Allowed aids: A sheet of hand-written notes, notes on one side only. (No computer print-outs!) And one pocket calculator.

Problems

Give complete and correct solutions, write legibly. Motivate each logic step fully. No points for answers only. Each problem is worth 3 points. A total of 4 points is needed to pass the exam.

1. Let A, B, C be arbitrary sets and consider the symmetric difference between two sets:

$$
A \triangle B=(A-B) \cup(B-A) .
$$

Prove that every element in the set $A \triangle B \triangle C$ lies in exactly 1 or 3 of the sets A, B, C.

Låt A, B, C vara godtyckliga mängder och betrakta den symmetriska differensen mellan två mängder:

$$
A \triangle B=(A-B) \cup(B-A)
$$

Bevisa att varje element som ligger i mängden $A \triangle B \triangle C$ ligger i exakt 1 eller 3 av mängderna A, B, C.

Sol: Another way of writing the difference between two sets A, B is $A-B=A \cap B^{c}$. Then, by definition

$$
\begin{gathered}
A \triangle B \triangle C=((A \triangle B)-C) \cup(C-(A \triangle B))= \\
(((A-B) \cup(B-A))-C) \cup(C-((A-B) \cup(B-A)))= \\
\left(\left(\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right)\right) \cap C^{c}\right) \cup\left(C \cap\left(\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right)\right)^{c}\right)=M_{1} \cup M_{2} .
\end{gathered}
$$

Then, by set laws (including DeMorgan's) we get

$$
\begin{gathered}
M_{1}=\left(\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right)\right) \cap C^{c}=\left(A \cap B^{c} \cap C^{c}\right) \cup\left(B \cap A^{c} \cap C^{c}\right)= \\
\left(A \cap(B \cup C)^{c}\right) \cup\left(B \cap(A \cup C)^{c}\right)=(A-(B \cup C)) \cup(B-(A \cup C))
\end{gathered}
$$

and
$M_{2}=C \cap\left(\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right)\right)^{c}=C \cap\left(\left(A \cap B^{c}\right)^{c} \cap\left(B \cap A^{c}\right)^{c}\right)=C \cap\left(\left(A^{c} \cup B\right) \cap\left(B^{c} \cup A\right)\right)$.
But by the distributive law we have $\left(A^{c} \cup B\right) \cap\left(B^{c} \cup A\right)=\left(A^{c} \cap B^{c}\right) \cup\left(A \cap A^{c}\right) \cup\left(B \cap B^{c}\right) \cup(A \cap B)$, and since $A \cap A^{c}=B \cap B^{c}=\emptyset$ we get

$$
M_{2}=C \cap\left(\left(A^{c} \cap B^{c}\right) \cup(A \cap B)\right)=(C-(A \cup B)) \cup(A \cap B \cap C)
$$

so that

$$
A \triangle B \triangle C=M_{1} \cup M_{2}=(A-(B \cup C)) \cup(B-(A \cup C)) \cup(C-(A \cup B)) \cup(A \cap B \cap C) .
$$

These four sets are all disjoint and hence every element in $A \triangle B \triangle C$ lies in precisely one of them. But the first three sets are the elements that lie in exactly one of the sets A, B, C that is in precisely 1 of them, and the fourth set is the set of all elements that lie in all of the sets, that is in 3 of them. The proof is complete.

This problem can also be solved by using Venn diagrams.
2. Use mathematical induction to show that for any integer $n \geq 1$,

$$
4 \mid 3^{2 n-1}+1
$$

Använd matematisk induktion för att visa att så fort $n \geq 1$ är ett heltal så gäller

$$
4 \mid 3^{2 n-1}+1
$$

Sol: Introduce the predicate $A(n) \Leftrightarrow 4 \mid 3^{2 n-1}+1$. We need to prove $\forall n \in \mathbb{N}: A(n)$. We do this by mathematical induction which has three steps.

1. Check that $A(1)$ is true. Is it? Well, $A(1)$ claims that $4 \mid 3(2 \cdot 1-1)+1$ but $\left.3^{(} 2 \cdot 1-1\right)+1=3^{1}+1=4$ and we have indeed $4 \mid 4$ so $A(1)$ is true.
2. Now prove that the implication $A(p) \Rightarrow A(p+1)$ is true for all $p \in \mathbb{N}$. Accordingly assume that $A(p)$ is true for a natural number p. This means that $4 \mid 3^{2 p-1}+1$ which means that there exists an integer q such that $3^{2 p-1}+1=4 q$. From this we need to show that $A(p+1)$ is true that is we need to show that $4 \mid 3^{2(p+1)-1}+1$. So study $3^{2(p+1)-1}+1$ and try to see that is it divisible by 4 :

$$
3^{2(p+1)-1}+1=3^{2 p+2-1}-1=3^{2} \cdot 3^{2 p-1}+1=8 \cdot 3^{2 p-1}+3^{2 p-1}+1
$$

This last calculation is motivated by that we need to use the induction assumption somehow, that is, we need to use the fact that $3^{2 p-1}+1=4 q$ for some q. Writing the expression in the above manner (1) enables us to see that

$$
3^{2(p+1)-1}+1=8 \cdot 3^{2 p-1}+4 \cdot q=4 \cdot\left(2 \cdot 3^{2 p-1}+q\right)
$$

which is obviously divisible by 4 . Hence we have show that $A(p+1)$ is true following from the truth of $A(p)$, that is the implication $A(p) \Rightarrow A(p+1)$ is true.
3. We get $A(1)$ true $\Rightarrow A(2)$ true $\Rightarrow \ldots \forall n \in N: A(n)$ thanks to the principle of mathematical induction and the steps 1 and 2.

