”
— ”Vitamin C doesn’t affect my health.”

Suggestion 2: Gather some subjects and have them
take a daily dosis of vitamin C during a couple of
months. Then evaluate whether the subjects have
had fewer days of infection compared to the
corresponding period the preceding year.

Experiment

* Suggestion 3: Gather some subjects. Let each
person decide whether she wants to take a daily
dosis of vitamin C (group C) or not (group N). At
the end of the trial period, we measure whether

group C had fewer days of infection than group
N.

Experiment

« Suggestion 4: Find some subjects. Let the
experiment leader decide who is going to have
a daily dosis of vitamin C (group C) and who will
not (group N). At the end of the trial period, we
measure whether group C had fewer days of
infection than group N.

Experiment

» Suggestion 5: Find some subjects . Randomly
decide who is going to have a daily dosis of
vitamin C
(group C) and who will not (group N). At the end
of the trial period, we measure whether group C
had fewer days of infection than group N.

Experiment

» Suggestion 6: Find some subjects . Randomly
decide who is going to have a daily dosis of
vitamin C
(group C) and who is going to have a pill that
doesn’t contain any active ingredient (group P).
The subjects do not know whether they belong
to group C or group P. At the end of the trial
period, we measure whether group C had fewer
days of infection than group P.

Experiment

« Suggestion 7: Find some subjects . Randomly
decide who is going to have a daily dosis of
vitamin C
(group C) and who is going to have a pill that
doesn’t contain any active ingredient (grupp P).
The subjects do not know whether they belong to
group C or group P, and neither does the
experiment leader.

At the end of the trial period, we measure
whether group C had fewer days of infection than
group P.

Design principles for experiments

Control group

Randomly select who is part of the experiment
group and who is part of the control group

Placebo
Double blind tests

Theoretical Models in Computer Science

Discrete mathematics: basic set theory, relations, functions, graphs, algebra,
combinatorics, category theory, etc.

The science logic: different logical systems, how to make “proofs about
proofs”

Theory for complete partial orders (formal semantics)
Topology (mathematics with notions of distance and convergence)
Probability theory, statistics

(Traditional analysis)

CDT403 lecture 2012-10-25 9

Theoretical Problems in Computer Science

What do we want to prove theoretically within Computer Science?

For instance properties of programs, systems, algorithms, and problems
Some examples:

“FFT uses O(nlogn) operations”

“With 99% confidence the program p runs faster than 1.3 ms on machine m”
“The program p terminates for all indata”

“If the method M says that a program terminates then this is true”

CDT403 lecture 2012-10-25 10

“There is no method that can decide, for any program, whether it terminates
or not”

“For each CREW PRAM-algorithm there is an EREW PRAM-algorithm that
can simulate it with a certain slowdown”

P = NP (or P # NP)

“The two semantics S; och S, agree for each program in the programming
language P’

CDT403 lecture 2012-10-25 11

Deductive Methods in Computer Science

1. “Ordinary” mathematical proofs:

e Often finite entities: defined recursively, properties proved with induction

e But also reasoning about limits (“go to the limit”), when infinite behaviours
are modelled

e Encodings and translations — common in Complexity Theory

e Sometimes also more conventional mathematical techniques

CDT403 lecture 2012-10-25 12

2. Direct modelling with logical inference systems:

e Common in semantics of programming languages (operational semantics)

e Proof methods from logic (proofs about proofs), again induction!

Let's see some examples. ..

CDT403 lecture 2012-10-25 13

Example Algorithm Analysis
Purpose: to find the cost of executing an algorithm (that solves a given
problem)
(Archetypal problem: to sort a sequence of numbers)

Cost is typically running time, but can also be memory requirements, power
consumption, etc.

To calculate the cost requires:

e a machine model
e a notation, i.e., “programming language” for the machine

Typically only interested in the asymptotic complexity of the algorithm

“How fast does the execution time grow with the size of the input?”

CDT403 lecture 2012-10-25 22

An example: insertion sort

for jJj = 2 to length(A) do
key = A[7]]
i= 73 -1
i > 0 and A[i1] > key do
A[i+1] = al1i]
i=1-1
Ali+l] = key

< oUW N
=
o
|_|.
|_|
0

We want to find the execution time as a function of input size (1ength (2))

CDT403 lecture 2012-10-25

23

Let us informally analyze insertion sort!

Assume execution time of a program is sum of the time of all executions of
individual statements,

and that the execution time of an individual statement is constant
(How reasonabile is this assumption, really?)

Thus, we can, for each statement take its execution time times the number
of times it is executed, and then sum over all statements

CDT403 lecture 2012-10-25

24

Say statements 1 - 7 have execution times ¢y, ..., c;
Each statement s is executed ¢, times

Then total execution time is

Let’s calculate the different t, on wyteboard and see what we get. ..

CDT403 lecture 2012-10-25 25

Results of analysis:

Best-case execution time (with n = length of A):
cin+ (c2+cs+ca+cr)(n—1)

order O(n) (what do we mean by this?)

Worst-case execution time:

order ©(n?)
Average-case execution time:

order ©(n?)

CDT403 lecture 2012-10-25

26

What kind of mathematics did we use?

Proving h € O(f) is done by ordinary mathematical methods (reasoning
about inequalities, deciding the existence of certain entities, .. .)

Facts about sums, algebraic manipulations

Probability theory to get the average-case execution time

In short, traditional mathematics

Note, though, that certain details are swept under the carpet!

In particular, implicit assumptions about semantics of loops etc. (how do we
know the body of for j = 2 to n isexecuted exactly n — 1 times?)

CDT403 lecture 2012-10-25 28

Example Complexity Theory

Deals with problems, or classes of problems, rather than single algorithms

Tries to find limits for how costly a certain problem (or class of problems) is
on a certain machine model

An example of a problem is sorting:

e O(nlog n) algorithms are known (for sequential machine model)
e Not proved whether this is the ultimate lower limit!

A famous class of problems (a complexity class):

N P, the set of all problems that can be solved in polynomial time (O (n*) for
some k) by a non-deterministic Turing machine (= set of problems solvable
by “pbrute force parallel search” in polynomial time)

CDT403 lecture 2012-10-25 29

A “hardest” problem in N P is known, 3-SAT: if 3-SAT always can be solved in
polynomial time then each problem in N P can be solved in polynomial time

Proof by encoding: that each problem in N P can be translated into 3-SAT
such that a solution of the translated problem solves the original problem (in
polynomial time relative to the time to solve the translated problem in 3-SAT)

(Or the reverse: if there is any problem in N P that cannot be solved in
polynomial time, then 3-SAT cannot either!)

3-SAT is N P-complete

CDT403 lecture 2012-10-25 30

Proof that another problem (Q is N P-complete:

1. Show Q € NP

2. Show that if one can solve @ in (sequential) polynomial time then 3-SAT
can be solved in polynomial time (via translation of 3-SAT into Q)

Complexity theory uses encodings a lot

CDT403 lecture 2012-10-25

31

Another famous complexity class:

P, the set of all problems that can be solved in polynomial time by a
deterministic Turing machine (cf. NP)

The class of problems that can be solved sequentially in polynomial time
(like, for instance, sorting)

Open question: is P = NP?
Generally assumed that P # N P, but has not been proved!

If indeed P = N P, then the concept of N P-completeness becomes quite
meaningless

CDT403 lecture 2012-10-25 32

Recursive Definitions and Proofs by Induction

Induction over natural numbers

Show that the property P is true for all natural numbers (whole numbers > 0)

1. Show that P holds for 0

2. Show, for all natural numbers n, that if P holds for n then P holds also for
n-+1

3. Conclude that P holds for all n
Formulated in formal logic:

[P(0) AVn.P(n) = P(n+1)] = Vn.P(n)

CDT403 lecture 2012-10-25 37

Example: show that for all natural numbers n holds that

CDT403 lecture 2012-10-25

38

Why does induction over the natural numbers work?
The set of natural numbers N is an inductively defined set

(A variation of) Peano’s axiom:

e 0N

o V.t e N = s(z) e N

o V.0 # s(x)

o Vz,yx #y = s(x) £ s(y)

s(x) “successor’to x, or r + 1

CDT403 lecture 2012-10-25

39

Note how proofs by induction over the natural numbers follow the structure
of their definition

0 — 5(0) — s(s(0) — s(s(s(0)) —

Also note that the definition of N is given a well-defined meaning by Kleene’s
fixed-point theorem:

pc{o}c{o,1} c{0,1,2} C---

CDT403 lecture 2012-10-25 40

List is a kind of abstract data type — the internal representation is hidden
Need not be represented as linked structures in memory (but could be)
Typical elements in List: NIL, 3:(4: NIL)

Note similarity with the set of natural numbers

List is the set of finite (but arbitrarily long) lists of numbers

CDT403 lecture 2012-10-25

42

Inductively defined sets are typically sets of infinitely many finite objects
Entities in Computer Science are often finite (data structures, programs, .. .)

Example: mathematical definition of the set of (finite) lists of integers, List

o NIL € List
e xcZNIl€E List = z:1l¢€ List
o Vz,l.(z:1# NIL)

o V2,2 . (z:l=2":1 = z=ZANl=1)

CDT403 lecture 2012-10-25 41

We can define mathematical functions over lists. An example:

length(NIL) = 0
length(z:1) = 14 length(l), forallz € Zochl e List
Defines length as a function List — N

Recursive definition: length itself is used in the definition! (Seemingly
circular definition, but note that length is not applied on the same argument
in the right-hand side)

Exercise: show that length really is a well-defined partial function! (That is,
that each function value is uniquely determined by the definition.)

Note the similarity with function definitions in some functional languages

CDT403 lecture 2012-10-25 43

Exercise: show Vi.length(l) > 0

How to do this?

Each inductively defined set has an induction principle that follows the
inductive definition of the set. Induction is performed on the “pieces” of an
entity built up from smaller entitites (e.g., a list built of elements put in front of

shorter lists).

Induction principle for List. Show that the property P is true for all lists of
integers:

1. Show that P holds for NIL

2. Show, for all lists [and integers z, that if P holds for [, then P holds also
for z : 1

3. Conclude that P holds for all lists of integers

CDT403 lecture 2012-10-25 44

“Mathematical” lists, and functions like length, can be seen as abstract
specifications of what lists are and how functions on them should work

Consider the following piece of C code:

#define NIL O

struct list
{ int contents;
list =*succ;

}

int len(list =*1)
{ int length;
length = 0;
while (1 != NIL)
{length++; 1 = 1 -> 1l.succ;}
return (length);

CDT403 lecture 2012-10-25

45

Interesting things to verify:

e That lists of 11ist-structs represent “mathematical” lists in List correctly

e That 1en (1) = length(l) always, when 1 is the representation in C of

The verification requires that a formal semantics is defined for C programs,
and that we define exactly what it means that a C entity represents a
“mathematical” entity

CDT403 lecture 2012-10-25 46

Logic deals with formal systems for derivations, that is, “how to prove
things”, and properties of derivations (proofs).

Thus, logic is a metatheory, which deals with properties of other theories!

Example of a result in logic: “in all logical systems that can express
arithmetics on whole numbers, it is possible to formulate statements that can
neither be proved nor disproved” (Godel's incompleteness theorem)

CDT403 lecture 2012-10-25 48

