
Enterprise Java Technologies (Part 1 of 3)

Component Architecture.
Overview of Java EE.

Java Servlets

Leif Lindbäck, Vladimir Vlassov

KTH/ICT/SCS

HT 2015

ID2212 Network Programming with Java
Lecture 10

Outline

• Component Architecture

• Overview of the Java Platform Enterprise
Edition, Java EE

• Java Servlets

Lecture 10: Overview of Java EE; Servlets 2

Component Architecture

Component Architecture: Why and How

Component Architecture

● Consists of components that live in containers.
● A component is a piece of code, in Java EE usually a

class, that solves some of the application's functional
requirements.

● The work done by a component is application specific.
● A container is a framework that solves some of the

application's non-functional requirements.
● The work done by a container is independent of the

application. The same container is used for different
applications.

Lecture 10: Overview of Java EE; Servlets 4

The Three-Tier Model
• The three -tier architecture allows maintaining state

information, improving security, performance, scalability
and availability.

• Also gives higher cohesion (bettter separation of concern),
since business logic and data storage are separated.
– Client in the first tier - presentation layer
– Business logic in 2nd tier - security and personalization of the

client
– System services (and databases) in 3rd tier – services and storage

5

Business
logic

2nd tier

Data

DBMS

3rd tier

1st tier
Client

GUI

Services

Why Component Architecture

• Not using an existing framework means writing
new code which means introducing new bugs.

• Decrease of the need for in-house expertise
• Existing frameworks are thoroughly tested and

proven to work well.
• It is easy to get help with frequently used

frameworks.

Lecture 10: Overview of Java EE; Servlets 6

Why Component Architecture (cont'd)

• Code handling non-functional requirements is
very similar in different applications.
– Non-functional requirements include scalability,

performance, availability, etc.

– Also, non-functional requirements are difficult to
code.

• Callback style makes sure all calls to
non-functional requirements code are made at
the right time.

Lecture 10: Overview of Java EE; Servlets 7

How Component Architecture

• Component
– a program building block for an application;
– presents a manageable, discrete chunk of logic (functionality);
– implements a set of well-defined interfaces.
– Examples: pricing component, billing component

• Container
– an application program or a subsystem in which the

component lives;
– Component’s context;
– creates, manages and “glues” components;
– provides life cycle management, security, deployment, and

runtime services for components it contains (component
contract).

– Examples: Web container (for JSF pages and servlets), EJB
container (for EJBs)

Lecture 10: Overview of Java EE; Servlets 8

How Component Architecture
(cont’d)

• Specifications
– For components, containers (hosts), and tools (development,

deployment)
– Set of conventions (standards) for

• Container (Context) Services
• APIs (classes, interfaces, methods, constructors)

– Names
– Semantics

• A well-defined component architecture is a set of
standards (specifications) allowing different vendors to
write compatible components, containers and tools

Lecture 10: Overview of Java EE; Servlets 9

Development and Deployment

• Development tools
– for developing components. The most used Java EE

IDEs are:
• NetBeans (netbeans.org)
• Eclipse (eclipse.org)

• Deployment tools
– for configuring and deploying components. The

GlassFish server has the following tools:
• Asant (GlassFish command line interface)
• NetBeans (Integrated with GlassFish)
• Admin console (GlassFish web interface)

Lecture 10: Overview of Java EE; Servlets 10

An Application Server
• Run time environment for component-based

applications
– Applications are deployed and run on an application

server

• Provides containers and services for applications
made of components.
– Services: security, management, naming, thread pools,

persistence, transactions, etc.

• Some Java EE Application Servers:
– GlassFish (Oracle, Java EE reference implementation)
– WebSphere (IBM)
– WebLogic (Oracle)
– Jboss (Red Hat)

Lecture 10: Overview of Java EE; Servlets 11

Client-Side Components

• May provide some type of user interface (GUI)
– Get user input and direct to a server
– Present (display) a server response to the user
– Perform client-side (pre- and post-) processing
– Run in browsers or as standalone applications

• HTML pages, using HTTP
• Andriod/iOS apps, using web services
• Standalone programs (Java or other language),

using for example web services.

Lecture 10: Overview of Java EE; Servlets 12

Server-Side Components

• Offer services (server-side operations)
– Provide dynamic-content web documents, accessing

databases, authentication, transactions, etc.
• Java Servlets, JavaServer Faces (JSF),

JavaServer Pages (JSP)
– Provides HTTP interface
– Deployed in a Servlet container

• Enterprise JavaBeans (EJB)
– Provides transaction management and persistence
– Deployed in an EJB container

Lecture 10: Overview of Java EE; Servlets 13

Component Architectures,
Some Existing Approaches

• Component Architectures from Microsoft
– .NET, COM, DCOM and COM++

• Common Object Request Broker Architecture
(CORBA) from the Object Management Group
(OMG)

• Java Enterprise Edition (Java EE) from Oracle

• PHP-based servers like Apache and NGINX

• Python-based servers like Zope and Django

Lecture 10: Overview of Java EE; Servlets 14

Java Platform, Enterprise Edition
(Java EE)

http://www.oracle.com/technetwork/
java/javaee/overview/index.html

Some Useful Links

• Java Platform, Enterprise Edition (Java EE)
– http://www.oracle.com/technetwork/java/javaee/overview/index.html

• Java EE Training & Tutorials
– http://www.oracle.com/technetwork/java/javaee/documentation/

index.html

• The Java EE 7 Tutorial:
– http://download.oracle.com/javaee/7/tutorial/

Lecture 10: Overview of Java EE; Servlets 16

DatabaseDatabase

ComponentComponent

Database Database
ConnectionConnection

ComponentComponent

Business Logic LayerBusiness Logic Layer
(on Application Server)(on Application Server)

Data layerData layer

Presentation layerPresentation layer

Java Platform EE: Enterprise
Java

• Targeted at the
development of
three-tier architectures:
– Business Logic

components are reusable
and portable

– Application server must
follow the Java EE
specification and provide
specified set of services

Presentation LogicPresentation Logic

Lecture 10: Overview of Java EE; Servlets 17

Multi-Tiered Java EE Applications

ApplicationApplication
ServerServer
MachineMachine

Application
Client

Application
Client

Dynamic
HTML pages

Dynamic
HTML pages

 Servlets
JSF

 Servlets
JSF

 Enterprise
Beans

 Enterprise
Beans

 Enterprise
Beans

 Enterprise
Beans

 Database(s) Database(s) Database(s) Database(s)

Client tierClient tier

Web tierWeb tier

Business tierBusiness tier

EIS tierEIS tier

ClientClient
MachineMachine

DBMSDBMS
MachineMachine

Java EEJava EE
ApplicationApplication

Java EEJava EE
ApplicationApplication

Lecture 10: Overview of Java EE; Servlets 18

The Java EE Technologies

• Four groups:
– Enterprise Application Technologies

– Web Application Technologies

– Management and Security Technologies

– Web Services Technologies

Lecture 10: Overview of Java EE; Servlets 19

Enterprise Application
Technologies

• Enterprise JavaBeans (EJB)
– EJBs are the standard building blocks for business logic.

• Java EE Connector Architecture
– An architecture for connecting the J2EE platform to heterogeneous

Enterprise Information Systems.
• Java Message Service API (JMS)

– A specification of an API for message based communication. To
create, send, receive, and read messages.

• Java Persistence API (JPA)
– Provides object-relational mapping.

• Java Transaction API (JTA)
– An API for resource managers and transactional applications. Also

used in writing JDBC drivers, EJB containers and hosts.
• JavaMail

– Provides an interface to a mail system.

Lecture 10: Overview of Java EE; Servlets 20

Web Application Technologies

• Java Servlets
– Process requests and construct responses, usually for HTML

pages
– Provides a gateway between Web clients and EJBs

• JavaServer Faces (JSF)
– An API for representing UI components (elements of HTML

pages) and managing their state; handling events from
components; server-side data validation and conversion.

• JavaServer Pages Standard Tag Library (JSTL)
– Encapsulates core functionality common to many JSF

applications, e.g. iterator and conditional tags for handling
flow control, tags for manipulating XML documents,
internationalization tags, tags for accessing databases using
SQL, and commonly used functions.

Lecture 10: Overview of Java EE; Servlets 21

Web Services Technologies

• Java API for RESTful Services (JAX-RS)
• Java API for XML-Based Web Services (JAX-WS)
• Java Architecture for XML Binding (JAXB)

– Provides a convenient way to bind an XML schema to a
representation in Java code.

• SOAP with Attachments API for Java (SAAJ)
– Provides a standard way to send XML documents over the

Internet from the Java platform.

Lecture 10: Overview of Java EE; Servlets 22

Java EE Containers

Lecture 10: Overview of Java EE; Servlets 23

HTML ClientsHTML Clients

Web containerWeb container EJB
container

EJB
container

Web Service ClientsWeb Service Clients

ServletServlet
JavaServer

Faces
JavaServer

Faces EJBEJB

HTTP
HTTPS

Database

Java EE Servlet Container APIs

Lecture 10: Overview of Java EE; Servlets 24

 Java EE EJB Container APIs

Lecture 10: Overview of Java EE; Servlets 25

A Java EE Application Server

• Hosts components in the middle tier of a
three-tier architecture.

• Has containers for server-side components
– Servlet container for Web components: JSF, Servlets,

etc.
– EJB container for EJBs, etc.
– Provides services for the components, such as naming,

transactions.
– Connectivity with other tiers (client, databases)

– Provides access to the components from clients
– Provides access to the third tier (system

services, databases)
Lecture 10: Overview of Java EE; Servlets 26

WebWeb
ClientsClients
WebWeb
ClientsClients

JavaServerJavaServer
FacesFaces

ServletServlet
ContainerContainer

ShoppingShopping
CartCart

EJB ContainerEJB Container

CreditCredit

OrderOrder

DBMS1DBMS1DBMS1DBMS1

DBMS2DBMS2DBMS2DBMS2

Application ServerApplication Server

Java EE Application Server
Example

Lecture 10: Overview of Java EE; Servlets 27

ServletServlet

Java Servlets

javax.servlet

javax.servlet.http

home page:
http://www.oracle.com/technetwork/java/javaee/overview/index.html

Java Servlets

• A Java Servlet is a component in a Java EE
servlet container that interacts with clients
using a Web protocol, such as HTTP.
– Executes in server's JVM,

– Allow providing dynamic Web pages,

– Main usage is as Controller, calls the model
component that shall handle the request and
forwards request to the next view,

– Thus acts as gateway between Web clients and other
services, such as databases, EJBs, and JMS,

– Generates HTTP response.
Lecture 10: Overview of Java EE; Servlets

29

Java Servlets (cont’d)

• javax.servlet.Servlet interface can be
used as a generic interface for any service, not
just HTTP.
– Should be a request-response interaction

• A javax.servlet.http.HttpServlet
interacts with a client using HTTP protocol.

Lecture 10: Overview of Java EE; Servlets 30

How an HTTP Servlet Executes
• The user submits an HTML form or clicks an

HTML link.
• The browser sends the user’s query in a GET

(POST) request to a servlet pointed to by URL in
the request

 GET /someResource?inputString=3 HTTP/1.1
• The Web container instantiates the servlet if it

does not exist and invokes the service method,
passing request and response objects as
parameters.

• The servlet handles the request and writes a result
to the output stream of the response object
– The output stream is directed to the client.

Lecture 10: Overview of Java EE; Servlets 31

 Servlet ContainerServlet Container Servlet ContainerServlet Container

Executing Servlets

ClientClient

HTML
Page

HTML
Page

1. Send HTTP request1. Send HTTP request

4. Return servlet output4. Return servlet output

 ServerServer

ServletServletServletServlet

2. Call2. Call
servletservlet

Lecture 10: Overview of Java EE; Servlets 32

3. Servlet3. Servlet
outputoutput

Include and Forward

• A servlet can include an output of another servlet:
RequestDispatcher dispatcher

= getServletContext().getRequestDispatcher("/banner");

if (dispatcher != null)

dispatcher.include(request, response);

• A servlet can forward the request (with additional
attributes) to another servlet:

request.setAttribute("message", message);

request.setAttribute("account",cashier.readAccount(acctNo));

request.getRequestDispatcher("/account").forward(request,
response);

Lecture 10: Overview of Java EE; Servlets 33

The Life Cycle of a Servlet

• Controlled by the container in which the servlet is
deployed.

• When a request is mapped to a servlet, the
container:
– Loads the servlet class (if not loaded yet).
– Creates an instance of the servlet class (if it does not

exist) and invokes the init method to initialize the
servlet instance.

– Invokes the service method, passing request and
response objects.

• If the container needs to remove the servlet, it calls
the servlet's destroy method.

Lecture 10: Overview of Java EE; Servlets 34

Implementing the Servlet Interface.
Extending the HTTPServlet Class

• A servlet class implements the Servlet interface either directly,
or more commonly, by extending the class HTTPServlet

• The Servlet interface
– init(ServletConfig config)

– Initializes the servlet and places it into service.
– The servlet can get a value of a named init parameter (if any)

by name using the ServletConfig object.
– The init parameters for the servlet are specified in the

deployment descriptor (i.e., web.xml file).

– service(ServletRequest req,
 ServletResponse res)

– Allows the servlet to respond to a request after the servlet
has been initialized by the init method.

– destroy()
– Removes the servlet from service after all its threads have

exited or a timeout period has passed.

Lecture 10: Overview of Java EE; Servlets 35

Extending the HTTPServlet Class

• Used to create an HTTP servlet suitable for a Web site.

• A subclass of HttpServlet must override at least one
of the following methods:
– doGet – if the servlet supports HTTP GET requests
– doPost – if the servlet supports POST requests
– doPut – if the servlet supports PUT requests
– doDelete – if the servlet supports DELETE requests
– init and destroy

– to manage resources that are held for the life of the servlet

– getServletInfo
– provides information about the servlet

Lecture 10: Overview of Java EE; Servlets 36

Servlet’s Request and Response

• A Web container creates and passes to the servlet’s
service methods (doGet, doPost, etc.) two objects:
– An HTTPServletRequest object,
– An HTTPServletResponse object.

• The HTTPServletRequest interface allows to inspect the
request:
– getters (getHeader, getQueryString , getParameter, etc.),
– checkers (isRequestedSessionIdValid , etc.)
– methods to pass information between the servlet container and

a servlet or between interacting servlets
• The HTTPServletResponse interface provides

functionality for creating and sending a response (e.g.
output stream).

Lecture 10: Overview of Java EE; Servlets 37

package se.kth.id2212.lecture10;

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "HelloServlet", urlPatterns = {"/HelloServlet"})
public class HelloServlet extends HttpServlet {

 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet HelloServlet at " +
 request.getContextPath() + "</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Never ever write HTML code in a Servlet!</h1>");
 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }

 @Override
 public String getServletInfo() {
 return "This is the HelloWorld Servlet example. ID2212 course. KTH";
 }

}

Example 1:
Hello World

Lecture 10: Overview of Java EE; Servlets
38

Example 1
(cont’d)

The generated HTML code:

<html>
 <head>
 <title>Servlet HelloServlet at /lecture10</title>
 </head>
 <body>
 <h1>Never ever write HTML code in a Servlet!</h1>
 </body>
</html>

Lecture 10: Overview of Java EE; Servlets 39

Monitor and React to Servlet's Life
Cycle Events

• Define listeners to receive and handle life-cycle events issued by the Servlet container
(context, session or request events). For example, a context listener:
@WebListener
public final class ContextListener implements
 ServletContextListener {

 private ServletContext context = null;
 public void contextInitialized(ServletContextEvent event) {
 context = event.getServletContext();
 try {

 BookDAO bookDB = new BookDAO();
 context.setAttribute("bookDB", bookDB);

 } catch (Exception ex) { e.printStackTrace();}
 }
 public void contextDestroyed(ServletContextEvent event) {

 context = event.getServletContext();
 BookDAO bookDB =
 (BookDAO)context.getAttribute("bookDB");
 bookDB.remove();
 context.removeAttribute("bookDB");

 }
 }

Lecture 10: Overview of Java EE; Servlets 45

Servlet Life-Cycle Events and
Listeners

Source Event Listener Interface

Web context Initialization and
destruction

javax.servlet.ServletContextListener

Attribute added, removed,
or replaced

javax.servlet.
ServletContextAttributeListener

Session Creation, invalidation,
activation, passivation, and
timeout

javax.servlet.http.HttpSessionListen
er,
javax.servlet.http.
HttpSessionActivationListener

Attribute added, removed,
or replaced

javax.servlet.http.
HttpSessionAttributeListener

A servlet request has
started being processed by
web components

javax.servlet.ServletRequestListener

Attribute added, removed,
or replaced

javax.servlet.
ServletRequestAttributeListener

Filtering Requests and Responses

• A web resource can be filtered by a chain of filters in a
specific order specified on deployment.

• A filter is an object that can transform the header and
content (or both) of a request or response:
– Query the request and act accordingly;

– Block the request-and-response pair from passing any further;

– Modify the request headers and data;

– Modify the response headers and data.

• A filter class is defined by implementing the Filter
interface.

• See the javax.servlet package.

Lecture 10: Overview of Java EE; Servlets 47

Accessing the Web Context

• The context in which web components execute,
i.e. the servlet container

• To get the context, call the
getServletContext method on the servlet.

• The context object implements the
ServletContext interface.

Lecture 10: Overview of Java EE; Servlets 48

Accessing the Web Context
(cont’d)

• The web context provides methods for accessing:
– Initialization parameters
– Resources associated with the web context,

• For example (see Slide 45), retrieving an object attribute
(set by the Context listener):

public class CatalogServlet extends HttpServlet {
private BookDBAO bookDB;
puvblic void init() throws ServletException {

bookDB =
(BookDBAO)getServletContext().getAttribute("bookDB");

if (bookDB == null)
 throw new UnavailableException("Couldn't get

database.");
}

} Lecture 10: Overview of Java EE; Servlets 49

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

