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LAST LECTURE
★ Backward 

★ Smoothing 

★ Sampling  

★ Viterbi 

★ K-means (inspiration) 

★ GMM (towards EM)



THIS LECTURE
★ GMM 

★ EM 

★ given “structure” and observations find parameters  

★ EM algorithm for GMM 

★ EM algorithm for BMM 

★ Baum-Welch - EM algorithm for training an HMM



ASSIGNING POINTS TO 
MULTIPLE MEANS

9.2. Mixtures of Gaussians 437

(a)−2 0 2

−2

0

2

(b)−2 0 2

−2

0

2

(c)

L = 1

−2 0 2

−2

0

2

(d)

L = 2

−2 0 2

−2

0

2

(e)

L = 5

−2 0 2

−2

0

2

(f)

L = 20

−2 0 2

−2

0

2

Figure 9.8 Illustration of the EM algorithm using the Old Faithful set as used for the illustration of the K-means
algorithm in Figure 9.1. See the text for details.

and the M step, for reasons that will become apparent shortly. In the expectation
step, or E step, we use the current values for the parameters to evaluate the posterior
probabilities, or responsibilities, given by (9.13). We then use these probabilities in
the maximization step, or M step, to re-estimate the means, covariances, and mix-
ing coefficients using the results (9.17), (9.19), and (9.22). Note that in so doing
we first evaluate the new means using (9.17) and then use these new values to find
the covariances using (9.19), in keeping with the corresponding result for a single
Gaussian distribution. We shall show that each update to the parameters resulting
from an E step followed by an M step is guaranteed to increase the log likelihood
function. In practice, the algorithm is deemed to have converged when the changeSection 9.4
in the log likelihood function, or alternatively in the parameters, falls below some
threshold. We illustrate the EM algorithm for a mixture of two Gaussians applied to
the rescaled Old Faithful data set in Figure 9.8. Here a mixture of two Gaussians
is used, with centres initialized using the same values as for the K-means algorithm
in Figure 9.1, and with precision matrices initialized to be proportional to the unit
matrix. Plot (a) shows the data points in green, together with the initial configura-
tion of the mixture model in which the one standard-deviation contours for the two



K-MEANS AS GMM
★ Fixed variance, a Gaussian and mean per cluster, i.e.,  

★ Idea: each point can belong to several means (clusters) 

★ Use responsibilities to find means

rnc = p(zn = c|xn,�) =
p(zn = c|�)p(xn|zn = c,�)
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 1-DIM  
GAUSSIAN 

MIXTURE MODELS

Z hidden � Cat(�)D = (x1, . . . ,xN )

X � N (µc,�c)



EXAMPLE
zn is red with probability 1/2, green with probability 3/10, blue with probability 1/5

xn is generated from the Gaussian indicated by zn

We get x1,…,xN

zn = blue

xn 



GMM

and

and

So,

p(xn, zn) = p(zn)p(xn|zn)



COMPLETE LOG 
LIKELIHOOD GMM

Nc =
�

n

I(zn = c)

All parameters



• Boils down to maximizing 

MLE  -COMPLETE 
DATA FOR GAUSSIAN

• Maximizing the complete log likelihood
l(��;D) =

�

c

Nc log ��
c +

�

c

�

n:I(zn=c)

log p(xn|��
c)

that is



EM & EXPECTED LOG 
LIKELIHOOD (Q-TERM)

• Iteratively maximizing the expected log likelihood 
(expected sufficient statistics).  

• Iteratively maximizing the expected log likelihood in 
practice always leads to a local maxima 

• The expectation is over hidden variables given data 
and current parameters 

• We maximize the expression by choosing new 
parameters.



RELATIONS BETWEEN  LOG-
LIKELIHOODS AND Q-TERMS 

Theorem:     for  

So, by maximizing Q-term (through ESS), we monotonically 
increase the likelihood. 

The Q-term may not increase in every step!

log p(D|��) � Q(��,�)�R(�,�) � Q(�,�)�R(�,�) = log p(D|�)

Q-term or expected complete log-likelihood 
log-likelihood



LOG LIKELIHOOD &  
EXPECTED LOG LIKELIHOOD (Q-TERM)

Expected complete log likelihood a.k.a the Q term

Complete log likelihood



★ We want  

★ The 2 sums                                          &   

are independent  

★ So,                                      

★ In the second, different c indices are independent 

★ So, we want to maximize each

MAXIMIZATION
argmax��Ep(zn|xn,�) [l(��;D)]
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• E-step: compute

GMM EM-ALGORITHM
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• M-Step: maximize (1) mixture coefficients and (2) each 

by setting 

• set                                        

• Stop when solution or likelihood hardly change otherwise repeat



E AND M STEPS
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Figure 9.8 Illustration of the EM algorithm using the Old Faithful set as used for the illustration of the K-means
algorithm in Figure 9.1. See the text for details.

and the M step, for reasons that will become apparent shortly. In the expectation
step, or E step, we use the current values for the parameters to evaluate the posterior
probabilities, or responsibilities, given by (9.13). We then use these probabilities in
the maximization step, or M step, to re-estimate the means, covariances, and mix-
ing coefficients using the results (9.17), (9.19), and (9.22). Note that in so doing
we first evaluate the new means using (9.17) and then use these new values to find
the covariances using (9.19), in keeping with the corresponding result for a single
Gaussian distribution. We shall show that each update to the parameters resulting
from an E step followed by an M step is guaranteed to increase the log likelihood
function. In practice, the algorithm is deemed to have converged when the changeSection 9.4
in the log likelihood function, or alternatively in the parameters, falls below some
threshold. We illustrate the EM algorithm for a mixture of two Gaussians applied to
the rescaled Old Faithful data set in Figure 9.8. Here a mixture of two Gaussians
is used, with centres initialized using the same values as for the K-means algorithm
in Figure 9.1, and with precision matrices initialized to be proportional to the unit
matrix. Plot (a) shows the data points in green, together with the initial configura-
tion of the mixture model in which the one standard-deviation contours for the two



• M-Step: 

• set                                        

• Stop when solution or likelihood hardly change otherwise repeat

• E-step: compute

EM-ALGORITHM IN  
GENERAL



PRACTICAL ISSUES

★ Starting points 

★ Number of starting points  

★ Sieving starting points 

★ The competition 

• The first iterations of EM show huge improvement in the likelihood. These are then  
followed by many iterations that slowly increase the likelihood. Conjugate gradient shows 
the opposite behaviour.



  
MIXTURE OF 
BERNOULLI

Z hidden � Cat(�)D = (x1, . . . ,xN )

………



★ Basic model D binary variables                      and  

★ Parameters                               where  

★ So                          and 

MIXTURE OF 
BERNOULLI - BASE



FULL MIXTURE MODEL -
MEAN AND COVARIANCE



★ Class variable                 and D binary variables                       

★ Parameters                                      and  

★ Mixture with likelihood      

                where 

                 and 

MIXTURE OF 
BERNOULLI 



BAUM-WELCH: 
LEARNING HMM 
PARAMETERS 

★ Starts in the state z1 

★ When in state zt 

• outputs p(xt|zt) 

• moves to p(zt+1|zt) 

★ Stops after a fixed number 
of steps or when reaching 
a stop step

Fair Biased/loaded

p

1-p
1-q

q

The parameters 
we want to learn

Given observable (emissions)

also given structure 

learn probabilities



LEARNING TRANSITION AND 
EMISSION PARAMETERS - FULLY 
OBSERVED DATA

★ Parameters 
• transition  
• emission  

★ Data 

★ Likelihood 



MAXIMIZING LOG-LIKELIHOOD 
- COMPLETE DATA

Maximized by 
&

where

where 



EM FOR HIDDEN DATA

&

Maximized by 

Both obtainable from forward and backward (smoothing like) 



THE END


