
Exercise sets in

Algorithms, data structures and complexity

Fall 2015

Övning 1: Algorithm analysis 2
Övning 2: Data structures and graphs 6
Övning 3: Divide and conquer; and dynamic programming 10
Övning 4: Dynamic programming 15
Övning 5: Graph algorithms and lower bounds 21
Övning 6: Algorithm construction 25
Övning 7: Probabilistic algorithms, reductions 29
Övning 8: Undecidability 33
Övning 9: NP completeness proofs 36
Övning 10: NP complete problems 41
Övning 11: Approximation algorithms 44
Övning 12: Complexity classes and mixed questions 47

Created and collected by Viggo Kann viggo@csc.kth.se
Translated to English by Marcus Dicander 2015.

Algoritmer, datastrukturer och komplexitet, fall 2015

Exercises to övning 1

Algorithm analysis

Ordo When n grows, which function grows faster? Does f(n) ∈ Θ(g(n)), f(n) ∈ O(g(n)) or
f(n) ∈ Ω(g(n)).

f(n) g(n)

a) 100n + log n n + (log n)2

b) log n log n2

c) n2

log n n(log n)2

d) (log n)log n n
log n

e)
√

n (log n)5

f) n2n 3n

g) 2
√

log n √
n

Division For this task, analyze the division algorithm called long division. This is what long
division looks like when 721 is divide by 64. (If you are used to having the divisor on the
other side, feel free to swap sides.)

7 2 16 4

0 1 1

− 0
7 2

− 6 4
8 1

− 6 4
71

First the algorithm checks how many times 64 divides 7, the most significant digit of 721.
Since 64 > 7 that makes 0 times. We have 0 · 64 = 0 so we subtract 0 from 7 giving 7.
We multiply 7 with 10 (the base), move the next digit (2) in 721 down, and continue by
dividing 72 with 64 to get the next digit in the quota. We continue in this way, subtracting
the number of times 64 divides every two digit number, move down the next number and
end when the integer part of the quota has been calculated. The 17 at the bottom is the
remainder.

We can formulate this in the following algorithm where q = b/a where a, b are n bit numbers
(a = an−1an−2 · · · a0, b = bn−1bn−2 · · · b0) in the base B. Let x≪ y be x left shifted y steps.

To simplify the correctness proof, we have added preconditions, postconditions and invariants
(see notes for Lecture 6).

2

Div(a, b, n) =
PRE: a > 0, b ≥ 0, a and b are stored with n bits.
POST: qa + r = b, 0 ≤ r < a
r ← 0
for i← n− 1 to 0 do

INV: (qn−1...qi+1) · a + r = (bn−1...bi+1), 0 ≤ r < a
r← (r ≪ 1) + bi /∗ Switch to next digit ∗/
q′ ← 0
a′ ← 0
while a′ + a ≤ r do /∗ Find the maximum q′ so that q′a ≤ r ∗/

INV: a′ = q′a ≤ r
a′ ← a′ + a
q′ ← q′ + 1

qi ← q′

r← r − a′

return 〈q, r〉 /∗ quota and remainder ∗/

What is the time complexity? Should bit cost or unit cost be used?

Euclid’s algorithm Analyze Euclid’s algorithm for finding the Greatest Common Divisor (GCD)
between two integers. Do it once for unit cost, once for bit cost and analyze the difference.
Euclid’s algorithm reads, assuming that a ≥ b:

gcd(a, b)=
if b|a then

gcd← b
else

gcd← gcd(b, a mod b)

Powers with repeated squaring The following algorithm calculates powers of two when the
exponent itself is a power of two.

Input: m = 2n

Output: 2m

power(m) =
pow← 2
for i← 1 to log m do

pow← pow · pow
return pow

Analyze the complexity both with unit cost and also with bit cost. Explain which cost model
is the most reasonable.

3

Solutions

Solution to Ordo

a) We calculate the limit for the quota between the functions.

lim
n→∞

f(n)

g(n)
= lim

n→∞
100n + log n

n + (log n)2
= lim

n→∞
100 + (log n)/n

1 + (log n)2/n
= 100.

Since the limit is constant, we conclude that f(n) ∈ Θ(g(n)).

b) We note that log n2 = 2 logn, so log n ∈ Θ(log n2).

c)
g(n)

f(n)
=

n(log n)2

n2/ log n
=

(log n)3

n
→ 0 when n→∞.

Therefore g(n) ∈ O(f(n)) and f(n) ∈ Ω(g(n)).

d) Substitute m = log n and then compare f2(m) = mm and g2(m) = 2m/m:

g2(m)

f2(m)
=

2m

m ·mm
=

1

m

(

2

m

)m

→ 0

then n→∞. Therefore f(n) ∈ Ω(g(n)) and g(n) ∈ O(f(n)).

e) Polynomial functions always grow faster than polylogarithmic functions. Therefore f(n) ∈
Ω(g(n)) and g(n) ∈ O(f(n)).

For a more formal proof, use the lemma which states that for every constant c > 0, a > 1
and all strictly monotonically growing functions h(n) is (h(n))c ∈ O(ah(n)). If we choose

h(n) = log n, c = 5 and a =
√

2 we get (log n)5 ∈ O(
√

2
log n

) = O(
√

n) since
(

21/2
)log n

=
(

2log n
)1/2

= n1/2.

f) f(n)
g(n) = n2n

3n = n
(

2
3

)n
.

An exponential function such as (2/3)n always defeats a polynomial function (such as n),

but let us prove that with l’Hôpital’s rule. Rewrite the expression: n
(

2
3

)n
= n/

(

2
3

)−n
. Add

variable names for nominator and denominator, r(n) = n and s(n) =
(

2
3

)−n
, and derive.

r′(n) = 1, s′(n) =

(

2

3

)−2n (

2

3

)n

ln

(

3

2

)

=
ln(3/2)
(

2
3

)n

We can use l’Hôpital since r(n)→∞, s(n)→∞ and s′(n) 6= 0.

lim
n→∞

f(n)

g(n)
= lim

n→∞
r(n)

s(n)
= lim

n→∞
r′(n)

s′(n)
=

(

2
3

)n

ln
(

3
2

) → 0

and we have proved that f(n) ∈ O(g(n)).

g)
√

n ∈ Ω(2
√

log n). Note that
√

n = 2
1
2

log n and that limn→∞ 2
√

log n− 1
2

log n = 0.

✷

4

Solution to Division

Since the input always consists of two numbers but the numbers’ size may vary, and since
the time only depends on the size of the numbers, bit cost is more reasonable. The for loop runs
n turns. In every turn we have a constant number of assignments, comparisons, additions and
subtractions as well as a while loop which runts at most B turns (since B is the base and the
number B · a ≥ r). Since the base can be regarded as constant, every turn in the for loop contains
a constant number of operations. Since all arithmetic is performed with n bit numbers, every
comparison, addition and subtraction takes the time O(n). Finally, we get n · c ·O(n) = O(n2). ✷

Solution to Euclid’s algorithm

Since the algorithm is recursive it is not obvious that it always terminates, so we begin by proving
this. In termination proofs we often use a power variableåhich has a lower bound (for example 0)
and at every call decreases with a whole number step. In this algorithm we can use a as a power
variable. Since a is always at least as large as b and the algorithm terminates as soon as a = b or
b = 1 we have a lower bound for a and we can see that a decreases in every call. The number of
calls are apparently dependent on the size of the parameters so let us see how the largest parameter
a decreases. Let ai be a’s value in call number i in the algorithm.

Lemma 1 ai+2 ≤ ai/2.

Proof. We know that ai+2 = bi+1 and bi+1 = ai mod bi, which is why ai+2 = ai mod bi. Now
assume that ai+2 > ai/2. This means that bi ≥ ai/2, which gives a contradiction since ai =
ai+2 + cbi > ai/2 + ai/2 = ai. ✷

Use the lemma to prove that ⌈log ai+2⌉ ≤
⌈

log ai

2

⌉

= ⌈log ai − log 2⌉ = ⌈log ai⌉ − 1. This means
that in every second function call the size of the parameter decreases with at least one bit. Therefore
the number of calls can be at most 2⌈log a⌉.

In every recursive call we perform one modulo operation and with unit cost that operation is
done in constant time. Our time complexity is therefore 2⌈log a⌉ = 2n ∈ O(n).

When we analyze according to bit cost we have to be more careful. A division between two n
bit integers takes (as we have seen) O(n2), and the modulo operation therefore takes O(n2). So if
we make O(n) calls and every call takes O(n2) the total bit complexity becomes O(n3). The most
appropriate cost model is determined by this questions: Are the numbers stored in variables of
fixed length or dynamic length? The answers are unit cost and bit cost respectively. ✷

Solution to Powers with repeated squaring

The loop runs log m = n turns. Every turn takes constant time with unit cost. The complexity is
therefore O(n).

If we use bit complexity we need to examine the cost of each multiplication in the for loop.
We assume that the cost of multiplying an l bit number with itself is O(l2) (which is an exagge-

ration. There are faster ways). During turn i the variable pow = powi held the value 22i

so every

multiplication costs O((log powi)
2) = O((log 22i

)2) = O(22i). If we sum over every turn we get

log m
∑

i=1

c22i = c

log m
∑

i=1

4i = 4c

log m−1
∑

i=0

4i = 4c
4log m − 1

4− 1
∈ O(4log m) = O(4n).

This algorithm has linear complexity when measured with unit cost but exponential complexity
when measured with bit cost! If the numbers are saved in fixed length variables the result with
quickly overflow. In practice we need variables of dynamic size and bit cost is therefore most
suitable. ✷

5

Algoritmer, datastrukturer och komplexitet, fall 2015

Exercises to övning 2

Data structures and graphs

During this exercise there is also a hand-in of written solutions for the theory exercises

for Lab 1 and oral presentations of the theory exercises. The theory is presented individually,
unlike the lab which is done in pairs.

Merging sorted lists Describe an algorithm that combines k sorted lists in time O(n log k)
where n is the total number of elements.

Data structure with maximum and minimum Construct a data structure with the following
operations and complexity:

• insert(x) (insert an element) takes time O(log n),

• deletemin() (remove the smallest element) takes time O(log n),

• deletemax() (remove the largest element) takes time O(log n),

• findmin() (returns the smallest element) takes time O(1),

• findmax() (returns the largest element) takes time O(1).

n is the number of elements currently stored. You may assume that comparisons between
two elements cost O(1) time.

Bloom filter with removal A normal Bloom filter only has two operations: Insert and IsIn.
How can we modify the data structure so that it also allows the operation Remove which is
not allowed to take longer time than Insert?

Suffix rule lookup in the spell checker Stava Stava has about 1000 suffix rules of the form

-orna ← -a, -an, -or

When a word such as dockorna is to be checked, Stava will go through all the rules one by
one after the first syllable, namely -ǫ, -a, -na, -rna, -orna, -korna, -ckorna. How should the
suffix rules be stored for fast retrieval?

Graph search Do a DFS and BFS search through the following graph. Start in the vertex s and
number the vertices in the order they are visited.

s

6

Topological sorting of DAG A Directed Acyclical Graph (DAG) can be topologically sorted.
This means that each vertex is assigned a number so that all edges go from a vertex with a
lower number to a vertex with a higher number.

Modify the Depth First Search so that it constructs a topological sorting of the DAG in
linear time.

Clique A Clique in an undirected graph is a set of vertices such that every pair of vertices in
the set has an edge between them. An important problem in computer science is finding the
largest clique in a graph.

Another famous problem is finding the largest independent set in a graph. An independent
set is a set of vertices where no pair of vertices have an edge between themselves.

These problems are so alike that if you have an algorithm for finding the largest clique in
a graph, that algorithm can be used inside a very simple algorithm for finding the largest
independent set. Show this!

Incidence matrix product At the lecture we showed how a directed graph G = 〈V, E〉 repre-
sented as an incidence matrix B of size |V | × |E|. Describe what the elements of the matrix
BBT represent (where BT is B transposed).

Bipartiteness Describe and analyze an algorithm which determines whether a graph is bipartite
or not. The time complexity should be linear in the number of edges and vertices in the
graph.

7

Solutions and hints

Hint to Merging sorted lists

Method 1: Use a heap with an element from each list and place the smallest element at the root.
Every heap operation takes O(log k) and there will be n insert operations and n remove operations.
Method 2: Merge the lists pairwise. Now there are k/2 sorted lists. Merge these lists pairwise and
so on. After log k merging rounds there is only one list left. Every merging round takes O(n)
because there are n elements in total to be merged in each merging round.

Solution to Data structure with maximum and minimum

You can either use a min-heap and a max-heap with the same values or use a balanced search tree
with two extra variables, one for the largest value in the tree and one for the smallest.

Both solutions are easy to implement. For the binary tree cases you can trivially write findmin
and findmax. For the three other operations you use the usual binary search tree operations and
copy the smallest and largest values to the min and max variables. ✷

Solution to Bloom filter with removal

Let the Bloom filter consist of numbers (8 bit or 16 bit integers) instead of bits. 0 means false and
every positive number means true. Instead of setting a bit to 1 the affected index is increased with
1. Remove works like insert but decreases every affected integer with 1. When an integer reaches
0 there are no elements that hash to that position.

The size of the numbers must be adapted to the number of elements expected to be in the
Bloom filter. We don’t want integer overflow in our counter. One solution is to add an extra bit for
overflow and when an overflowed counter reaches zero the whole bloom filter must be recalculated.

Another option is to never decrease a counter that has reached the ceiling. This is probably
safe since there must have been many elements that have been hashed to that position and the
probability that they should all be removed is low.

✷

Solution to Suffix rule lookup in Stava

We perform lookups on the left hand side of the rules. We call these rules for the entrance suffixes.
All rules with an empty entrance suffix are stored in their own list. All other rules are stored in an
array sorted by their entrance suffix read backwards. We use lazy hashing on a letter, i.e. we have
an alphabetically sorted array giving the index for the first entrance suffix ending on that letter.

When searching, we first check the list of rules with an empty entrance suffix. Then we look
up the last letter (a in dockorna) with lazy hashing and then go through the rules that only have
the only letter as entrance suffix. After that we do a binary search for the second to last letter (n)
among the entrance suffixes that end with a and go through the rules that have na, the rules that
have rna as entrance suffix and so on.

This way we get fewer and fewer entrance suffixes to perform the binary search on.

✷

Solution to Graph search – Your own exercise!

Solution to Topological sorting of DAG

If you look at the order the DFS passes the vertices when returning (the order in which the vertices
are considered done"in the search procedure) you see that it is a reversed topological ordering. If
you want to sort the vertices topologically you only have to add a single statement Push(u) at the
end of the procedure DFSVISIT(u). When the DFS search is done you can pop the vertices one

8

by one from the stack and they will be returned in a topological order. ✷

Solution to Clique

Hint: Study the complement graph G’ (a graph with the same vertices where the vertices are
adjacent iff they are not adjacent in G) ✷

Solution to Incidence matrix product

The diagonal element (i, i) indicates how many edges have their end point in i. The non diagonal
element (i, j) indicates the negated number of edges between the vertices i and j. ✷

Solution to Bipartiteness

Use DFS but color the vertices alternatingly black and white. If an edge between two vertices of
the same color is discovered the graph is not bipartite. ✷

9

Algoritmer, datastrukturer och komplexitet, fall 2015

Exercises to övning 3

Divide and conquer; and dynamic programming

Maximum and minimum with divide and conquer In the vector v[1..n] there are n num-
bers. Construct a divide and conquer algorithm which finds the largest and smallest element
in v. The algorithm may use at most ⌈3n/2⌉ − 2 comparisons between elements in v. The
number of numbers in v is not guaranteed to be a power of two.

Matrix multiplication Strassen’s algorithm can multiply two n× n matrices in time O(n2.808)
by dividing the matrices into 2×2 square matrices. The reason why Strassen’s is faster than
O(n3) is that it performs seven multiplications instead of eight to create the product matrix.

Another idea is to do the division into 3 × 3 block matrices instead. A couple of years ago.
Viggo tried to find the minimum number of multiplications needed to multiply two 3 × 3
matrices. He almost managed to get it down to 22 multiplications. Suppose he had succeeded,
what time complexity would this yield for two n× n matrices?

Majority with divide and conquer Input for this exercise is an array A with n elements.
Construct and analyze an algorithm which determines whether an element in the array is
in majority (it is repeated more than n/2 times), and returns it. The algorithm should be
a divide and conquer algorithm and the time complexity should be O(n log n). The only
allowed comparison operation on elements in A is =. The elements have no order relation.

Mobile Construct an algorithm which balances a mobile (the kinetic sculpture kind of mobile.
Not the cell phone) Think of the mobile as a binary tree. The leaves are balls, hanging at the
bottom of the mobile. Inner nodes represent thin straight sticks and the children are hanging
in threads attached to the ends of each stick. The input is a binary tree with weights in the
nodes. The weight in each leaf is the mass of the corresponding ball. The weight of each
inner node is the length of the corresponding stick. The algorithm should return the same
binary tree but on every inner node the number should be how many centimeters from the
left endpoint you have to attach the thread connecting this stick to the one above it to ensure
that everything is balanced.

Number sequences Suppose you have been given the recursion for a number sequence. Write
the pseudo code for a dynamic programming algorithm to calculate Sn if

a)

Sn =

{

1 if n = 0,
2(Sn−1) + 1 otherwise.

b)

Sn =







4 if n = 1,
5 if n = 2,
max (Sn−1, Sn−2, Sn−1 − Sn−2 + 7) otherwise.

10

c)

Sn =







4 if n = 1,
5 if n = 2,
max (Sn−2, Sn−1 − Sn−2 + 7) otherwise.

Write down the first 7 numbers. Which values do you need to save during the calculation?

Generalized number sequences a) 2D recursion without input

Given this recursion, construct an algorithm which calculates M [i, j] with dynamic program-
ming. Provide an argument for why the order of calculation is correct.

M [i, j] =

{

0 if i = 0 or j = 0,
M [i− 1, j − 1] + i otherwise.

b) 2D recursion with input

Given two strings a and b of length n and m, let ai be the letter in position i in string a
and correspondingly bj is the letter in position j in b, find an evaluation order and write an
algorithm which solves the following recursion with dynamic programming.

M [i, j] =







0 if i = 0 or j = 0,
M [i− 1, j − 1] + 1 if ai = bj,
0 otherwise.

Solutions and hints

Solution to Maximum and minimum with decomposition

When you only have two numbers you only need one comparison to find the largest and the
smallest number.

MinMax(v,i,j)=

if i=j then return (v[i],v[i])

else if i+1=j then

if v[i]<v[j] then return (v[i],v[j])

else return (v[j],v[i])

else

m:=Floor((j-i)/2)

if Odd(m) then m:=m+1;

(min1,max1):=MinMax(v,i,i+m-1);

(min2,max2):=MinMax(v,i+m,j);

min:=(if min1<min2 then min1 else min2);

max:=(if max1>max2 then max1 else max2);

return (min,max);

The tree of calculations will have ⌈n/2⌉ leaves and ⌈n/2⌉ − 1 inner nodes. If n is even then
all n/2 leaves are two element sequences and perform one comparison. If n is odd one leaf (the
rightmost) is a single element which requires no comparison. In the leaves we perform ⌊n/2⌋
comparisons. In every inner node we perform two comparisons, adding up to 2 ⌈n/2⌉− 2. In total
we get ⌊n/2⌋+ 2 ⌈n/2⌉ − 2 = ⌈3n/2⌉ − 2 comparisons.

It can be proved that this can not be done with fewer comparisons. ✷

11

Solution to Matrix multiplication

The recursion equation is T (n) = 22 ·T (n/3)+O(n2). Use the Master Theorem to get the solution
T (n) = O(nlog3 22) = O(n2.814). ✷

Solution to Majority with divide and conquer

If there is a majority element it has to be in majority in at least one half of the array.
Recursive approach: Check for majority recursively in the left and right half and count how many
times the half array majority elements occur in the whole array. If one element is in total majority
it is returned.

Majority(A[1..n]) =
if n = 1 then return A[1]
mid← ⌈(n + 1)/2⌉
majInLeft← Majority(A[1..mid−1])
majInRight← Majority(A[mid..n])
if majInleft=majInRight then return majInLeft
noOfMajInLeft← 0
noOfMajInRight← 0
for i← 1 to n do

if A[i] =majInLeft then noOfMajInLeft←noOfMajInLeft+1
else if A[i] =majInRight then noOfMajInRight←noOfMajInRight+1

if noOfMajInLeft≥ m then return majInLeft
if noOfMajInRight≥m then return majInRight
else return NULL

Time complexity: We have two recursive calls with the half array followed by the after work O(n).
Use the Master Theorem to get the time complexity O(n log n). ✷

Solution to Mobile

Consider a stick of length l in the mobile. Assume that the weight v is hanging from the left end
and the weight w from the right. Let x be the distance from the sticks left end to the thread
attaching the stick to the stick right above it. In order for the momentums to cancel each other
out, we need according to the laws of mechanics xv = (l−x)w, in other words x = lw/(v+w). We
can now calculate x for every stick recursively from top to bottom in the tree. Let the recursive
function return the weight of the mobile hanging in the current stick. The algorithm runs in linear
time.

Balance(p)=
if p.left =NIL then return p.num
left← Balance(p.left)
right← Balance(p.right)
p.x← p.num · right/(left + right)
return left + right

✷

Solution to Number sequences

a) 1, 3, 7, 15, 31, 63, 127

To calculate a number you only need the previous number. The order of evaluation is from the
base case towards higher numbers.

12

NumberSequenceA(n) =

v = 1

for i = 1 to n do

v = 2*v+1

return v

b) 4, 5, 8, 10, 10, 10, 10
To calculate a number we need to know the two previous numbers. The order of evaluation is

from the base case and onwards to higher numbers.

NumberSequenceB(n) =

if n = 1 then return 4

elif n = 2 then return 5

else

v0 = 4

v1 = 5

for i = 2 to n do

v = max(v1, v0, v1-v0+7)

v0 = v1

v1 = v

return v

c) 4, 5, 8, 10, 9, 10, 9
To calculate a number we need to know the two previous numbers. The order of evaluation is

from the base case and onwards upwards.

NumberSequenceC(n) =

if n = 1 then return 4

elif n = 2 then return 5

else

v0 = 4

v1 = 5

for i = 2 to n do

v = max(v0, v1-v0+7)

v0 = v1

v1 = v

return v

✷

Solution to Generalized number sequences

a) 2D recursion with no input.
Since we do not know what we are looking for, we let the algorithm return all of M . This is
not what one would typically do if the algorithm was to be used to answer a specific question.
Regardless of what the question would be, the first thing we need to do is to calculate all of M .
When the whole matrix is filled we can answer questions about it such as what is the largest value
or how many times does the largest value occur.

We have to start with a base case, but if we imagine a matrix M which is to be filled with
correct values, the whole first row (where i = 0) and the whole left column (where j = 0) will
be zero and this should not be calculated recursively. A typical order of evaluation for a program
would be row by row from the top or column by column left to right. We chose row by row and
put the values on the first row. After this we loop over all other rows and put the values column
by column. The order of evaluation works because the information we need to calculate a new
value is either on a line we have already calculated or earlier on the same line.

13

We can now calculate all of M . Here is our algorithm:

for j ← 0 to n
M [0, j]← 0

for i← 1 to m
M [i, 0]← 0
for j ← 1 to n

M [i, j]←M [i− 1, j − 1] + i
return M

The time complexity will be dominated by the nested for loop and therefore Θ(nm).

b) 2D recursion with input
We start with the base cases. All the elements on the first row (top) and the first column (left)
fulfil the condition for base case and can therefore be set to 0. We chose to start with the first row.
After this, we calculate the values on all following rows from top to bottom, column by column.
According to the recursion, the value is 0 if ai 6= bj , and otherwise calculated with the help of
previously calculated values. We can always look at the previous row (i − 1), since we calculate
one row at a time. On that row we can look at which elements we want, since the whole row is
filled. In particular we may look at the element in column j − 1. The order of evaluation works.
The algorithm looks like this:

for j ← 0 to n
M [0, j]← 0

for i← 1 to m
M [i, 0]← 0
for j ← 1 to n

if ai = bj then

M [i, j]←M [i− 1, j − 1] + 1
else M [i, j]← 0

return M

The time is, like in the previous example Θ(nm). ✷

14

Algoritmer, datastrukturer och komplexitet, fall 2015

Exercises to övning 4

Dynamic programming

This exercise also features a hand-in of written solutions to the theory exercises for lab

2 and oral presentation of the theory exercises.

Swamp trek Tina is walking through a swamp represented by an n×n square grid from the left
edge to the right. In every step she can go straight right, diagonally up right or diagonally
down right. Different squares in the swamp have different costs. Ending up on square (i, j)
costs A[i, j], which is a positive whole number.

Describe an algorithm which finds the minimum cost for passing through the swamp.

a) Assume that Tina may start anywhere on the leftmost column.

b) Assume that Tina always starts on square (n/2, 1).

c) Assume that Tina also has to end on square (n/2, n).

d) Print the least costly route for Tina in c).

Combine coins and bills Given a (constant) set of coins and bills with values v1, . . . , vk dollars
(All numbers in the input are positive whole numbers.) Formulate a recursion for how many
ways you can select coins and bills to reach the sum n.

Longest common substring The strings ALGORITHM and PHANTASMAGORIA have the common
substring GORI. The longest common substring between these strings has length 4. The
substring has to be connected in both strings.

Construct an efficient algorithm which given two strings a1a2 . . . am and b1b2 . . . bn calculates
and returns the length of the longest common substring. The algorithm should be based on
dynamic programming and the time complexity should be O(nm).

Here are two fun but more complicated examples which we will probably not have time for in
the exercise session.

Protein folding A protein is a long chain of amino acids. The protein chain is not a straight
line. It is folded in a complicated way which minimizes the potential energy. We want to
calculate how a protein will fold. In this exercise we will study a simple model of protein
folding where the amino acids are either hydrophobic or hydrophilic. Hydrophobic amino
acids tend to clump together.

The protein may be seen as a binary string where the ones are the hydrophobic amino acids
and the zeroes are the hydrophilic amino acids. The string (the protein) is to be folded in to
a square grating. The goal is to get the hydrophobic amino acids to lump together. We have
an optimization problem where the goal is to maximize the number of pairs of ones that are
next to each other in the grating without being next to each other in the string.

You are to construct an algorithm which with the help of dynamic programming constructs
an optimal accordion folding of a given protein string of length n. An accordion folding is a
folding where the strings first goes straight down, then straight up, then straight down and

15

so on. In such a folding the horizontal pairs in the string always follow each other in the
string so it is only vertical pairs (and not foldings) that add to the target function.

In the following illustration the string 00110001001100001001000001 is accordion folded so
that the target function becomes 4.

0

0

0

0

0

0 0

0

0 0

0

0

0

0 0

0

0

01

1

1 1

1 1

1

1

Definition of the problem Accordion Folding of Protein:

Input: A binary string with n characters (’0’ or ’1’).

Problem: Find the accordion folding of the input string that gives the largest
value for the goal function. In other words the largest numbers of pairs of ones
that are next to each other in the grating but not in the string.

Construct and analyze the time complexity for an algorithm which solves the accordion
folding of a protein chain with dynamic programming

We strongly suggest that you use this algorithm to calculate the number of pairs of ones in
a turn (between to adjacent parts of the string) in an accordion folding that are adjacent in
the grating but not in the string. Assume that the protein is stored in an array p[1..n]. The
parameters a and b give index in the array for the first part’s end points. The parameter c
give the index for the second part’s endpoint. See illustration below on the right.

profit(a,b,c) =

shortest←min(b-a,c-(b+1));

s←0;

for i←1 to shortest do

if p[b-i]=1 and p[b+1+i]=1 then

s←s+1;

return s;

a

b b+1

c.

.

. .

.

Note: The protein folding problem is an important algorithmic problem which is studied in
the course Algorithmic Bioinformatics. The course is resting as of 2015 but contact Lars
Arvestad if you want to take it as an independent reading course.

Analysis tool for context free grammar A context free grammar is among other things used
to describe the syntax of a programming language. A context free grammar in Chomsky

normal form is described by

• a set of termination symbols T (written in lowercase),

• a set of non termination symbols N (written with uppercase),

• the start symbol S (one of the non terminal symbols in N),

• a set of rules on the form A→ BC or A→ a, where A, B, C ∈ N and a ∈ T .

16

If A ∈ N then L(A) is defined through

L(A) = {bc : b ∈ L(B) and c ∈ L(C) where A→ BC} ∪ {a : A→ a}.

The language generated by the grammar is defined as L(S), which is all the strings of ter-
mination symbols that can be created by applying the rules starting from the start symbol
S.

Example: Consider the grammar with T = {a, b}, N = {S, A, B, R}, the start symbol S and
the rules S → AR, S → AB, A→ a, B → b, R→ SB. We can see that the string aabb is in
the language through this chain of rule applications:

S → AR→ aR→ aSB → aSb→ aABb→ aaBb→ aabb.

In this case we can prove that the language consists of all strings with k number of a:s
followed by k b:s where k is a positive integer.

Your task is to construct and analyze an efficient algorithm which determines whether or not
a string is part of the language generated by a grammar. Input is a context free grammar on
Chomsky normal form and a set of termination symbols. Output is true or false depending on
whether the string could be generated by the grammar or not. Express the time complexity
of your algorithm in the number of rules in the grammar and the length n of the string.
You can learn more about grammars in the language Automata and languages.

Solutions

Solution to Swamp trek

a) We let W [i, j] be the minimum work required to reach square (i, j). Tina may start anywhere in
the leftmost column. The base cases is to end up on a first square (from someplace outside of the
swamp. That only costs A[i, 0] for every i. We will express the cost of arriving at square i, j from
square i, j−1, which is the cost A[i, j] plus the cost of arriving at square i, j−1. We want to find the
least costly way of arriving at every square i, j, so in general there are three places Tina may have
appeared from, all in the column j − 1, and we must now compare the cost of arriving from each
and one of those and chose the one with the lowest cost. It seems reasonable to calculate the cost
column by column. Tina can not reach a square from the top edge so that value is set to infinity to
prevent our comparison from favoring that direction. We deal with the bottom edge in the same
way. Our recursion is therefore: W [i, j] = min(W [i− 1, j − 1], W [i, j− 1], W [i + 1, j − 1]) + A[i, j].
We calculate all values in the new matrix W .

The base cases:
for j ← 1 to n

W [1, j] = A[1, j]

Fill in the matrix:
for j ← 2 to n

for i← 1 to n
fromabove = W [i− 1, j − 1] if i > 1, else ∞
fromsame = W [i, j − 1]
frombelow = W [i + 1, j − 1] if i < n, else ∞
W [i, j] = min(fromabove, fromsame, frombelow) + A[i, j]

Tina was allowed to leave the swamp from any square to the right. Therefore we can go through
the last column in our matrix and look for the smallest value there.

17

Find the answer:
opt←∞
for i← 1 to n

if W [i, n] < opt then

opt←W [i, n]
return opt

If we put all these three steps together we get a dynamic programming algorithm which cal-
culates the least costly way of getting from the left side of the swamp to the right side.

b) If Tina always starts in square (n/2, 1) we have a slightly different base case. Since Tina never
can move straight up or straight down all other squares in the leftmost column are unreachable,
i.e. the cost of getting there is infinite. The recursion is the same as above.

c) If Tina always ends in the square (n/2, n), we will only be interested in the result in square
(n/2, n). This number will also be what we return. The recursion works as before.

d) For the construction of an optimal path we can either save the optimal source previous
position in every position, in other words let W contain both cost and a previous pointer or just
take our end square, subtract its value from the A matrix and find a possible square that we could
have arrived from and repeat the process until we reach the starting square. If there is more than
one path to a square that was equally costly then no matter. We just pick one of the least costly
paths through the swamp and there may be many that are equally costly.

Since we started with the value in the end square and figured out from where we could have
come to get that value and since we repeat this for every square in the path we will reach the
starting square (otherwise we can not have any value in the ending square). In every square we
have lowest cost of arrival from the starting square, through one of the least costly squares and
if we subtract the cost of this square from the cost of arrival, what remains must be the cost of
arriving at the previous square. We will always reach the starting square without passing through
some unreachable square since W [i, j] − A[i, j] 6= ∞ unless W [i, j] = ∞. Since we are looking at
the path backwards we can save the path in a stack to print them in the right order. ✷

Solution to Combine coins and bills

Let N [b, j] be the number of ways to create the sum b using coins and bills of values v1, . . . , vj

dollars.
N can be defined recursively this way:

N [b, j] =







1 if b = 0 or (j = 1) ∧ (b mod v1 = 0),
0 if j = 1 and b mod v1 6= 0,
∑⌊b/vj⌋

i=0 N [b− i · vj , j − 1] if 0 < b ≤ n

Another way to express the recursion is that a combination of the coin and bill values v1, . . . , vj

either contains the value vj or just the values v1, . . . , vj−1:

N [b, j] =















1 if b = 0,
0 if j = 0 and b > 0,
N [b, j − 1] if 0 < b < vj and j > 0
N [b− vj , j] + N [b, j − 1] if vj < b ≤ n and j > 0

✷

18

Solution to longest common substring

For every pair of characters from each string, let M [i, j] be the number of matching letters to the
left of (and including) ai which corresponds to as many letters to the left of and including bj . The
length of the longest common substring will be the largest number in the matrix M .

M can be defined recursively as:

M [i, j] =







0 if i = 0 or j = 0,
M [i− 1, j − 1] + 1 if ai = bj,
0 otherwise.

Here we can see that the recursion we have arrived at is the same as the one we were looking at
last exercise. Then we came up with the following algorithm:

for j ← 0 to n
M [0, j]← 0

for i← 1 to m
M [i, 0]← 0
for j ← 1 to n

if ai = bj then

M [i, j]←M [i− 1, j − 1] + 1
else M [i, j]← 0

return M

To answer the question in this assignment we need to find the largest number in M . We could
first calculate M and go through the matrix to compare values, but it is better to compare the
values during the calculation of the matrix. That way we do not have to return the whole matrix.
The following algorithm calculates all of M and returns the largest value in M .

max← 0
for j ← 0 to n

M [0, j]← 0
for i← 1 to m

M [i, 0]← 0
for j ← 1 to n

if ai = bj then

M [i, j]←M [i− 1, j − 1] + 1
if M [i, j] > max then max←M [i, j]

else M [i, j]← 0
return max

The running time is still dominated by the nested for loop and is therefore Θ(nm). ✷

Solution to Protein folding

Let qa,b be the maximum value of the goal function we can get so that a folding of the part p[a..n]
of the protein, where the first substring in the fold has endpoints a and b. We can express qa,b

recursively in the following way:

qa,b = max
b+1<c≤n

(profit(a, b, c) + qb+1,c).

The base cases are: qa,n = 0 for 1 ≤ a < n. The answer is then found as max
1<b≤n

q1,b.

Now we need to calculate qa,b according to these formulae and in the right order:

for a←1 to n-1 do q[a,n]←0;

for b←n-1 downto 2 do

19

for a←1 to b-1 do

t←-1;

for c←b+2 to n do

v←profit(a,b,c)+q[b+1,c];

if v>t then t←v;

q[a,b]←t;

max←0;

for b←2 to n do

if q[1,b]>max then max←q[1,b];

return max;

We have at most 3 nested for loops and one call to profit which takes time O(n) our time
complexity is O(n4). ✷

Solution to Analysis tool for context free grammar

We use dynamic programming in approximately the same way as when we are looking for an
optimal matrix chain multiplication order. Here we are instead going to determine in which order
and on which substring the rules are to be applied.

Input is a set of rules R and a vector w[1..n] which is indexed from 1 to n. Let us construct a
matrix M[1..n,1..n] where the element M[i,j] indicates the non terminal symbols from which
we can use grammar rules to derive the substring w[i..j].

Recursive definition of M[i,j]:

M[i, j] =

{

{X : (X → w[i]) ∈ R} om i = j
{X : (X → AB) ∈ R ∧ ∃k : A ∈ M[i, k − 1] ∧B ∈ M[k, j]} if i < j

Since every position in the matrix is a set of non terminal symbols we have to choose a suitable
data structure for this. Let us represent a set of non terminal symbols as a bit vector indexed
with non terminal symbols. 1 means that the symbol is in the set and 0 that it is not in the set.
Example: If M[i,j][B]= 1 then the non terminal symbol B is in the set M[i,j], which means
that there is a chain of substitution rules from B to the substring w[i..j].

The algorithm that calculates the matrix M[i,j] and returns true if the string is part of the
language generated by the grammar:
for i←1 to n do

M[i,i]←0; /* all bits are set to zero */

for every rule X →w[i] do

M[i,i][X]←1;

for len←2 to n do

for i←1 to n-len+1 do

j←i+len-1;

M[i,j]←0;

for k←i+1 to j do

for every rule X → AB do

if M[i,k-1][A]=1 and M[k,j][B]=1 then

M[i,j][X]←1;

return M[1,n][S]= 1;

Time: O(n3m). Memory: O(n2m) (since m is an upper bound for the number of non terminal
symbols). ✷

20

Algoritmer, datastrukturer och komplexitet, fall 2015

Exercises to övning 5

Graph algorithms and lower bounds

Spanning trees Show how a minimal spanning tree can be found in the following graph using
Prim and Kruskal’s algorithms.

7
9 1

2

3

4

5

6

8

10

Altered flow

a) Describe an efficient algorithm which finds a new maximum flow if the capacity along
a particular edge is increased one unit.

The algorithms complexity should be linear: O(|V |+ |E|).
b) Describe an efficient algorithm which finds a new maximal flow if the capacity along a

particular edge is decreased with one unit.

The algorithms complexity should be linear: O(|V |+ |E|).

Euler cycle Take an undirected graph G = 〈V, E〉 where all vertices have even degree, find an
euler cycle, a closed path that passes every edge in E exactly once. The algorithm must have
linear time complexity.

Christmas present distribution A father is going to give his n children one Christmas present
each. Every child has written a wish list. The father wants to give every child a present from
their wish list but he does not want to give the same present to more than one child.

Construct and analyze an efficient algorithm for this problem. You may assume that there
are at most m items on each wish list.

Upper bound for searching in sorted array As you know, a binary search in a sorted array
with n numbers takes O(log n). Prove that Ω(log n) is a lower bound for the worst case of
this problem.

21

Fix broken Christmas lighting Jonas’s Christmas lighting with n serially connected lamps
does not illuminate. A single broken lamp is enough to make the system not illuminate.
Jonas has bought n new light bulbs that are guaranteed to work. He does not want to
replace any whole lamps with new, because that would be a waste of lamps. He naturally
wants to make as few lamp tests as possible.

Construct and analyze an efficient algorithm for how Jonas can get the light to work with as
few lamp switches as possible. Analyze the worst case complexity for the algorithm in detail
(not just Ordo). A lamp switch takes time 1. The faster algorithm the better.

Find a lower bound for the worst case complexity that matches your algorithm.

Solutions and hints

Solution to Spanning trees – your own exercise!

Solution to Altered flow

a) Assume that the edge from the vertex u to v gets its capacity increased with one. Since the
time complexity should be linear we can not calculate whole new solution. We need to use
the solution to the previous flow problem. Let Φ be this solution (What does Φ consist of?)
and just perform a new iteration of Ford Fulkerson’s algorithm with the altered graph: In
the rest flow graph the capacity in the edge (u, v) is increased with one. Perform a graph
search (in time O(|V | + |E|)) to see if there now is a path in the residual flow graph where
the flow can increase. If there is such a path, the flow has to be of size 1 (since all flows are
integers). If there is no flow in the residual flow graph then Φ is still the maximum flow.

b) Assume that the edge from u to v gets its capacity decreased with one. If the previous
maximum flow Φ did not utilize the full capacity of (u, v) then the flow is not altered at all.
Otherwise we have to update the flow in the following way:

Since a larger flow arrives to u than the flow that leaves it and a smaller flow arrives at v
than the flow that leaves it we have to find a way to lead one unit of flow from u to v some
other way. Search in the residual flow graph for a path from u to v that can carry a flow of
one. This can be done with a graph search in time O(|V | + |E|). If there is such a path we
update Φ with that flow.

If there is no such path we have to decrease the flow from s to u and from v to t with one
unit. We do this by finding a path from u to s in the residual flow graph along which the
flow can be increased with one and a path from t to v in the residual flow graph along which
the flow can increase with one. (There has to be such a path since we had a flow from s to
t via (u, v).) Update Φ with these two flows.

✷

Solution to Euler cycle

The general idea is to start in a vertex v and search through the graph until v has been reached.
The search path P will then either have visited all edges there remains, if we remove P one or
more connected components G1, G2, . . . , Gn. In the latter case we can redo the same sort of search
for every component to get and find an Euler cycle for every Gi and then add all these Euler cycles
to P to get a total Euler cycle.

22

Our linear time algorithm uses two players P1 and P2 who walk through the graph together.
Both players start in v. Player P1 creates the path P by walking along edges randomly. He marks
every visited edge as visited and stops when he returns to v again. P2 follows along the path of
P , but for every new vertex he checks if every edge from u are visited. If they are all visited he
continues along P . If there are unvisited edges (there is always an even number) he sends out P1
to find a new path that begins and ends in u. P2 then walks this new path before continuing from
u. After repetitions P2 will finally have walked along every path and created an Euler cycle. P1

has not walked along the same edge more than once either, so the total runtime is linear.
In the algorithm below we call P1 PathF inder and P2Straggler

EulerCycle(G) =
cycle← {1}
choose edge (1, t)
mark (1, t)
path← PathF inder(G, 1, t)
Straggler(path)
return cycle

PathF inder(G, start, cur) =
append(cur, path)
while cur 6= start do

choose unmarked edge (cur, v)
mark (cur, v)
append(v, path)
cur ← v

return path

Straggler(path) =
while path 6= ∅ do

u← next(path)
append(u, cycle)
for all edges (u, v) do

if unmarked (u, v) then
mark (u, v)
p← PathF inder(G,u, v)
Straggler(p)

✷

Solution to Christmas present division

The problem is a bipartite matching problem. The object is to find a matching in a graph where
the left vertices are children (n vertices) and the right vertices are items. There is an edge between
a child and an item if the item is on the child’s wishing list. Bipartite matching can be solved as a
matching problem in a graph with O(nm) edges. Since the flow increases with one every in every
turn of Ford Fulkerson’s algorithm and the matching is at most n the matching is at most n the
complexity is O(n2m). ✷

Hint to Lower bound for searching in sorted array

Construct a decision tree for an arbitrary algorithm which searches in a sorted array. Examine
how many leaves the tree must have and how high it needs to be.

23

Solution to Repair Christmas lighting

Number the light bulb positions from 1 to n.

switch all bulbs except the one in place 1 against new ones
put the old bulbs in a sac
i← 1
while (there are still bulbs in the sac) do

if (the lights are on) then

i← i + 1
unscrew the new bulb in position i

else

unscrew the old broken bulb in position i
take a bulb from the sac and put it in position i

if not (the lights are on) then

unscrew the old broken bulb in position i
put a new bulb in position i

It is easy to see that the algorithm is correct with the following invariant for the for loop. (the
invariant is true in the beginning of every turn of the loop): All bulbs in position < i are old and
work, the lamp in position i is old, all lamps in position > i are new.

The worst case is that every bulb in the lighting are broken and then the algorithm performs
(n− 1) + (n− 1) + 1 = 2n− 1 lamp switches.

2n−1 is a lower bound. Think about it this way: The only way to determine if a particular bulb
in the lighting is whole or broken is to ensure that all other bulbs are whole and see if the lights
are on. A tough opponent makes sure that the Christmas lighting still does not turn on after n−1
new bulbs have been switched by simply making the first bulb broken. All n− 1 removed original
bulbs must then be tested again because the tough opponent has not allowed any information
about these bulbs to slip out and that requires another set of n − 1 lamp switches. Finally the
opponent makes sure that the last tested original lamp is broken and then yet another lamp switch
is needed to fix it.

The tough opponent just needs two broken bulbs to make the algorithm require 2n−1 switches!
✷

24

Algoritmer, datastrukturer och komplexitet, fall 2015

Exercises to övning 6

Algorithm construction

On this exercise session there is also a hand-in of written solutions for the theory exercises

for lab 3 and oral presentation of the theory assignments.

Inside or outside? Let P be a convex polygon with n vertices, described as an array with the
vertices p1, p2, . . . pn in cyclic order. Construct an algorithm which determines whether q is
inside P . The algorithm should take time O(log n) in the worst case.

Sorting small integers Construct an algorithm which sorts n integers in the range [1..n3] in
time O(n) with unit cost.
Hint: Think about bucket sort and radix sort.

Find the missing number On a datafile there are 999 999 999 integers, every integer between
1 and 1 000 000 000 except one. Which number is missing? Construct an algorithm that
solves this problem in constant memory and linear time in a calculation model with 32 bit
arithmetic (meaning it can calculate with numbers less than 231 = 2147483648)

Complex multiplication If we multiply two complex numbers a + bi with c + di in the normal
way we get four multiplications and two additions of real numbers. Since multiplications
are more expensive than additions (and subtractions) it would be beneficial to decrease the
number of multiplications. We may be dealing with large numbers here. Find an algorithm
which only uses three multiplications (but more additions) to multiply two complex numbers.

Two dimensional Fourier transformation Suppose you have access to an FFT implementa-
tion for the one dimensional case but you need to transform two dimensional data, for
example to transform an image represented as a matrix (aij)i,j∈{0,...,N−1} to a 2D frequency
spectrum. How would you use FFT for this? What is the time complexity?

Definition of the FFT:

âkl =
1

N2

N−1
∑

i=0

N−1
∑

j=0

aijw
ik+jl

where w is a suitable root of unity (wN = 1).

Binary tree with mirrored structure Two binary trees are said to have a mirrored structure if
one is a mirror image of the other. In other words: if we change left for right everywhere in one
tree then the trees are structurally equivalent. Construct and analyze the time complexity for
an efficient divide and conquer algorithm which determines if two binary trees have mirrored
structure.

25

p1

p2

p3

p4

p5

p6

p7

p8

q

Figur 1: A convex polygon and the lines used by the algorithm to divide it.

The party problem Input is a list of n persons, an integer k and a list of which persons know
each other. You want to invite as many of the persons as possible to your party, but to ensure
that all guests enjoy the party you want every invited guest to know at least k of the other
guests. Construct and analyze an algorithm which solves this problem in linear time in the
size of the input.

Solutions

Solution to Inside or outside?

If the polygon had not been convex we could have counted the number of intersections it has with
a line from q to a point outside P , which takes time O(n) but there is not time for that now.
Instead we will use an interval halving like search to exclude half of the remaining polygon at a
time until only one triangle remains. Then we can easily (with a constant number of comparisons)
determine whether q is in P . See illustration 1

InsideConvex(P, q, l, u) =
if u = l + 1 then /∗ a triangle ∗/

choose a point q′ outside the triangle p1–pl–pu

if the line q–q′ intersects exactly one line in the triangle then

return inside
else

return outside
else

mid←
⌈

l+u
2

⌉

if q is in the same side of the line p1–pmid as pmid+1 then

return InsideConvex(P, q, mid, u)
else

return InsideConvex(P, q, l, mid)

The algorithm is called with InsideConvex(P, q, 2, n).
If we assume that InsideConvex(P, q, 2, n) takes time T (n) then we get the recursive equation

T (n) = T
(n

2

)

+ c

which has the solution c log n. The time complexity is therefore T (n) ∈ O(log n). ✷

26

Solution to Sorting small integers

Consider the integers in base n. All numbers will then have at most 3 digits, except n3 which is
written as 1000 and can be handled separately. (Go through all the numbers, remove all occurrences
of n3 and place them last in the sorted sequence.) Now add leading zeros on numbers that are
smaller than n2. Perform radix sort on the numbers. Since there are 3 digit numbers, we get 3
turns of the radix sort, where very turn sorts the numbers after a digit in the interval [0..n− 1].
That sort of sorting is done in linear time with counting sort (which is stable if implemented like
the lecture notes from lecture 16).

Analysis: Three turns are performed and every turn takes time O(n). The special handling of
n3 does not take more time than O(n) either. The total time will therefore be O(n). ✷

Hint to Find the missing number

Sum all numbers modulo for example 1 000 000 000.

Solution to Complex multiplication

Your own exercise. ✷

Solution to 2D Fourier transform

Note first that the sum wik can be moved out of the inner sum. If we now regard the inner sum
as a 1D Fourier transform b̂il then âkl is a 1D transformation of b̂il.

b̂il =
1

N

N−1
∑

j=0

aijw
jl, âkl =

1

N

N−1
∑

i=0

b̂ilw
ik

We have used the fact that the Fourier transform is separable. The above equations tell us that
we can Fourier transform 2D data by first transforming every column in the matrix (aij) and then
transform the rows in the resulting matrix (bil) (or the other way around if you so wish) The
algorithm is:

2D-FFT (a0,0, a0,1, . . . , aN−1,N−1, N) =
for i← 0 to N − 1

bi,0, . . . , bi,N−1 ← FFT (ai,0, ai,1, . . . , ai,N−1, N)
for i← 0 to N − 1

c0,i, . . . , cN−1,i ← FFT (b0,i, b1,i, . . . , bN−1,i, N)
return c0,0, c0,1, . . . , cN−1,N−1

FFT is called 2N times. Since every call takes O(N log N) the total time becomes O(N2 log N).
✷

Solution to Binary tree with mirrored structure

We use divide and conquer to step down both trees at the same time. In order for the trees to
be each other’s mirror images the left subtree of the first tree has to be the mirror image of the
right subtree of the other tree and the right subtree of the first tree must be the mirror image of
the left subtree of the other tree. The base case is that at least one of the trees are empty. In that
case the trees are mirror images of each other if both trees are empty.

MirroredTrees(T1, T2)=
if T1 =NIL or T2 =NIL then

return T1 =NIL and T2 =NIL
return MirroredTrees(T1.left,T2.right) and MirroredTrees(T1.right,T2.left)

27

Since the function will be called (at most) once for every subtree (root) and the cost of a
function call apart from the recursion is constant the complexity will be linear in the size of the
tree.

It is easy to see that the algorithm is correct with the help of so called structural induction,
induction over the tree structure. We first check that the base case is correct (if one tree is empty
the other tree must also be empty for them to be mirror images) and then check that the induction
step is correct (if the first tree’s left subtree is the mirror image of the other tree’s right subtree
and the the first tree’s right subtree is the mirror image of the other tree’s left subtree then the
trees must be each other’s mirror images). ✷

Solution to The party problem

Assume that the list of guests who know each other consist of m rows. It is easy to represent input
as a graph G = (V, E) where each person is a vertex and every edge (x, y) means that two people
x and y know each other. Use an edge list to represent the graph.

The sought solution is the largest (induced) subgraph where every vertex has degree at least
k. We can find this subgraph by removing every vertex with degree less than k. When a vertex is
removed we also remove all edges to that vertex, which is why other vertices get lower degree and
may need to be remove. This is easiest to implement with a variable dx in every vertex x which
keeps track of the degree. It is updated every time an edge to the vertex is removed. Let us also
have a queue Q where we put all vertices with degree less than k which are awaiting removal of
their edges.

foreach x ∈ V do
if dx < k then Q.Put(x)

while not Q.Empty() do
x← Q.Get()
foreach (x, v) ∈ x.edge list do

if dv ≥ k then
dv ← dv − 1
if dv < k then Q.Put(v)

write ’The solution consists of:’
foreach x ∈ V do

if dx ≥ k then write x

Note first that as soon as dv gets smaller than k the vertex v is put in the queue and once it
has been pushed there dv will not change again (because of the if statement). Since there are n
vertices and every vertex is treated a constant number of times (initialization of Q, push in queue,
removal from queue, printing), and since there are m edges and every edge is handled at most
twice (it occurs in two edge lists) the total complexity becomes O(n + m) which is linear in the
size of the input.

It is easy to see that the algorithm is correct because every vertex printed in the solution still
has at least k neighbours left in the graph, and no vertex with less than k neighbours has been
removed during the run of the algorithm. ✷

28

Algoritmer, datastrukturer och komplexitet, fall 2015

Exercises to övning 7

Probabilistic algorithms, reductions

Skip lists The probability p that an element at level i in a skip list is also at level i + 1 can be
varied after need. On page 5 in the skip list article there is an analysis of how the search
paths expected length and the expected number of pointers in an element depend on p. It is
concluded that the shortest search path is found if p = 1/e ≈ 0.3679. In spite of this it may
be better to choose p = 1/2 or p = 1/4. Why is that?

Verification of matrix multiplication The fastest known method for matrix multiplication of
two n× n matrices is O(n2,376). Show that it is possible to probabilistically verify a matrix
multiplication in O(n2). To be more precise, construct a Monte Carlo algorithm that in time
O(kn2) verifies that AB = C and has an error probability of at most 2−k.

Reduction with a negative result To find the median element (the ⌈n/2⌉th smallest element)
of n positive integers requires at least 2n comparisons in the worst case. Use this result to
determine a lower bound for the number of comparisons required to find the ⌈n/2⌉ + 10th
smallest element.

Reduction which gives a positive result A useful way of solving a problem is to find a re-
duction to a problem which we already know how to solve. Use this method to solve the
disconnected graph problem defined like this:

Input: A connected undirected graph G = (V, E) and a positive integer K between
1 and |V |.
Problem: Is it enough to remove K well chosen edges from the graph G to make
it disconnected?

Express an optimization problem as a decision problem The slacking problem is defined
as an optimization problem in the following way:

Input: The length of the work day T and n tasks. Tark i costs time ti and effort wi. All
numbers are positive integers.

Solution: A subset of the tasks D ⊆ [1..n] which together fill up a work day. In other words
∑

i∈D ti ≥ T .

Goal function: The effort required to perform a day’s work D, in other words
∑

i∈D wi.

Goal: Minimize the goal function. Find the daily work that minimizes the effort.

a) Express the optimization problem as a decision problem. Expand the input with a goal
value I and formulate a yes or no question.

b) Make a turing reduction from the optimization problem to the decision problem. In
other words show how we can solve the optimization problem with the help of an
algorithm to solve the decision problem.

29

Reductions between decision, optimization and construction problems Assume that the
algorithm GraphColouring(G,k) in time T (n) (where n are the number of vertices in G) an-
swers 1 iff the vertices in G can be colored with k colors so that no edge connects two vertices
of the same color.

a) Construct an algorithm which given a graph G with n vertices determines the minimum
number of colors needed to color G. The time should be O(log n · T (n)).

b) Construct an algorithm which given a graph G with n vertices colors the vertices with
the minimum number of colors in time O(P (n)T (n)) where P (n) is a polynomial.

Solutions

Solution to Skip lists

We want to be able to calculate RandomLevel quickly, where RandomLevel is the level where
the element is to be put. If the randomness can be expressed on the form p = 2−k this can be
done efficiently by reading k bits of a random string (a stream of bits) and (for example) check if
all k bits are 1. ✷

Solution to Verification of matrix multiplication

Idea: Randomize a n vector r ∈ {0, 1}n, calculate a = C ◦ r and b = A ◦ (B ◦ r) and verify that
a = b.

If AB = C then a = b will always hold. If AB 6= C then D = AB − C 6= 0. Then there must
be some index i in r which affects the value of Dr if you switch r[i] so that it is 1 if it was 0 and
0 if it was 1. Also, if the algorithm randomizes the elements in the vector r with probability 1/2
for 0 and 1/2 for 1 then ABr 6= Cr will hold with probability 1/2. If we repeat this k times the
probability that the algorithm is fooled all k times will be less than (1/2)k.

The algorithm is:

VerifyMult(n, A, B, C, k) =
for i← 1 to k do

r← randomVector∈ {0, 1}n
a← C ◦ r
b← A ◦ (B ◦ r)
if a 6= b then return false

return true

The time complexity is O(kn2) since the algorithm runs k turns and for every turn there are
three matrix/vector multiplications which take O(n2). ✷

Solution to Reduction with a negative result

Reduce the median problem to the new problem by adding so many ones to the input so that
the earlier median element now is the ⌈m/2⌉+ 10th smallest element, where m is the number of
elements after the ones have been added. That means we have to add 20 ones and m = n + 20.
The lower bound 2n expressed in m is: 2n = 2m− 40. ✷

Solution to Reduction to prove a positive result

First we need to understand the problem. Assume that X is a minimum set of edges that make G
disconnected if we remove them. (This should be interpreted such that no strict subset of X fulfills

30

the same.) Then G is divided into two components and all edges in X connect those components
(otherwise X would not be minimal). X corresponds to a cut in the graph (a division of the vertex
set in two parts). The number of edges in X is the size of the cut. This means that the lowest
number of edges that we need to remove to make G disconnected — call this λ(G) — is equal to
the size of a minimum cut (V1, V2) in G.

Minimum cut equals maximum flow. We should therefore try to reduce the disconnected graph
problem to maximum flow between two vertices s and t in a graph. If we expand G to a flow graph
G′ by giving every edge a reverse edge and capacity 1 in both directions. We can then calculate
λ(G) by calculating the maximum flow from s and t for different s and t. We don’t need to vary
both of these. If we choose s arbitrarily then it has to belong to one of the sets V1 and V2 above.
By varying t over all vertices except s we are guaranteed to eventually get some vertex in the
other subset. The conclusion is that for an arbitrary vertex s:

λ(G) = min
t∈V −{s}

{MaxFlow(G′, s, t)}.

The exercise was to calculate whether K ≥ λ(G). We can answer no if K < MaxFlow(G′, s, t)
for all t ∈ V − {s} and yes otherwise.

The max flow algorithm is called |V | − 1 times. Every flow calculation can be done in time
O(|V |3) (There is no need to memorize that.) The complexity of our algorithm is therefore O(|V |4).
✷

Solution to Express an optimization problem as a decision problem

a) Input: Length of the working day T , the goal I and n tasks. Task i takes time ti and costs
the effort wi.

Question: Is there a subset D ⊆ [1..n] so that
∑

i∈D ti ≥ T and
∑

i∈D wi ≤ I?

b) Assume that Slacking(T, I, n, {ti}, {wi}) is an algorithm that solves the decision problem.
The optimal total effort has to be an integer between 0 and

∑

1≤i≤n wi. Perform a binary se-
arch between these extreme values after the lowest value I for which Slacking(T, I, n, {ti}, {wi})
answers yes.

✷

31

Solution to Reductions between decision, optimization and construction problems

a) We know that the number of colors are between 1 and n. Use binary search in this interval
and call the decision problem GraphColoring to find a k so that GraphColoring(G, k) = 1
and GraphColoring(G, k − 1) = 0. This means that the minimal coloring has k colors. We
need log n halvings of n to get down to 1. The time complexity is therefore O(log n · T (n)).

b) Find the minimum number of colors k with the method above. We want to color the vertices
in G with colors numbered from 1 to k. The following algorithm does that:

CreateColouring(G = (V, E), k)=
u← first vertex in V
C ← {u}; u.colour← k
foreach v ∈ V − {u} do

if (u, v) 6∈ E then

if GraphColoring((V, E ∪ {(u, v)}), k) = 1 then E ← E ∪ {(u, v)}
else C ← C ∪ {v}; v.colour← k

if k > 1 then CreateColouring((V − C, E), k − 1)

GraphColoring is called once for every pair of vertices in the graph. The time complexity for
the whole algorithm is therefore O(log n · T (n) + n2 · T (n)) = O(n2 · T (n)).

✷

32

Algoritmer, datastrukturer och komplexitet, fall 2015

Exercises to övning 8

Undecidability

One of the two hours this exercise set are spent on Mästarprov 1.

Undecidability 1 The worm problem takes as input a set T of tile types and two points p1 and
p2 in the plane. The question is whether or not we can use the tile types in T to build a
worm that coils from p1 to p2. The worm may not break the tile pattern anywhere and it
must stick in the upper half plane.

Are the following versions of the worm problem decidable or undecidable?

a) Input is expanded with a fourth parameter, a tile type t ∈ T . The first tile (the one we
place on p1) must be of type t.

b) Input is expanded with an integer N and the question is expanded with the condition
that the worm must use at most N tiles.

c) Input is expanded with an integer N and the question expanded with the condition
that the tile must consist of at least N tiles.

Undecidability 2 Is there a program P such that given y it is decidable whether P stops for
input y?

Undecidability 3 Is there an explicit program P such that given y it is undecidable whether P
stops for input y?

Undecidability 4 If the program x stops on empty input we let f(x) be the number of steps
before the program stops. Otherwise we set f(x) = 0. Now define MR(y), the maximum
runtime of all programs whose binary coding are less than y.

MR(y) = max
x≤y

f(x),

Is MR computable?

Undecidability 5 Show that the function MR in the previous exercise grows faster than every
recursive function. In particular, show that for every recursive function g there is a y such
that MR(y) > g(y).

Undecidability 6 Assume that a Turing Machine M , with input X (written on the tape at the
start) and an integer constant K are given. Is the following problem decidable or undecidable?

Does M stop on input X after having used at most K squares on the tape. (a used square
may be written to and read from more than once)?

33

Undecidability 7 A recursively enumerable set was defined at the lecture as a language which can
be recognized by a function whose yes solutions can be verified in finite time. An alternative
definition is a set which is countable (the elements can be numbered with natural numbers)
and can be produced by an algorithm. Use the latter definition to prove that every recursive
set is recursively enumerable.

Undecidability 8 The diagonalized halting set is the set of all programs p that reach the halting
state on input p. Show that this set is recursively enumerable.

Solutions

Solution to Undecidability 1

a) Undecidable. We reduce the worm problem to wormProblemWithSpecialStartTile in the
following way.

worm problem(T, p1, p2) =
for t ∈ T do

if wormProblemWithSpecialStartTile(T, p1 , p2, t) then

return true

return false

b) Decidable. We just need to test all imaginable worms of length at most N that start in p1 and
see if they solve the problem. Since this is a finite set (bounded by (3|T |)N) the algorithm
is finite and the problem decidable.

c) Undecidable. We reduce the wormProblem to wormProblemWithMinimumLength in the
following way.

wormProblem(T, p1, p2) =
return wormProblemWithMinimumLength(T, p1, p2, 1)

✷

Solution to Undecidability 2

Yes, there are plenty of such programs. Take for example the simple program P (y) = return. It
is easy to see that P stops for all inputs. ✷

Solution to Undecidability 3

Yes. Let for example P be an interpreter and input y be a program x followed by input y′ to that
program. This means that P (y) behaves just like x would behave on input y′, and it is undecidable
whether x stops on a certain input y′. ✷

Solution to Undecidability 4

No, MR can not be calculated. We know that it is undecidable whether a program stops on blank
input (the empty string). Therefore, reduce this program to MR. Note that MR(y) is the maximum
number of steps that every program of size at most y needs before it stops if it is started with
blank input.

34

StopBlank(y) =
s← MR(y)
if s = 0 then return false

else

simulate y on blank input in s steps (or until y stops)
if y stopped then return true

else return false

If y has not stopped within s steps we know that it will never stop. Since StopBlank is not
computable MR can not be computable either. ✷

Solution to Undecidability 5

Assume the opposite, that there is a recursive function g so that g(y) ≥ MR(y) for all y. Then
we could change the first row s← MR(y) in the solution to the previous exercise to s← g(y) and
the program would still work. The program would then become computable which we know it can
not be. Therefore we have a contradiction and our assumption was false. ✷

Solution to Undecidability 6

The problem is decidable. Since the Turing machine has to stay within K squares on the tape
the number of configurations the Turing machine can be in is finite. If the machine has m states
then the number of configurations is m ·K · 3K (the number of states multiplied with all positions
for the read/write head multiplied by all possible tape configurations). Simulate the machine in
m ·K · 3K + 1 steps and check for every step that the machine does not move outside of the K
squares on the tape. If the Turing machine stops within this time we answer yes. If the Turing
machine has not stopped after this time it must have returned to one of its previous configurations,
meaning that it is in an infinite loop and we can safely answer no. ✷

Solution to Undecidability 7

Assume that S is a recursive set. This means that there is an algorithm A(x) which determines
whether x ∈ S. The elements in S are naturally stored as binary strings. The following program
generates the set S:

for i← 0 to ∞ do

if A(i) then write i
✷

Solution to Undecidability 8

for i← 0 to ∞ do

for p← 0 to i do

simulate the calculation p(p) during i steps
if p(p) stops within i steps then write p

The same p will be written many times. If we want to avoid this we can make sure to only print
p if either p(p) stops at exactly i steps or p = i. ✷

35

Algoritmer, datastrukturer och komplexitet, fall 2015

Exercises to övning 9

NP completeness proofs

This time there is also a hand-in of written solutions for the theory exercises for lab 4

and oral presentation of the assignments.

What do the reductions say? A, B, C, D and E are decision problems. Assume that B is NP
complete and that there are polynomial Karp reductions between the problems as illustrated
below (a reduction from A to B is denoted A→ B):

A → B ↔ C ← D
↓
E

What do we know about the complexity for A, C, D and E? Write a cross in the table below
for when it is certain and a ring where it is possible but we can’t know for certain.

is in NP is NP complete is NP hard
A
C
D
E

Frequency allocation Within the cell phone carrier industry one of the problems to solve is
the frequency allocation problem which works like this. There are a number of transmitters.
Every transmitter can broadcast on a given set of frequencies. Some towers are so close to
each other that they can not broadcast on the same frequency because then they would
interfere with each other. (This is not just because of proximity but also because of the
presence of mountains, houses or other things that block radio signals.)
We know the transmitters, each transmitter’s frequency set and which pairs of transmitters
would interfere with each other if they broadcasted on the same frequency. The problem is to
determine whether there is a possible choice of frequencies so that no transmitter interferes
with another.

a) Express this problem as a graph problem
b) Show that the problem is in NP by:
b1) Suggesting how a solution may look.
b2) Show that if the answer is yes, then the solution can be verified.
b3) Show that the verification takes polynomial time.
c) Show that the problem is NP hard by:
c1) Find a known NP complete problem to reduce.
c2) Describe the reduction between the known problem and the frequency allocation problem.
c3) Show that the reduction is polynomial.
c4) Show that the reduction is correct.

Then you will know that the problem is NP complete!

Hamiltonian path in graph Show that the problem Hamiltonian Path is NP complete. The
problem is to determine whether there is a simple path which passes through all vertices in
a graph.

36

Spanning tree with limited degree Show that the following problem is NP complete: Given
an undirected graph G = (V, E) and an integer k, determine whether G contains a spanning
tree T so that every vertex in the tree has degree at most k.

Polynomial reduction Construct a polynomial reduction from 3CNF SAT to Eq-gf[2], the
satisfiability problem for a system of polynomial equations over GF[2] (integers modulo 2).

Is an Euler graph k colorable? Many problems of the type determine if the graph G has pro-

perty e can be simplified if we assume that the graph has another special property. We will
now study a special case. We say that a connected graph is an Euler graph if every vertex
in the graph has even degree. We would now like to determine whether such a graph is k
colorable. We have the following problem:

Input: An Euler graph G and an integer k.
Output: YES if the graph is k colorable. NO otherwise.

For k ≤ 2 there is a polynomial algorithm for determining colorability for general graphs.
We can therefore assume that k ≥ 3. Now determine if there is a polynomial algorithm that
solves the problem above or if the problem is NP complete.

Solutions

Solution to What do the reductions say?

is in NP is NP complete is NP hard
A x o o
C x x x
D x o o
E o o x

✷

Solution to Frequency allocation

a) Express the frequency allocation problem as a graph problem.

Let the vertices represent transmitters and edges represent transmitters that interfere with
one another. Every vertex vi is marked with a frequency set Fi. The question is if it is
possible to assign to every vertex a frequency from its set of frequencies so that no vertices
with the same frequency have an edge between them.

b) Show that the graph problem is in NP.
b1) A solution is an assignment of frequencies to each vertex.
b2) Go through each vertex and verify that its frequency is in the set of frequencies. Also go
through every edge and verify that the endpoints’ frequencies are different.
b3) The verification takes linear time in the size of the graph.

37

c) Show that the graph problem is NP hard.
c1) We try to reduce the k coloring problem.
c2)

k coloring(G, k) =
for every vertex vi in the graph G

Fi ← {1, . . . , k}
return frequency allocation(G, {Fi})

c3) The reduction just creates a k set for each of the vertices. It is obviously polynomial.
c4) Now show that there is a k coloring of the graph G iff there is an allowed frequency
assignment for G where all vertices have the frequency set {1, . . . , k}.
Assume that we have a k coloring of G. Number the colors 1 to k. If a vertex has been given
color i we let the corresponding vertex (transmitter) in the frequency allocation problem get
the frequency i. This will be an allowed frequency assignment since we have based it on an
allowed k coloring.

In the other direction: Assume that we have an allowed frequency assignment. We get a
k coloring by coloring a vertex with the color i if the corresponding transmitter has been
assigned frequency i.

✷

Solution to Hamiltonian path in graph

A Hamiltonian path is a simple open path that contains each vertex in a graph exactly once.
The Hamiltonian Path problem is the problem to determine whether a given graph contains a
Hamiltonian path.

To show that this problem is NP-complete we first need to show that it actually belongs to
the class NP and then find a known NP-complete problem that can be reduced to Hamiltonian
Path.

For a given graph G we can solve Hamiltonian Path by nondeterministically choosing edges
from G that are to be included in the path. Then we traverse the path and make sure that we visit
each vertex exactly once. This obviously can be done in polynomial time, and hence, the problem
belongs to NP.

Now we have to find an NP-complete problem that can be reduced to Hamiltonian Path.
A closely related problem is the problem to determine whether a graph contains a Hamiltonian
cycle, that is, a Hamiltonian path that begin and end in the same vertex. Moreover, we know that
Hamiltonian Cycle is NP-complete, so we may try to reduce this problem to Hamiltonian
Path.

Given a graph G = 〈V, E〉 we construct a graph G′ such that G contains a Hamiltonian cycle
if and only if G′ contains a Hamiltonian path. This is done by choosing an arbitrary vertex u in
G and adding a copy, u′, of it together with all its edges. Then add vertices v and v′ to the graph
and connect v with u and v′ with u′; see Figure 2 for an example.

Suppose first that G contains a Hamiltonian cycle. Then we get a Hamiltonian path in G′

if we start in v, follow the cycle that we got from G back to u′ instead of u and finally end in
v′. For example, consider the left graph, G, in Figure 2 which contains the Hamiltonian cycle
1, 2, 5, 6, 4, 3, 1. In G′ this corresponds to the path v, 1, 2, 5, 6, 4, 3, 1′, v′.

Conversely, suppose G′ contains a Hamiltonian path. In that case, the path must necessarily
have endpoints in v and v′. This path can be transformed to a cycle in G. Namely, if we disregard
v and v′, the path must have endpoints in u and u′ and if we remove u′ we get a cycle in G if we
close the path back to u instead of u′.

The construction won’t work when G is a single edge, so this has to be taken care of as a
special case. Hence, we have shown that G contains a Hamiltonian cycle if and only if G′ contains
a Hamiltonian path, which concludes the proof that Hamiltonian Path is NP-complete. ✷

38

1

2

3

4

5

6

1

2

3

4

5

6

1’

vv’

G G’

Figur 2: A graph G and the Hamiltonian path reduction’s constructed graph G′.

Solution to Spanning tree with limited degree

In this solution we use the alternative (original) definition of NP as nondeterministic polynomial

time. First note that the problem can be solved by the following nondeterministic algorithm:

1. For each edge in E, choose nondeterministically if it is to be included in T .
2. Check that T is a tree and that each vertex has degree less than k.

This means that the problem is in NP. Now we need to reduce a problem known to be NP-complete
to our spanning tree problem. In this way we can state that determining whether a graph has a
k-spanning tree is at least as hard as every other problem in NP.

Consider the problem Hamiltonian Path that was shown to be NP-complete in the previous
exercise. Can we reduce this problem to the spanning tree problem? That is, can we solve Ha-
miltonian Path if we know how to solve the spanning tree problem? We claim that we can and
that G has a Hamiltonian path if and only if it has a spanning tree with vertex degree ≤ 2.

It is easy to see that such a spanning tree is a Hamiltonian path. Since it has degree ≤ 2 it
cannot branch and since it is spanning only two vertices can have degree < 2. So the spanning
tree is a Hamiltonian path. If, on the other hand, G contains a Hamiltonian path, this path must
be a spanning tree since the path visits every node and a path trivially is a tree.

We have reduced Hamiltonian Path to the spanning tree problem and, therefore, our problem
is NP-complete. ✷

Solution to Polynomial reduction

Suppose we have a formula ϕ ∈ 3Cnf-sat, for example

ϕ(x1, x2, x3, x4) = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)

Reducing 3Cnf-sat to Eq-gf[2] means that, for every formula ϕ, we can create an equation that
is solvable if and only if ϕ is satisfiable. Now, ϕ is only satisfiable if every clause can be satisfied
simultaneously, so let’s start with finding an equation for an arbitrary clause (x ∨ y ∨ z), where
x, y and z are considered as literals rather than variables. For a start, the clause is satisfiable with
one of the literals set to true, so in that case the equation x + y + z = 1 is also solved. But this
fails if two literals are true! We can fix this by adding three more terms, where one and only one
is 1 if two variables are 1. We get

x + y + z + xy + yz + xz = 1

39

Again, this is not complete. if all variables are set to 1, it fails. Of course, the solution is to add a
term for this case, xyz. Our result is

x + y + z + xy + yz + xz + xyz = 1

If one of the literals in the clause happened to be inverted, e.g. we have x instead of x, replace x
by (1 + x) in the equation. The first clause in the example would be turned into

x1 + x2 + (1 + x3) + x1x2 + x1(1 + x3) + x2(1 + x3) + x1x2(1 + x3) = 1

We are now ready to create an equation from an arbitrary 3-CNF formula ϕ. For every clause
ϕi in ϕ, create a corresponding equation Qi. Our claim is that this system of equations is solvable
if and only if ϕ is satisfiable and we must prove that this is correct.

To begin with, we note that (1+x) is a proper way to handle inverses, 1+1 = 0 and 1+0 = 1,
so in the following we will only consider literal values and not variables.

1. (⇐) If an equation in Qi is satisfiable, then there exists an assignment to the variables such
that each left hand expression is summed to 1. Hence, at least one of the literals is 1 and the
corresponding literal in the boolean formula set true would make its clause satisfied. The
equation system Qi being satisfied means that each equation is satisfied and consequently is
each clause in ϕ satisfied.

2. (⇒) When ϕ is satisfied, we have an assignment on the variables such that each clause is
satisfied. There are three cases for the clauses, (i) one literal is true, (ii) two literals are true
and (iii) three literals are true. By construction, the corresponding equations are all satisfied.

✷

Solution to Is an Euler graph k colorable?

The problem is NP complete. It is easy to verify that if a solution is a correct coloring then the
problem is in NP. To show completeness we reduce the general k coloring problem to our problem.
We assume that k ≥ 3. Assume that we have a graph G. We turn it into an Euler graph G′ in the
following way. There has to be an even number of vertices with odd degree. For each pair of odd
degree vertices we add a new vertex. To this vertex we connect two new edges, one from each of
the odd degree vertices. The graph G plus the new vertices becomes the graph G′. It is easy to
see that G′ is an Euler graph.

We now show that G is k colorable ⇔ G′ is k colorable. Assume that f is a coloring of G, i.e.
every vertex x received a color f(x). We then define a k coloring f ′ of G′ in the following way:
If x is a vertex in G′ which also is in G then f ′(x) = f(x). If x is not in G then there are two
neighbouring vertices y and z in G. We then set f(x) to some other free color than f(y) and f(z).
(It is possible to do that since k ≥ 3.) The implication in the other problem is trivial. ✷

40

Algoritmer, datastrukturer och komplexitet, fall 2015

Exercises to övning 10

NP complete problems

Construct a knapsack solution The knapsack problem is a well known NP complete problem
(see lecture 21). Input is a set P of items with weight wi and value vi, a knapsack size S and
a goal K. The question in the knapsack problem is whether we can select items of total value
at least K so that their total weight is at most S. All numbers in input are non-negative
integers.

Assume that we have an algorithm A that solves the decision problem. Construct an algo-
rithm which with the help of calls to A solves the constructive knapsack problem, i.e. with
the same input as A both answers the knapsack problem and, if the answer is yes, returns
the items that are to be packed into the knapsack. The algorithm may call A O(|P |) times
but other than that it may not take more than polynomial time.

We have to construct a Turing reduction of the constructive knapsack problem to the more
common knapsack problem (a decision problem).

Reliability of the Internet Computers and connections between them may break down from
time to time. Since we still want to be able to communicate through the rest of the Internet
we would like there to be alternative paths between every pair of computer in the net. If there
are three different paths through the Internet from computer A to computer B and these
paths are disjoint (apart from the end points) then two computers, any two can disappear
and A and B can still communicate.

In this problem we think of the Internet as an undirected graph where the vertices correspond
to the computers on the Internet and every edge (X, Y) is a possible direct connection between
the computers X and Y . For every pair of computers (X, Y) we also have a desired reliability
T (X, Y) which denotes how many disjoint paths we need between X and Y . Finally there
is a budget B that denotes how many direct connections we can afford to construct.

The question is: can we pick a subgraph with B edges so that for every pair of vertices (X, Y)
there are at least T (X, Y) disjoint paths in the subgraph between X and Y .

Show that this problem is NP complete!

Håstad’s toy store Håstad’s toy store sells a puzzle which consists of a box and a number of
cards, see figure 3. Cards can be placed in the box with either the front side up or the back
side up, since there are groves in the cards that have to match the strips in the box. On
every card there are two columns of holes but some of the holes are filled. The goal of the
puzzle is to place the cards in the box in such a way that the whole bottom is covered. For
every hole position at least one of the cards has to have a filled hole.

Prove that the language Toys = {〈c1, c2, . . . , cn〉: (ci describes cards) ∧ (the puzzle is
solvable)} is NP complete.

Processor scheduling We have n jobs to be executed and a sufficient amount of processors.
Every job takes on unit of time to execute. There are also conditions on the form job i can

not be executed on the same time as j. We call the problem to determine whether the jobs

41

Figur 3: Håstad’s puzzle. The box with three strips, a card with holes and groves and the same
card back side up.

can be scheduled to be executed in three time units Schedule. Show that this problem is
NP complete.

Is the problem still NP complete if we demand that the jobs should be executed after k time
units where k > 3? Is it true for k = 2?

Solutions

Solution to Construct knapsack solution

Kappsäck(P,S,K)=

if not A(P,S,K) then return "No solution"

foreach p in P do

if A(P-p,S,K) then P:=P-{p}

return P

The algorithm calls A at most |P |+1 times. The returned set P is a solution because it fulfils the
following two criteria.

• P contains no superfluous elements since the for loop runs over all elements of P and in
every turn we check if the element p is superfluous. If it is then it is removed from P.

• P contains a solution since this is an invariant for the turn. If we reach the for loop this is
fulfilled and after every turn of the loop it is fulfilled.

✷

Hint to Reliability of the Internet

Reduce the problem Hamiltonian circuit.

Solution to Håstad’s toy box

Look at the cards in the box to verify that every hole position is covered. Thus the problem is in
NP.

What remains is to show that every problem in NP can be reduced to Toys. We do that by
reducing Cnf-Sat, known to be NP-complete, to Toys. More precise, we must show that every
CNF-formula

ϕ = (l1 ∨ l2 ∨ . . . ∨ li) ∧ (lj ∨ . . . ∨ lk) ∧ . . . ∧ (. . .)

with n variables and m clauses reduced to a problem γ in Toys is satisfiable if and only if γ is
solvable. Consider the following rules.

1. Variable xi corresponds to a card ci.

42

2. There are two columns with m positions on every card, so there is one row for each clause.

3. If xi occurs in clause j then the hole in position j in the left column is covered.

4. If x̄i occurs in clause j then the hole in position j in the right column is covered.

5. There are holes in all other positions.

6. There is an additional card cn+1 with holes only in the left column.

If ϕ is satisfied for an assignment of x1, . . . , xn then the corresponding puzzle γ is solvable, because
if xi = 1 then card ci can be put down ”right side up” and thus covering the holes in the left column
corresponding to the clauses xi satisfies. If x̄i = 1 then the card ci should be placed ”upside-down”
and in the same way covering holes. Since the formula was satisfied, every clause must be satisfied
and therefore the left holes in every row are covered. The extra card cn+1 is used for covering the
holes in the right column that might occur when all variables in a clause are set to 1, so all right
holes are covered too.

Conversely, if the puzzle γ is solved, we can easily find an assignment to x1, . . . , xn satisfying
ϕ from the following rule:

xi =

{

1, if ci is right side up
0, otherwise

We also need to check the placing of the extra card; if it is up-side-down we simply invert the
assignment of all variables. When all holes are covered we also have, by construction, that all
clauses are satisfied. We have shown that Cnf-Sat can be reduced to Toys. ✷

Solution to Processor Scheduling

First we need to show that the problem is in NP. This is true because we can guess a scheduling
of the jobs and then easily verify that it is valid.

Next, to prove that Schedule is NP-complete, we have to reduce an NP-complete problem to
it. We choose to reduce the NP-complete problem 3-Coloring to Schedule. This means that,
given a graph G = (V, E), we want to create an instance of Schedule such that the graph can
be colored with 3 colors if and only if the jobs can be scheduled in 3 time units.

We create a job for each vertex in the graph and if the vertex i is a neighbor to the vertex j
we add the condition that job i can not be executed at the same time as job j. Let each color
correspond to a time unit. Then we claim that the graph can be colored with 3 colors if and only
if the jobs can be executed in 3 time units. First, if the graph can be colored with 3 colors let C1

be the vertices that is colored with the first color. There is no edge between the vertices in C1 and
hence the corresponding jobs can all be executed in the first time unit. The same is true for colors
2 and 3 which gives that all jobs can be executed in 3 time units. On the other hand, if the jobs
can be executed in 3 time units, the vertices that correspond to the jobs in each time unit can be
given one color so that the graph can be 3-colored.

In this way we have reduced 3-Coloring to Schedule and, consequently, Schedule is NP-
complete.

With the same argument we can reduce k-Coloring to Schedule with k time units so that
the latter problem is NP-complete for k ≥ 3.

If we have 2 time steps, the problem can be solved by performing the reduction in the opposite
way. That is, given the jobs and the conditions, we construct a graph which we then try to color
with 2 colors. This can be done in linear time with depth first search, since if a vertex v has color
1, all neighbors to v must have color 2. ✷

43

Algoritmer, datastrukturer och komplexitet, fall 2015

Exercises to övning 11

Approximation algorithms

Approximation of independent set Let Independent Set−B be the problem of finding a
maximum set of independent vertices in a graph where every vertex has degree <= B. Show
that this problem is in APX, in other words it can be approximated within some constant
in polynomial time.

Probabilistic not-all-equal-satisfiability The NP hard problem Max Not-All-Equal 3-
CNF Sat is defined as follows:

Input: A CNF formula consisting of the clauses c1, c2, . . . , cm where every clause is
a disjunction of exactly three literals (variables or negated variables). The variables
are called x1, x2, . . . , xn.
Solution: A variable assignment.
Goal function: The number of clauses that contain at least one true literal and
one false literal.
Problem: Maximize the goal function.

Since this problem is NP complete we want an algorithm that approximates this within
a constant in polynomial time. Construct a probabilistic approximation algorithm for the
problem which gives an expected approximation quota of 4/3. Analyze the complexity of the
algorithm and expected approximation quota. You may use a random number generator in
your algorithm.

Approximation of linear inequalities Max Sat LR≥ (maximum satisfiable linear subsystem)
is the problem that, given a set of linear inequalities on the form ≥ (for example 2x1−8x3 +
3x8 ≥ 3), find a variable assignment which satisfies as many inequalities as possible Con-
struct an approximation algorithm that approximates Max Sat LR≥ within a factor of
2.

Upper bound for approximation of homogeneous bipolar inequalities

Max Hom Bipolar Sat LR≥ (maximum homogeneous bipolar satisfiable linear subsystem)
is the same problem as Max Sat LR≥ but the variables may only contain the values 1 and
−1, and all inequalities are homogeneous, in other words they have no constant terms (zero
on the right hand side).

Show that Max Hom Bipolar Sat LR≥ can be approximated within a factor of 2 and
that Max Hom Bipolar Sat LR> can be approximated within a factor 4.

Upper bound for approximation of binary inequalities Max Binary Sat LR≥ (maximum
binary satisfiable linear subsystem) is the same problem as Max Sat LR≥ where the vari-
ables may only contain 0 or 1.

Show that Max Binary Sat LR≥ 6∈APX.

44

Solutions

Solution to Approximation of independent set

Given a graph G = (V, E) with vertex degrees limited by B, construct an independent set of
vertices in the following way.

V ′ ← ∅
W ← V
for v ∈ W do

V ′ ← V ′ ∪ {v}
W ←W − {w ∈W : (w, v) ∈ E} − {v}

After the algorithm V ′ is an independent set of vertices. It is also easy to see that V ′ is a dominating
set. The optimal independent set of vertices V ′

opt can at most be B times larger than |V ′|. To see
this we need only look at one of the vertices in V ′ and its neighbours in V . If all its neighbours
are in V ′

opt then there are B of them, and it can not be any worse. Since V ′ is a dominating set,
every vertex in V ′

opt is either in V ′ or the neighbour of a vertex in V ′. This means that V ′
opt is at

most B times larger than V ′, in other words the approximation quota is B, which is constant. ✷

Solution to Probabilistic not-all-equal-satisfiability

The algorithm is simply: Assign to every variable a randomly chosen value. It should now be as
probable that the variable is true as false. If we look at an arbitrary clause then there are only two
cases of eight (false-false-false and true-true-true) that should not count towards the goal function.
The expected value for the number of clauses is

E[the number of clauses with both false and true literals] =
= m · Pr[an arbitrary clause which is neither entirely true or entirely false] =
= m · (1− Pr[an arbitrary clause which is either entirely true or entirely false]) =
= m · (1− 2/8) = 3m/4.

Because at most m clauses can be counted the expected approximation quota is

OPT

APPROX
≥ m

3m/4
=

4

3
.

The algorithm takes linear time and requires linearly many random numbers in the number of
variables. ✷

Solution to Approximation of linear inequalities

Assume that the input is given as a set X of rational variables and a set E of linear inequalities
over X .

while E 6= ∅ do

if (there are inequalities in E with a single variable) then

U ← {x ∈ X : x is a single variable in at least one inequality in E}
Chose an arbitrary y ∈ U .
F (y)← {e ∈ E : e only contains the variable y}
Give y a value that satisfies as many inequalities in F (y) as possible.
E ← E − F (y)

else

Chose arbitrary y ∈ X .
y ← 0

Evaluate if the inequalities in E which contain y.
X ← X − {y}

45

The algorithm always assigns y a value that satisfies at least half of the inequalities in F (y).
Therefore it constructs a solution which satisfies at least half of the inequalities in the input. Since
at most all inequalities can be satisfied the approximation quota for the algorithm is 2.

The time complexity is polynomial since every variable and term are only used once. ✷

Solution to Upper bound for approximation of homogeneous bipolar inequalities

We begin with an approximation of Max Hom Bipolar Sat LR≥. Take an arbitrary bipolar
vector x and look at the number of satisfied inequalities if the variables are set to x and −x

respectively. If the left hand side of an inequality is positive for x then it is negative for −x and
vice versa. Therefore one of these two vectors will satisfy at least half of the inequalities, in other
words achieve the approximation quota 2.

This trivial algorithm does not work for Max Hom Bipolar Sat LR>, because many relations
may be 0 for both vectors. Therefore we start by finding a solution with many non-zero relations.
The approximation algorithm for Max Sat LR≥ above can be modified so that it finds a solution
x for which at least half of the relations are non-zero. The same thing then applies to −x, and
one of these two vectors have to satisfy at least 1/4 of all inequalities. ✷

Solution to Lower bound for approximation of binary inequalities

Show this by reducing Max Clique to Max Binary Sat LR≥ with an approximation preserving
reduction. Since we know that Max Clique is not in APX we know that Max Binary Sat
LR≥ 6∈APX.

Let G = (V, E) be the input for Max Clique. For every vertex vi ∈ V construct a variable xi

and the inequality

xi −
∑

j∈N(vi)

xj ≥ 1

where j is in N(vi) if vj 6= vi and (vi, vj) 6∈ E (i.e. vj is not a neighbour of vi). Now we have a
system with |V | inequalities. Note that the i:th inequality is satisfied iff xi = 1 and xj = 0 for all
j ∈ N(vi).

It is easy to verify that if we have a s clique V ′ ⊆ V then we can get a binary solution that
satisfies the s corresponding inequalities by setting xi = 1 if vi ∈ V ′ and xi = 0 otherwise. On the
other hand, if we get a binary solution x that satisfies s inequalities then we can get an s clique
by letting V ′ consist of all vertices vi which correspond with satisfied inequalities.

This reduction is not just approximation preserving but also cost preserving because it keeps
the goal functions value in its entirety.

Also note that this reduction works for Ax > 0 och Ax = 1, so we can prove that Max Binary
Sat LR> 6∈APX and that Max Binary Sat LR= 6∈APX. ✷

46

Algoritmer, datastrukturer och komplexitet, fall 2015

Exercises to övning 12

Complexity classes and mixed questions

Questions on complexity classes

co-NP completeness A discrete technical diagnosis problem can be modelled in the following
way: component state, system state and environment state are represented by boolean va-
riables and the system in itself is defined with a boolean formula ϕ. We know that in all
possible (working) worlds the system variables will have values such that ϕ is true.

Assume that the component states are all binary and that a component c is therefore re-
presented by a boolean variable xc (where true means that the component worlds and false
means that it is broken). We know that a component c is broken if the formula we get if we
in ϕ place values for all variables that represent known component, system and environment
states and set xc to true is not satisfiable.

Show that it is co-NP-complete to determine whether or not c is broken.

relations between complexity classes PSPACE is the complexity class which consists of all
languages for which there is a deterministic Turing machine that recognizes the langu-
age in polynomial memory. EXPTIME consists of all languages for which there is a de-

terministic Turing machine that recognizes the language in exponential time. Show that
PSPACE⊆EXPTIME.

Mixed exercises from old exams

The first exercise is a typical first question on the theory exam. The other tasks are typical
questions on the oral examination.

1. Are the following statements true or false? For every question the right answer gives 1 point
and a convincingly proved correct answer gives 2 points.

a) Determining if a number with n digits is a prime number is in the complexity class
co-NP.

b) There is a constant c > 1 such that n3 ∈ O(clog n).

c) Binary trees are usually implemented by adding two pointers to every post (left and
right). When we implement ternary trees (where every parent node has three children)
we need at least three pointers in every post.

2. (algorithm construction, grade C) On a clothesline, Viggo has hung n towels of various sizes.
Viggo wants the towels to give the viewer a harmonic impression. Therefore he was very
careful when placing them and has measured exactly where the towels are hanging along the
line, so that nobody should want to move them. To ensure that the wind does not interfere
with this harmonic order Viggo wants to secure the towels with clothespins, but he does not
want to use more clothespins than necessary. It is sufficient that every towel is fixed with one
clothespin and two or more towels hanging over each other can share the same clothespin.

47

Describe an algorithm (in words or with pseudo code) which as fast as possible calculates
where on the line Viggo should place the clothespins so that he needs as few as possible.
Justify your solutions correctness and analyze with unit cost.

The input is n pairs of numbers (v1, h1), (v2, h2), . . . , (vn, hn) where every pair denotes
where the left and the right side of each towel is. All measurements denote the distance
from the beginning of the clothes line to a towel edge. The pairs are not sorted in any way.
Output is a number of coordinates indicating where the clothespins should be pinched (you
may assume that a clothespin has width 0).

For maximum points your algorithm must run in time O(n log n).

3. (Complexity, grade C) In a large organization such as KTH there are many groups of persons,
for instance teachers at Nada; teachers at F; and students in the course Algorithms, data
structures and complexity; members of the Teknolog choir; etc. etc. Now the headmaster
wants to create a group of informers who quickly can get information to all individuals at
KTH. He wants every group to be represented in the informer group (at least one member
of each group should be in the informer group), but he also wants the informer group to be
as small as possible.

This is an example of a general problem where you given a set of groups want to find a
minimum set of members from all groups.

a) Formulate the problem mathematically as a set problem and describe it as a decision
problem.

b) Show that the problem is NP complete.

4. (algorithm construction, grade A; complexity, grade C; difficult assignment!) The folding
rule problem can be described in the following way. A folding rule consists of a chain of
wooden pieces held together with hinges at the ends. It is possible (but not necessary) to
fold the folding rule at every hinge. The wooden pieces may have different lengths. Then it
is no longer certain how to fold the folding rule so that it becomes as short as possible (and
fits the carpenters pocket). The problem is: given a folding rule, fold it so that it becomes
as short as possible.

a) Formulate the problem mathematically as a decision problem.

b) Show that the folding rule problem is NP complete. A good problem to reduce is the
set partition problem.

c) Assume that the wooden pieces have integer lengths and the longest piece is 17n where h
is the number of wooden pieces that the folding rule consist of. Determine the complexity
for this problem.

5. (complexity, grade C) MAX 2∧SAT is an optimization problem defined in this way:

Input: A positive integer K between 1 and n and n clauses where every clause are
one or two literals combined with the operator ∧. For example: x1 ∧ x3, x2 ∧ x3.

Problem: Is there a variable assignment that satisfies at least K clauses?

48

Show that this decision problem version of MAX 2∧SAT is NP complete. You can use the
fact that the problem MAX 2SAT – a similar problem with the operator ∨ instead of ∧ – is
NP complete.

Solutions to exercises on complexity classes

Solution to co-NP completeness

To prove that the problem is in co-NP we will show that we in polynomial time can verify a no-
solution, in other words that c is not broken. We know that c is not broken iff there is a variable
assignment which satisfies the formula. If we guess variable values we only need to verify that the
formula with this assignment is true. This can be done in polynomial time.

To show that the problem is co-NP hard we reduce co-SAT, the problem to determine whether
a given boolean formula φ is not satisfiable. Because SAT is NP complete per definition co-SAT
is co-NP complete.

Given φ, construct a system which contains the extra component c (represented by xc) and as
defined by the formula ϕ = φ ∨ ¬xc.

Now note that if xc is set to true then ϕ = φ so the problem of determining whether c is broken
is exactly the same as the problem of determining whether φ is not satisfiable. The reduction is
therefore correct. ✷

Solution to Complexity class relation

If a Turing machine uses polynomial memory there is a constant k such that the number of used
squares on the tape are O(nk) where n is the size of the input. If the alphabet consists of three

characters (0,1,blank) then the number of different configurations on the tape is limited by 3O(nk),
the number of positions for the read/write head isO(nk) and the number of states in the Turing
machine is finite i.e. O(1). The total number of configurations for a Turing machine which uses
polynomial memory is therefore which is exponential in n. Since the Turing machine can not
return to the same configuration more than once (then it would run in an infinite loop) this is
also an upper bound for the time. Every problem that can be solved with polynomial memory can
therefore be solved in exponential time. ✷

Solutions to mixed questions from exams

1. a) True. The problem is in co-NP if the complement problem is in NP. The complement
problem is in this case to determine whether a number with n digits can be factorized
in at least two factors (greater than 1). This problem is in NP because a solution (a
factorization of the number) can be verified in polynomial time (by multiplying the
factors and checking that the product is the given number).

b) True. If we assume that log n is the logarithm in base 2 then we know that clog n =

2log clog n

= 2log n log c = nlog c. If we chose c ≥ 8 then log c ≥ 3 and n3 ∈ O(nlog c) =
O(clog n).

c) False. For general tree we need two pointers on each post (firstson and next).

2. A greedy algorithm solves the problem in time O(n log n).

1. Sort all pairs based on their left edge and their right edge. Collect the results in two
lists, Lsort and Rsort. During the sorting, keep track of where each post in the first list
ends up in the other one. With heap sort this takes time O(n log n).

2. As long as there are pairs in the list Rsort:

2.1 Take the first remaining pair, say (l, r). Since the pairs have been sorted after their
right edges (l, r) is the towel with the leftmost right edge.

49

2.2 Pinch a clothespin farthest to the right on this towel, exactly to the left of r.

2.3 Remove all pairs with a left edge to the left of r, in other words remove all towels
pinched by the last clothespin. This is done by removing pairs from the beginning
of Lsort which is sorted in rising left edge order. For every pair that is removed
from Lsort the same pair should be removed from Rsort.

Finally all pairs have been removed and the algorithm terminates. In step 2 each pair is only
treated once. The time for step 2 is therefore O(n). The whole algorithm therefore takes
time O(n log n).

Correctness: Since only pairs with a clothespin in them get removed all pairs will be pinched
when the algorithm has run. No we will show that the number of clothespin is minimal. The
towle which the leftmost right edge (the one that is first in Rsort) must have a clothespin
pinching it. If we attach the towel in the point p all towels with a left edge less than p will
be stuck, since there is no towel tiwh its right edge to the left of p. To pinch as many towels
as possible we must choose a p that is as large as possible which means as close to the towels
right edge as possible. The same line of reasoning is applied to the other towels.

3. a) Let k be a positive integer, let S be the set of persons and C = {C1, . . . , Cm} be the
m groups. The problem is finding a subset S′ ⊆ S with at most k elements so that
S′ ∩Ci 6= ∅ for 1 ≤ i ≤ m. This problem is known as the hitting set.

b) The problem is in NP since we can guess which k elements are supposed to be in S′

and verify that S′ ∩Ci 6= ∅ for 1 ≤ i ≤ m in polynomial time.

The problem is NP hard because it is a generalization of the vertex cover problem which
is known to be NP complete. Given a graph G = (V, E), let S = V and C = E. A
vertex cover of size k is exactly a subset S′ ⊆ S of size k which contains at least one
element from each Ci.

4. a) Input is n positive numbers l1, . . . , ln, which in turn give the lengths of the n wooden
pieces included in the folding rule, and a positive number K indicating the length of
the carpenters pocket. The question is if we can choose directions r1, . . . , rn, where
ri ∈ {−1, 1}, for the n wooden pieces so that if we fold the folding rule according to

the directions its length will be at most K, in other words maxj∈[0..n]

{

∑j
i=1 rili

}

−
minj∈[0..n]

{

∑j
i=1 rili

}

≤ K.

b) The folding rule problem is in NP because we can guess the values of r1, . . . , rn and
verify that the length of the folding rule is at most K in polynomial time.

We show that it is NP hard by reducing the set partition problem which is known to
be NP complete. The input for the partitioning problem is n positive integers t1 . . . , tn
and the question is if the numbers can be divided into two groups so that their sums
are equal.

Given t1 . . . , tn, construct input for the folding rule problem in the following way:
l1 = N , l2 = N/2, li+2 = ti for 1 ≤ i ≤ n, ln+3 = N/2, ln+4 = N and K = N ,
where N =

∑n
i=1 ti.

Now show that there is an even partitioning iff there is a folding of the folding rule so
that the length is at most N .

50

If we have a partitioning we can fild the folding rule so that wooden pieces that cor-
respond to numbers in the first subset ar folded to the left (direction −1), pieces that
correspond to numbers in the second subgroup are folded to the right (direction +1),
r1 = −1, r2 = 1, rn+3 = 1, rn+4 = −1. It is easy to verify that the length of the folding
rule is N , see illustration.

Conversely, if we have a folding which ensures that the folding rule fits the pocket of
size N we can assume that r1 = 1. If r1 = −1 we first switch signs on all directions,
we flip the sliding rule over, which of course still has the same length. Since the length
of the first wooden piece is N the next piece must have direction r2 = −1 and go
back to a position on the middle of the last wooden piece. To ensure that the length
of the sliding rule is at most N the end of the other wooden pieces position must be
the same as the second to last piece’s beginning. This means that all pieces between
them must start and end in the same position, i.e.

∑n+2
i=3 rili = 0, which can be written

as
∑

i:3≤i≤n+2∧ri=1 li −
∑

i:3≤i≤n+2∧ri=−1 li = 0. Since these wooden pieces lengths
exactly correspond to numbers in the partitioning problem we get a solution for this
problem by partitioning according to how the wooden pieces are directed.

c) The problem can be solved in polynomial time with dynamic programming by keeping
track of all possible subset sums. If the longest piece of wood is 17n we know that
for all partial sums we must have −17n2 ≤ ∑j

i=1 rili ≤ 17n2. Create a boolean array
b[0..n,−17n2..17n2] where all elements are initially false. The algorithm fills the array
so that b[j, k] is true iff there are values for ri such that

∑j
i=1 rili = k. The recur-

sion equation is b[j, k] = b[j − 1, k + lj] ∨ b[j − 1, k − lj]. Also create a boolean array
ends[0..n,−17n2..17n2,−17n2..0, 0..17n2] where ends[j, k, l, r] is true if there is some
folding of the j first pieces of wood that end in position k have their leftmost point in
position l and their rightmost point in position r.

b[0, 0]← true
for j ← 1 to n do for k ← −17n2 to 17n2 do

if b[j − 1, k] then

b[j, k − lj]← b[j, k + lj]← true
for l← −17n2 to 0 do for r ← 0 to 17n2 do

if ends[j − 1, k, l, r] then

ends[j, k − lj, min(l, k − lj), r]← ends[j, k + lj, l, max(r, k + lj)]← true
minlength← 17n2

for k ← −17n2 to 17n2 do

if b[n, k] then

for l← −17n2 to 0 do for r ← 0 to 17n2 do

if ends[j, k, l, r] ∧ (r − l < minlength) then minlength← r − l
return (minlength)

It is easy to verify that the algorithm returns the smallest length of folding rule achie-
vable. The algorithm takes time O(n7), which is polynomial (but quite slow!).

5. MAX 2∧SAT is in NP because it is easy to verify that a variable assignment (a solution)
satisfies at least K of the clauses We show that it is NP hard by reducing MAX 2-SAT. Every
2-SAT clause with a single literal is moved unaltered to the MAX 2∧SAT-probleminstance.
For every clause li ∨ lj in the MAX 2-SAT-instance we construct three clauses in the MAX
2∧SAT-probleminstance: li ∧ lj, li ∧ lj and li ∧ lj . We see that li ∨ lj is true iff one of the
tree constructed clauses is true. If li ∨ lj is false then all the three constructed clauses are
false. THe number of satisfied MAX 2-SAT clauses is equivalent with the number of satisfied
MAX 2∧SAT-clauses. Choose the goal K for the constructed problem to the same value as
K for the MAX 2-SAT-problem.

51

