Recap from Lecture 6: Inference - in general, approximation is needed

DD2434 Machine Learning, Advanced Course
Lecture 12: Sampling
Hedvig Kjellström
hedvig@kth.se
https://www.kth.se/social/course/DD2434/

n Lecture 6, deterministic approximation methods
Analytic approximations to the exact posterior p(latent | obs), i.e. fitting some known parametric unction or assume some independencies

+ : Fast since analytic/closed-form solution
- : always an approximation to the true posterior

Here, stochastic approximation methods

Monte Carlo sampling from the exact posterior p(latent | obs)

+ : Given ∞ samples, converges to exact solution
- : slow in many cases, sometimes hard to know if sampling independent samples from true posterior

Today

Monte Carlo (MC) sampling (Bishop 11.1)
Standard Monte Carlo sampling
Rejection sampling
Importance sampling

Markov chain Monte Carlo (MCMC) sampling (Bishop 11.2)

Gibbs sampling (Bishop 11.3)

Some intuitions about Gibbs sampling in LDA (Griffiths)

The Monte Carlo Principle

Start off with discrete state space z
Imagine that we can sample $z^{(l)}$ from the pdf $p(z)$ but that we do not know its functional form

Might want to estimate for example:

$$
E[z]=\sum z p(z)
$$

$p(z)$ can be approximated by a histogram over $z^{(l)}$:

$$
\hat{q}(z)=\frac{1}{L} \sum_{l=1}^{L} \delta_{z^{(l)}=z}
$$

Example: Dice Roll

The probability of outcomes of dice rolls: $p(z)=\frac{1}{6}$
Exact solution:

```
What would
happen if the
dice was
bad?
```


Monte Carlo approximation:
Roll a dice a number of times, might get

$$
z^{(1)}=6 \quad z^{(2)}=4 \quad z^{(3)}=1 \quad z^{(4)}=6 \quad z^{(5)}=6
$$

Example: Dice Roll

Monte Carlo Sampling Inverse Probability Transform

Cumulative distribution function F of distribution f (that we want to sample from)

A uniformly distributed random variable $U \sim U(0,1)$ will render $F^{-1}(U) \sim F$

$f(z)$ does not have to be an analytic function, can also be a histogram like $\hat{q}(z)$

Importance Sampling

We very often (in Bayesian methods for example) want to approximate integrals of the form
$E[f]=\int f(x) p(x) d x$
Monte Carlo sampling approach is to draw samples x^{s} from $p(x)$ and approximating the integral with a sum
$E[f]=\int f(x) p(x) d x=\frac{1}{S} \sum_{s=1}^{S} f\left(x^{s}\right)$

Discuss with your neighbor (5 min):
But what if $p(x)$ and $f(x)$ look like this, what happens with the estimation?

Importance Sampling

In these cases, a good idea is to introduce proposal $q(x)$
to sample from:
$E[f]=\int f(x) \frac{p(x)}{q(x)} q(x) d x \approx \frac{1}{S} \sum_{s=1}^{S} w_{s} f\left(x^{s}\right)$
where $w_{s} \equiv \frac{p\left(x^{s}\right)}{q\left(x^{s}\right)}$
Reasons:
$q(x)$ is smoother / less spiky than $p(x)$
$q(x)$ is of a nicer analytical form than $p(x)$
In general, good to keep $q(x) \propto p(x)$ approximately

Intuition behind MCMC

Standard MC and Importance sampling do not work well in high dimensions

High dimensional space but actual model has lower (VC) dimension => exploit correlation!

Instead of drawing independent samples x^{s} draw chains of correlated samples - perform random walk in the data where the number of visits to x is proportional to target density $p(x)$

Random walk = Markov chain

What is a Markov Chain?
Definition: a stochastic process in which future states are independent of past states given the present state

Stochastic process: a consecutive set of random (not deterministic) quantities defined on some known state space Θ.

- think of Θ as our parameter space.
- consecutive implies a time component, indexed by t.

Consider a draw of $\boldsymbol{\theta}^{(t)}$ to be a state at iteration t. The next draw $\boldsymbol{\theta}^{(t+1)}$ is dependent only on the current draw $\boldsymbol{\theta}^{(t)}$, and not on any past draws.

This satisfies the Markov property:

$$
p\left(\boldsymbol{\theta}^{(t+1)} \mid \boldsymbol{\theta}^{(1)}, \boldsymbol{\theta}^{(2)}, \ldots, \boldsymbol{\theta}^{(t)}\right)=p\left(\boldsymbol{\theta}^{(t+1)} \mid \boldsymbol{\theta}^{(t)}\right)
$$

Transition Kernel
For discrete state space (k possible states): a $k \times k$ matrix of transition probabilities.

Example: Suppose $k=3$. The 3×3 transition matrix \mathbf{P} would be

$p\left(\boldsymbol{\theta}_{\mathrm{A}}^{(t+1)} \mid \boldsymbol{\theta}_{\mathrm{A}}^{(t)}\right)$	$p\left(\boldsymbol{\theta}_{\mathrm{B}}^{(t+1)} \mid \boldsymbol{\theta}_{\mathrm{A}}^{(t)}\right)$	$p\left(\boldsymbol{\theta}_{\mathrm{C}}^{(t+1)} \mid \boldsymbol{\theta}_{\mathrm{A}}^{(t)}\right)$
$p\left(\boldsymbol{\theta}_{\mathrm{A}}^{(t+1)} \mid \boldsymbol{\theta}_{\mathrm{B}}^{(t)}\right)$	$p\left(\boldsymbol{\theta}_{\mathrm{B}}^{(t+1)} \mid \boldsymbol{\theta}_{\mathrm{B}}^{(t)}\right)$	$p\left(\boldsymbol{\theta}_{\mathrm{C}}^{(t+1)} \mid \boldsymbol{\theta}_{\mathrm{B}}^{(t)}\right)$
$p\left(\boldsymbol{\theta}_{\mathrm{A}}^{(t+1)} \mid \boldsymbol{\theta}_{\mathrm{C}}^{(t)}\right)$	$p\left(\boldsymbol{\theta}_{\mathrm{B}}^{(t+1)} \mid \boldsymbol{\theta}_{\mathrm{C}}^{(t)}\right)$	$p\left(\boldsymbol{\theta}_{\mathrm{C}}^{(t+1)} \mid \boldsymbol{\theta}_{\mathrm{C}}^{(t)}\right)$

where the subscripts index the 3 possible values that θ can take.
The rows sum to one and define a conditional PMF, conditional on the current state. The columns are the marginal probabilities of being in a certain state in the next period.

For continuous state space (infinite possible states), the transition kernel is a bunch of conditional PDFs: $f\left(\boldsymbol{\theta}_{\mathrm{j}}^{(t+1)} \mid \boldsymbol{\theta}_{\mathrm{i}}^{(t)}\right)$
${ }^{\text {® }}$
Stationary (Limiting) Distribution

Define a stationary distribution π to be some distribution Π such that $\pi=\pi \mathbf{P}$

For all the MCMC algorithms we use in Bayesian statistics, the Markov chain will typically converge to π regardless of our starting points.

So if we can devise a Markov chain whose stationary distribution π is our desired posterior distribution $p(\boldsymbol{\theta} \mid y)$, then we can run this chain to get draws that are approximately from $p(\boldsymbol{\theta} \mid y)$ once the chain has converged.

Once we have a Markov chain that has converged to the stationary distribution, then the draws in our chain appear to be like draws from $p(\boldsymbol{\theta} \mid y)$, so it seems like we should be able to use Monte Carlo Integration methods to find quantities of interest.

One problem: our draws are not independent, which we required for Monte Carlo Integration to work (remember SLLN).

Luckily, we have the Ergodic Theorem

MCMC is a class of methods in which we can simulate draws tha are slightly dependent and are approximately from a (posterior) distribution.

We then take those draws and calculate quantities of interest for the (posterior) distribution

In Bayesian statistics, there are generally two MCMC algorithms that we use: the Gibbs Sampler and the Metropolis-Hastings algorithm.
This is the Markov chain analog to the SLLN, and it allows us to ignore the dependence between draws of the Markov chain when we calculate quantities of interest from the draws.

But what does it mean for a chain to be aperiodic, irreducible, and positive recurrent, and therefore ergodic?

Gibbs Sampling

Bishop Section 11.3

Suppose we have a joint distribution $p\left(\theta_{1}, \ldots, \theta_{k}\right)$ that we want to sample from (for example, a posterior distribution).

We can use the Gibbs sampler to sample from the joint distribution if we knew the full conditional distributions for each parameter.

For each parameter, the full conditional distribution is the distribution of the parameter conditional on the known information and all the other parameters: $p\left(\theta_{j} \mid \theta_{-j}, y\right)$
3. Draw a value $\theta_{2}^{(1)}$ (again order does not matter) from the full conditional $p\left(\theta_{2} \mid \theta_{1}^{(1)}, \theta_{3}^{(0)}, \mathbf{y}\right)$. Note that we must use the updated value of $\theta_{1}^{(1)}$
4. Draw a value $\theta_{3}^{(1)}$ from the full conditional $p\left(\theta_{3} \mid \theta_{1}^{(1)}, \theta_{2}^{(1)}, \mathbf{y}\right)$ using both updated values. (Steps $2-4$ are analogous to multiplying $\Pi^{(0)}$ and \mathbf{P} to get $\Pi^{(1)}$ and then drawing $\theta^{(1)}$ from $\Pi^{(1)}$.)
5. Draw $\boldsymbol{\theta}^{(2)}$ using $\boldsymbol{\theta}^{(1)}$ and continually using the most updated values.
6. Repeat until we get M draws, with each draw being a vector $\boldsymbol{\theta}^{(t)}$.
7. Optional burn-in and/or thinning

Our result is a Markov chain with a bunch of draws of $\boldsymbol{\theta}$ that are approximately from our posterior. We can do Monte Carlo Integration on those draws to get quantities of interest

Some Intuitions about Gibbs Sampling in LDA

Griffiths

Gibbs sampling in LDA: Graphical model

Gibbs sampling in LDA: Intuition

For details to accomplish Task 2.6, see the paper by Griffith For details to accomplish Task 2.7, see the original LDA paper, cited in Griffith

Sample from joint distribution over words, documents, topics Sample i denoted $\left[w_{i}, d_{i}, z_{i}\right.$]. We observe w_{i}, d_{i}, while z_{i} are hidden/latent
Gibbs sampling task - to find topic assignments z_{i} for each observed $\left[w_{i}, d_{j}\right]$.

Once we have (sampled version of) distribution over (w, d, z), we can take the marginal over w which gives θ, and the marginal over d which gives Φ

Gibbs sampling in LDA: Example

			iteration	
i	w_{i}	d_{i}	z_{i}	z_{i}
1	MATHEMATICS	1	2	?
2	KNOWLEDGE	1	2	
3	RESEARCH	1	1	
4	WORK	I	2	
5	MATHEMATICS	1	1	
6	RESEARCH	1	2	
7	WORK	1	2	
8	SCIENTIFIC	1	1	
9	MATHEMATICS	1	2	
10	WORK	1	1	
11	SCIENTIFIC	2	1	
12	KNOWLEDGE	2	1	
.	-	.	.	
50	JOY	5	2	

Gibbs sampling in LDA: Example

Gibbs sampling in LDA: Example

What is next?

Continue with Assignment 2, deadline December 16.

Paper assignments for project groups are published tonight, deadline January 18

Next on the schedule
Fri 4 Dec 15:15-17:00 E3
Lecture 13: The Structure of a Scientific Paper
Hedvig Kjellström
Readings: Allen, Duvenaud et al.

Bring Duvenaud et al. on paper (or pdf) for reference!

