

Royal Institute of Technology

MACHINE LEARNING 2 - THE EM ALGORITHM Lecture 9

LAST LECTURE

- ★ Backward
- ★ Smoothing
- ★ Sampling
- ★ Viterbi
- ★ K-means (inspiration)
- ★ GMM (towards EM)

THIS LECTURE

- ★ GMM
- ★ EM
 - * given "structure" and observations find parameters
- * EM algorithm for GMM
- ★ EM algorithm for BMM
- * Baum-Welch EM algorithm for training an HMM

ASSIGNING POINTS TO MULTIPLE MEANS

K-MEANS AS GMM

 \star Fixed variance, a Gaussian and mean per cluster, i.e., $\theta_c = (\mu_c, \sigma^2)$

 \star Idea: each point can belong to several means (clusters)

 \star Use responsibilities to find means

1

$$r_{nc} = p(z_n = c | \boldsymbol{x}_n, \boldsymbol{\theta}) = \frac{p(z_n = c | \boldsymbol{\theta}) p(\boldsymbol{x}_n | z_n = c, \boldsymbol{\theta})}{\sum_{c=1}^{C} p(z_n = c | \boldsymbol{\theta}) p(\boldsymbol{x}_n | z_n = c, \boldsymbol{\theta})}$$

$$\boldsymbol{\mu}_{c} = \frac{1}{N_{c}} \sum_{n} r_{nc} \boldsymbol{x}_{n}, \qquad \text{where } N_{c} = \sum_{n} r_{nc}$$

1-DIM GAUSSIAN MIXTURE MODELS

 $\mathcal{D} = (oldsymbol{x}_1, \dots, oldsymbol{x}_N)$

$Z \sim \operatorname{Cat}(\pi)$

 $p(\boldsymbol{X}|Z=c) = \mathcal{N}(\boldsymbol{X}|\boldsymbol{\mu}_{c},\sigma_{c})$ $\boldsymbol{\theta}_{c} = (\boldsymbol{\mu}_{c},\sigma_{c})$

Z hidden $\sim \operatorname{Cat}(\pi)$

 $oldsymbol{X} \sim \mathcal{N}(oldsymbol{\mu}_c, \sigma_c)$

EXAMPLE

 z_n is red with probability 1/2, green with probability 3/10, blue with probability 1/5

-

The three gaussian distributions in our mixture

 $z_n = blue$

 x_n is generated from the Gaussian indicated by z_n

We get x_1, \ldots, x_N

So,

 $p(x_n, z_n) = p(z_n)p(x_n|z_n)$

and

$$p(x_n) = \sum_{c=1}^{C} p(z_n = c) p(x_n | z_n = c) = \sum_{c=1}^{C} \pi_c p(x_n | z_n = c)$$

and

$$r_{nc} = p(z_n = c | x_n) = \frac{p(z_n = c, x_n)}{p(x_n)} = \frac{\pi_c p(x_n | z_n = c)}{\sum_{c=1}^C \pi_c p(x_n | z_n = c)}$$

$$COMPLETE LOG$$

$$I(\theta'; \mathcal{D}) = \log \prod_{n} p(\boldsymbol{x}_{n}, z_{n} | \theta')$$

$$= \sum_{n} \log \prod_{c} (\pi_{c}' p(\boldsymbol{x}_{n} | Z_{n} = c, \theta')^{I(z_{n} = c)})$$

$$= \sum_{n} \sum_{c} I(z_{n} = c) \log(\pi_{c}' p(\boldsymbol{x}_{n} | \theta_{c}'))$$

$$= \sum_{n} \sum_{c} I(z_{n} = c) \log \pi_{c}' + \sum_{c} \sum_{n:I(z_{n} = c)} \log p(\boldsymbol{x}_{n} | \theta_{c}')$$

$$= \sum_{c} \sum_{n:I(z_{n} = c)} \log \pi_{c}' + \sum_{c} \sum_{n:I(z_{n} = c)} \log p(\boldsymbol{x}_{n} | \theta_{c}')$$

$$= \sum_{c} N_{c} \log \pi_{c}' + \sum_{c} \sum_{n:I(z_{n} = c)} \log p(\boldsymbol{x}_{n} | \theta_{c}')$$

$$= \sum_{n} I(z_{n} = c)$$

 N_{o}

MLE -COMPLETE DATA FOR GAUSSIAN $\mathcal{D} = (z_1, x_1), \dots, (z_N, x_N))$ • Maximizing the complete log likelihood

$$l(\theta'; \mathcal{D}) = \sum_{c} N_c \log \pi'_c + \sum_{c} \sum_{n: I(z_n = c)} \log p(\boldsymbol{x}_n | \theta'_c)$$

Boils down to maximizing

EM & EXPECTED LOG LIKELIHOOD (Q-TERM)

- Iteratively maximizing the expected log likelihood (expected sufficient statistics).
- Iteratively maximizing the expected log likelihood in practice always leads to a local maxima
- The expectation is over hidden variables given data and current parameters
- We maximize the expression by choosing new parameters.

RELATIONS BETWEEN LOG-LIKELIHOODS AND Q-TERMS

Q-term or expected complete log-likelihood

$$Q(\boldsymbol{\theta}', \boldsymbol{\theta}) = \sum_{n} E_{p(Z_n | \boldsymbol{x}_n, \boldsymbol{\theta})} \left[l(\boldsymbol{\theta}'; Z_n, \boldsymbol{x}_n) \right]$$

Theorem: for $\boldsymbol{\theta}' = \operatorname{argmax}_{\boldsymbol{\theta}'} Q(\boldsymbol{\theta}', \boldsymbol{\theta})$

 $\log p(\mathcal{D}|\boldsymbol{\theta}') \ge Q(\boldsymbol{\theta}',\boldsymbol{\theta}) - R(\boldsymbol{\theta},\boldsymbol{\theta}) \ge Q(\boldsymbol{\theta},\boldsymbol{\theta}) - R(\boldsymbol{\theta},\boldsymbol{\theta}) = \log p(\mathcal{D}|\boldsymbol{\theta})$

log-likelihood

So, by maximizing Q-term (through ESS), we monotonically increase the likelihood.

The Q-term may not increase in every step!

LOG LIKELIHOOD & EXPECTED LOG LIKELIHOOD (Q-TERM)

Complete log likelihood

$$l(\theta'; \mathcal{D}) = \sum_{n} \sum_{c} I(z_n = c) \log \pi'_c + \sum_{n} \sum_{c} I(z_n = c) \log p(\boldsymbol{x}_n | \theta'_c)$$

Expected complete log likelihood a.k.a the Q term

$$\sum_{n} E_{p(Z_n | \boldsymbol{x}_n, \boldsymbol{\theta})} \left[l(\boldsymbol{\theta}'; Z_n) \right] = \sum_{n} \sum_{c} r_{nc} \log \pi'_c + \sum_{n} \sum_{c} r_{nc} \log p(\boldsymbol{x}_n | \boldsymbol{\theta}'_c)$$

 $\bigstar \text{ We want } \operatorname{argmax}_{\theta'} E_{p(\boldsymbol{z}_n | \boldsymbol{x}_n, \boldsymbol{\theta})} \left[l(\theta'; \mathcal{D}) \right]$

★ The 2 sums
$$\sum_{c} \left(\sum_{n} r_{nc} \right) \log \pi'_{c}$$
 & $\sum_{c} \sum_{n} r_{nc} \log p(\boldsymbol{x}_{n} | \theta'_{c})$

are independent

$$\bigstar$$
 So, $\pi_c' = \sum_n r_{nc}/N = r_c/N$

 \star In the second, different c indices are independent

 \star So, we want to maximize each

$$\sum_{n} r_{nc} \log \frac{1}{\sqrt{2\pi\sigma_c^{\prime 2}}} \exp\left(-\frac{1}{2\sigma_c^{\prime 2}}(x_n - \mu_c)^2\right)$$

GMM EM-ALGORITHM

- E-step: compute $r_{nc} = p(Z_n = c | x_n, \theta)$
- M-Step: maximize (1) mixture coefficients and (2) each

$$\sum_{n} r_{nc} \log \frac{1}{\sqrt{2\pi\sigma_c'^2}} \exp\left(-\frac{1}{2\sigma_c'^2}(x_n - \mu_c)^2\right)$$

by setting

٠

$$\mu'_c = \frac{\sum_n r_{nc} x_n}{r_c} \quad \text{and} \quad \sigma'^2_c = \frac{1}{\alpha'^2_c} = \sum_n r_{nc} (x_n - \mu'_c)^2 / r_c$$

set $\theta = \theta'$

• Stop when solution or likelihood hardly change otherwise repeat

E AND M STEPS

EM-ALGORITHM IN GENERAL

- E-step: compute $E_{p(Z_n|\boldsymbol{x}_n,\boldsymbol{\theta})}\left[l(\boldsymbol{\theta}';Z_n,\boldsymbol{x}_n)\right]$
- M-Step:

$$\theta' = \operatorname{argmax}_{\theta'} \sum_{n} E_{p(Z_n | \boldsymbol{x}_n, \boldsymbol{\theta})} \left[l(\theta'; Z_n, \boldsymbol{x}_n) \right]$$

• set $\theta = \theta'$

• Stop when solution or likelihood hardly change otherwise repeat

★ Starting points

- ★ Number of starting points
- ★ Sieving starting points
- ★ The competition
 - The first iterations of EM show huge improvement in the likelihood. These are then followed by many iterations that slowly increase the likelihood. Conjugate gradient shows the opposite behaviour.

PRACTICAL ISSUES

MIXTURE OF BERNOULLI

 $\mathcal{D} = (oldsymbol{x}_1, \dots, oldsymbol{x}_N)$

 $Z \sim \operatorname{Cat}(\pi)$

 $p(X_d|Z=c) = Ber(X|\theta_{cd})$

Z hidden $\sim \operatorname{Cat}(\boldsymbol{\pi})$

 $X_1 \sim \operatorname{Ber}(\mu_{Z1}) \quad X_D \sim \operatorname{Ber}(\mu_{ZD})$

MIXTURE OF BERNOULLI - BASE

- \star Basic model D binary variables x_1,\ldots,x_D and $oldsymbol{x}=x_1,\ldots,x_D$
- * Parameters $\boldsymbol{\mu} = \mu_1, \ldots, \mu_D$ where $p(x_i = 1 | \boldsymbol{\mu}) = \mu_i$
- * So $E[\boldsymbol{x}|\boldsymbol{\mu}] = \boldsymbol{\mu}$ and $\operatorname{cov}[\boldsymbol{x}|\boldsymbol{\mu}] = \operatorname{diag}\{\mu_i(1-\mu_i)\}$

FULL MIXTURE MODEL -MEAN AND COVARIANCE

$$E[\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\pi}] = \sum_{k=1}^{K} \pi_k \boldsymbol{\mu}_k \qquad E[x_i|\boldsymbol{\mu},\boldsymbol{\pi}] = \sum_{k=1}^{K} \pi_k \mu_{ki}$$

$$\operatorname{cov}[x_i, x_j | \boldsymbol{\mu}, \boldsymbol{\pi}] = \sum_{k=1}^K \pi_k \mu_{ki} \mu_{kj} - \sum_{k=1}^K \sum_{k=1}^K \pi_k \pi_{k'} \mu_{kj} \mu_{k'j} \neq 0$$

MIXTURE OF BERNOULLI

- \star Class variable $z \in [K]$ and D binary variables $oldsymbol{x} = x_1, \ldots, x_D$
- * Parameters $\boldsymbol{\mu}_k = \mu_{k1}, \ldots, \mu_{kD}$ and $\boldsymbol{\pi} = \pi_1, \ldots, \pi_K$
- ★ Mixture with likelihood

$$p(\pmb{x}|\pmb{\mu},\pmb{\pi}) = \sum_{k=1}^{K} \pi_k p(\pmb{x}|\pmb{\mu}_k)$$
 where

$$p(x_i|\boldsymbol{\mu}_k) = \mu_{ki}^{x_i} (1 - \mu_{ki})^{1 - x_i}$$

and

$$p(\boldsymbol{x}|\boldsymbol{\mu}_k) = \prod_{i=1}^{D} \mu_{ki}^{x_i} (1 - \mu_{ki})^{1 - x_i}$$

BAUM-WELCH: LEARNING HMM PARAMETERS

- \star Starts in the state z₁
- \star When in state z_t
 - outputs p(xt|zt) B_{x_t,z_t}
 - moves to $p(z_{t+1}|z_t)$

$$A_{z_{t+1},z_t}$$

 Stops after a fixed number of steps or when reaching a stop step

The parameters

we want to learn

LEARNING TRANSITION AND EMISSION PARAMETERS - FULLY OBSERVED DATA

- * Parameters
 - transition $A_{lk} = p(Z_t = l | Z_{t-1} = k)$
 - emission $B_{sk} = p(X_t = s | Z_t = k)$

★ Data

$$\mathcal{D} = \{ (x_{1:T}^1, z_{1:T+1}^1), \dots, (x_{1:T}^N, z_{1:T+1}^N) \}$$

* Likelihood

$$L(\boldsymbol{\theta}; \mathcal{D}) = \prod_{n=1}^{N} \prod_{t=1}^{T} \left[\prod_{k,s} B_{sk}^{I(x_t^n = s, z_t^n = k)} \prod_{k,l} A_{lk}^{I(z_t^n = k, z_{t+1}^n = l)} \right]$$

- COMPLETE DATA

$$l(\boldsymbol{\theta}; \mathcal{D}) = \sum_{k,s} M_{k,s} \log B_{ks} + \sum_{k,l} N_{k,l} \log A_{kl}$$

where

$$M_{s,k} = |\{(n,t) : x_t^n = s, z_t^n = k\}|$$
$$N_{k,l} = |\{(n,t) : z_t^n = l, z_{t+1}^n = k\}|$$

Maximized by

$$B_{sk} = M_{s,k} / \sum_{s} M_{s,k} = M_{s,k} / N_k \quad \& \quad A_{kl} = N_{k,l} / \sum_{l} N_{k,l} = N_{k,l} / N_k$$

where $N_k = |\{(n,t) : z_t^n = k\}|$

EN EOR HIDDEN DATA

Maximized by

$$B_{sk} = \overline{M}_{s,k} / \sum_{s} \overline{M}_{s,k} = \overline{M}_{s,k} / \overline{N}_{k} \quad \& \quad A'_{kl} = \overline{N}_{k,l} / \sum_{l} \overline{N}_{k,l} = \overline{N}_{k,l} / \overline{N}_{k}$$

Both obtainable from forward and backward (smoothing like)

#