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1 Introduction.

The point of this last part of the course is to give you some exposure to advanced
theory for partial differential equations. Modern theory of PDE is based on a
variety of techniques from advanced analysis - in particular measure theory,
Sobolev spaces and functional analysis. This means that normally one need to
take at least three advanced courses in addition to an advanced PDE course
before one can begin to comprehend modern PDE theory. This is unfortunate
since, as so often in mathematics, many of the ideas are elementary. These notes
are an attempt to introduce some modern PDE theory in an as gentle way as
possible.

We will use the obstacle problem as a model problem for modern PDE theory.
This choice is rather arbitrary, but there are some good reasons to discuss the
obstacle problem:
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• To show existence of solutions we will have a reason to introduce calculus
of variations which might be the most important topic covered in these
notes.

• There are no “interesting” C2 solutions to the obstacle problem. This
means that we need to relax the concept of solution in order to treat the
equation. Since the 1950s relaxation of the concept of solution has been
one of the standard tools in proving existence of solutions.

• The obstacle problem is a non-linear PDE - which makes it very interest-
ing. But it is not too non-linear which would make it to difficult to talk
about in three weeks.

• The obstacle problem is strongly related to the Laplace equation which
means that we may use much of the theory that you have learned in
previous parts of the course.

There are some problems in dealing with the obstacle problem. In particu-
lar, one cannot do any theory for the obstacle problem without using Sobolev
spaces.1 We will not develop Sobolev space theory in these notes. We will
however provide some justifications, mostly in the one dimensional case, for the
Sobolev space results that we will use in an appendix to the section on calculus
of variations. Hopefully, you will gain enough intuitive knowledge of Sobolev
spaces from the appendix in order to accept the proofs in the main body of the
text.

Notation: We will use the letter D to denote a domain in Rn (n will always
denote the space dimension) - that is D is an open set. Throughout these notes
D will be bounded and connected. The topological boundary of D will be
denoted ∂D and the outward pointing normal of D will be denoted ν. An open
ball of radius r with center x0 will be denoted Br(x

0). The upper half-ball
will be denoted B+

r (x0) = {x ∈ Br(x0); xn > 0}. By diam(D) we mean the
diameter of the set D - that is by definition the diameter of the smallest ball
that contains the set D.

We will denote points in space by x = (x1, x2, ...xn), y = (y1, y2, ..., yn),
z = (z1, ..., zn) et.c. We often think of these vectors to be variables. Fixed
points are often denoted by a superscript x0, y0 et.c. At times we will use a
prime x′ to denote the first n−1 components in a vector: x′ = (x1, x2, ..., xn−1).
In a slight abuse of notation we will at times interpret x′ as a vector in Rn with
n:th component equal to zero x′ = (x1, x2, ..., xn−1, 0) and at times we will also
write (x′, t) = (x1, x2, .., xn−1, t); in particular x = (x′, xn). We believe that it
it will be clear from context what we intend.

We will use several function spaces in these notes. By C(D) we mean all
the continuous functions in the domain D, by C0,α(D) we mean the space of all
continuous functions, u(x), on D such that |u(x)− u(y)| ≤ C|x− y|α equipped

with the norm ‖u‖C0,α(D) = supx∈D |u(x)| + supx,y∈D
|u(x)−u(y)|
|x−y|α . If α ∈ (0, 1)

1Or viscosity solutions which we will not mention at all in these notes.
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we often write Cα(D) = C0,α(D). Similarly we write Ck,α(D) for all k times
continuously differentiable functions u(x) defined on D such that all k :th order
derivatives of u(x) belong to Cα(D): that is Dku(x) ∈ Cα(D). We will allow α
to be zero and then just write Ck,α(D) = Ck(D).

We will use the spaces L2(D) for all integrable functions on D such that
‖u‖2L2(D) =

∫
D
|u|2dx < ∞. We will also use the Sobolev space W 1,2(D) for

all functions u(x) defined on D such that both u(x) and ∇u(x) are integrable
and ‖u‖2W 1,2(D) = ‖u‖2L2(D) + ‖∇u‖2L2(D) < ∞. Similarly we will use W k,2(D)
for the space of functions such that all derivatives of order up to k belong to
L2(D).

We will use a sub-script Cc(D), C2
c (D) et.c. to denote the functions u ∈

Cc(D), u ∈ C2
c (D) et.c with compact support. And W k,2(D) for functions that

are identically equal to zero (in the trace sense) on ∂D.

We will use ∇ for the gradient operator ∇u(x) =
(
∂u(x)
∂x1

, ∂u(x)
∂x2

, ..., ∂u(x)
∂xn

)
and ∆ for the Laplace operator ∆u(x) =

∑n
j=1

∂2u(x)
∂x2
j

.

2 The Calculus of Variations.

The calculus of variations consists in finding, and describing properties, of func-
tions that minimize some energy. To be specific we look for a function u(x) that
minimizes the following energy

J(u) =df

∫
D

F (∇u(x))dx (1)

among all functions in2

K = {u ∈W 1,2(D), u(x) = f(x) on ∂D}. (2)

In physics the energy is usually some combination of several energies, for in-
stance potential and kinetic energy. Calculus of variations is very important for
applications. In these notes we will be interested in the mathematical theory.

The main problem in the calculus of variations is to show existence of min-
imizers to the minimization problem (1) in the set K. It is easy to construct
examples of functionals for which no minimizers exists. The easiest example of a
minimization problem for which no minima exists is for discontinuous functions
defined on R, which has nothing to do with Sobolev spaces.

2Here we use the notation W 1,2(D) which is the set of all functions such that
∫
D(|∇u|2 +

|u|2) <∞. This is a Sobolev space. We refer to the appendix to this section for more details
on Sobolev spaces.
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x

f(x)

Figure 1: A one dimensional example where the minimum does not exist.

The example in figure 1 clearly shows that we need some assumptions in
order to assure that minimizers for a given minimization problem exist. In
order to understand the existence properties for the problem described by (1)-
(2) we begin by stating a simple Theorem that we understand on minimization
of functions in Rn:

Theorem 2.1. If f(x) is a lower semi-continuous3 function on a closed and
bounded set K ⊂ Rn and f(x) > −∞ then f(x) achieves its minimum in K.

Proof: The proof is, as we already know, done in several simple steps.

1. Vf = {f(x); x ∈ K} is bounded from below which implies, by the com-
pleteness property of the real numbers, that infx∈K f(x) exists.

2. We may thus find xj ∈ K s.t. limj→∞ f(xj) = infx∈K f(x).

3. Since K is a compact set in Rn the Bolzano-Weierstrass Theorem implies
that there exists a convergent sub-sequence of xj which we will denote
xjk → x0 ∈ K.

4. Lower semi-continuity of f implies that

f(x0) ≤ lim
k→∞

f(xjk) = inf
x∈K

f(x).

Clearly by the definition of infimum f(x0) ≥ infx∈K f(x). It follows that
f(x0) = infx∈K f(x); thus f(x) achieves its minimum in x0.

We would like to replicate this theorem in the more complicated setting of
the minimization of the functional (1) in the set (2). The main difference for
the minimization problem ((1)-(2)):

minimize J(u) =

∫
D

F (∇u)dx u ∈ K = {W 1,p(D); u = f on ∂D}.

3Remember that f(x) is lower semi-continuous if f(x0) = lim infx→x0 f(x)
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is that K is no longer finite dimensional which implies that we no longer have
a Bolzano-Weierstrass compactness Theorem.

But we may almost replicate the strategy of Theorem 2.1

1. To show that the minimum is a well defined number we just need to
assume that F (∇u) ≥ −C. That would imply that J(u) ≥ −C

∫
D
dx =

−C|D|; then the existence of a minimum of the functional exists by the
completeness property of the real numbers. Notice that this does not
imply that there exists a function u ∈ K such that J(u) = infu∈K J(u).

2. By the property that an infimum exists we can find a sequence uj ∈ K
s.t. limj→∞ J(uj) = infu∈K J(u).

3. The space W 1,2 is weakly compact4 so if

‖uj‖W 1,2(D) ≤ C (3)

then uj ⇀ u0 ∈W 1,2(D).

In order to assure (3) we need to assume that the functional is (Coercive):

J(u)→∞ as ‖u‖W 1,2(D)→∞. (4)

Clearly (4) implies that ‖uj‖W 1,2(D) is bounded if J(uj) is bounded, which
it certainly is if J(uj)→ infu∈K J(u) ∈ R.

4. We need to show that J(u) is lower semi-continuous with respect to weak
convergence in W 1,2(D).

In the above strategy there is no real problem with the first three points.
We can clearly decide whether the first and third points holds if we have an
explicit functional J(u) =

∫
D
F (∇u)dx - at least we can easily imagine classes

of functionals where the first and third point holds. The second point is just a
simple fact that follows from the definition of the infimum.

The fourth point needs some further comment. In general, it is not mean-
ingful to have theorems if we cannot verify when the assumptions are satisfied.
It would therefore be much more reassuring if we could find some criteria that
implies lower semi-continuity for the functional. This is what we will do next.
As so often in mathematics we will try to understand a complicated situation by
constructing an example easy enough for us to explicitly calculate it. In PDE
theory that usually means construction a one dimensional example since the
power of one dimensional calculus allows us to do most calculations explicitly
in one dimension.

Example: Consider the one-dimensional minimizing problem

minimize JF (f(x)) =

∫ 1

0

F (f ′(x))dx (5)

4See the appendix to this chapter for a brief explanation of this property.
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in the set
K =

{
f ∈W 1,2(0, 1); f(0) = 0 and f(1) = 1

}
.

We need to choose our function F (·) which we choose quite randomly to be
the function with the graph

f’(x)

F(f’x)

2

Figure 2: The graph of the function F (·).

Since F (·) ≥ 0 we can conclude that J(f) ≥ 0 for all functions f ∈ K. But
if

f ′(x) =

{
0 if x ∈ A
2 if x /∈ A (6)

for some set A then the energy JF (f ′(x)) = 0 since F (0) = F (2) = 0. Thus
any function f(x) of the form (6) will be a minimizer to (5). Notice that such
a minimizer can arbitrarily well approximate (in C0([0, 1])−norm) any function
g(x) satisfying 0 ≤ g′ ≤ 2. This can be clearly seen in the following picture:

g(x)

x

f(x)

Figure 3: Graphic representation of how a function f(x) whose derivative
takes the values 0 and 2 approximates an arbitrary function g(x) with derivative
0 ≤ g′(x) ≤ 2.

This implies that for any function g(x) ∈ K such that 0 ≤ g′(x) ≤ 2 we can
find a sequence f j ∈ K such that f j → g uniformly and J(f j(x)) = 0. But
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J(g(x)) may very well be strictly positive, for instance if g(x) = x. Thus the
functional JF (f) defined in (5) is not lower semi-continuous.5

The question we need to ask is: Is the problem that the function F is zero
at two different points? A simple example shows that that is not the case.

Consider for instance the one dimensional minimization problem

minimize JG(f(x)) =

∫ 1

0

G(f ′(x))dx

in the set
K =

{
f ∈W 1,p(0, 1); f(0) = 0 and f(1) = 1

}
,

where the function G is given by the graph:

f’(x)

G(f’(x))

2

af’(x)

Figure 4: The graph of the function G(f ′(x)) and af ′(x).

If we subtract the linear function af ′(x) from G(f ′(x)) we will get a function
with graph looking like the one in Figure 3; we may even assume that G(f ′(x)) =
F (f ′(x)) + af ′(x). This leads to

JG(f ′(x)) =

∫ 1

0

G(f ′(x))dx =

∫ 1

0

F (f ′(x))dx+ a

∫ 1

0

f ′(x)dx =

= JF (f ′(x)) + af(1)− af(0),

where we used an integration by parts in the last equality. Since af(1)−af(0) =
a for all f ∈ K we can conclude that

JG(f ′(x)) = JF (f ′(x)) + a for all f ∈ K.

And since JF and JG only differ by a constant we can conclude that JG cannot
have a minimizer since JF does not have a minimizer.

5Notice that the lower semi-continuity of JF is not really related to the continuity of F .
We may very well, as in the example, have that F is a continuous function but JF is not
continuous on the space W 1,2(D).
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What conclusion can we draw from this example? The reason that there a

minimizer to
∫ 1

0
G(f ′(x))dx does not exist was that we could touch the graph

of G from below, at two different points, by a linear function. That is: G is
not convex. Clearly convexity is a necessary condition for a minimizer to exist,
at least for minimization in R. It turns out that convexity is the assumption
needed in any dimension Rn, not just for examples in R, for the functional J(u)
to be lower semi-continuous.6 We are ready to formulate and prove an existence
theorem for minimizers.

Theorem 2.2. Assume that D is a given bounded domain7 and that F : Rn 7→ R
is a continuously differentiable function satisfying:

1. There exists a constant C such that F (∇u) ≥ −C

2.
∫
D
F (∇u)→∞ as ‖∇u‖L2(D) →∞

3. F (p) is convex:

F (q) ≥ F (p) + F ′(p)(q− p) for any p, q ∈ R.

Then for any closed (under weak limits) sub-set K ⊂ W 1,2(D) there exists
a function u ∈ K such that∫

D

F (∇u)dx = inf
v∈K

∫
D

F (∇v)dx.

Proof: The proof follows the same steps as the proof in the one dimensional
case.

Since F (∇u) ≥ −C we can conclude that for any u ∈ K

J(u) =

∫
D

F (∇u(x))dx ≥ −C
∫
D

dx = −C|D|,

where |D| denotes the volume of the set |D|. Thus the set of values J(u) can
obtain is bounded from below and therefore the the number m = infu∈K J(u)
exists and is well defined.

We may therefore find a sequence uj such that J(uj)→ m. Notice that since
J(u)→∞ as ‖∇u‖L2(D) →∞ it follows that ‖∇uj‖L2(D) is bounded. By weak
compactness there is a sub-sequence ujk and a function u0 ∈W 1,2(D) such that
ujk ⇀ u0 in W 1,2(D). Since K is closed it follows that u0 ∈ K. There is no loss
of generality to assume that the sub-sequence ujk is the full sequence uj .

We need to verify that J(u0) = m. To that end we calculate as j →∞

m←
∫
D

F (∇uj)dx =

∫
D

F (∇u0 +∇(uj − u0))dx ≥ {covexity} ≥

6Here we are talking about minimization for scalar valued functions u(x). If u(x) is vector
valued there exists many different notions of convexity (quasi-convexity, poly-convexity et.c.)
that implies existence in different situations. We will not consider minimization problems
with vector valued functions in this course.

7By a domain we mean an open set in Rn.
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≥
∫
D

F (∇u0) +

∫
D

F ′(∇u0) · (∇uj︸ ︷︷ ︸
→F ′(∇u0)·∇u0

−∇u0)dx→ (7)

→
∫
D

F (∇u0) +

∫
D

F ′(∇u0) · (∇u0 −∇u0)dx =

∫
D

F (∇u0)dx.

The calculation (7) proves that J(u0) = m = infu∈K J(u).

Proposition 2.1. If the function F (p) in Theorem 2.2 is strictly convex

F (q) > F (p) + F ′(p)(q− p) for any p, q ∈ R,

for all p 6= q and the domain D is connected. then the minimizer is unique up
to additive constants. In particular the minimizer is unique among all functions
with the same boundary data.

Proof: Assume that we have two minimizers u(x) ∈ K and v(x) ∈ K then
by strict convexity and that both minimizers have the same energy

0 =

∫
D

F (∇u(x))dx−
∫
D

F (∇v(x))dx ≥
∫
D

F ′(∇u) · (∇(v − u))dx, (8)

with equality only if ∇u(x) = ∇v(x).
Since u is a minimizer and K is convex, which implies that u(x) + t(v(x)−

u(x)) ∈ K for t ∈ [0, 1],

0 ≤
∫
D

F (∇u(x) + t∇(v(x)− u(x)))dx. (9)

Dividing by t > 0 and letting t→ 0 in (9) gives

0 ≤ lim
t→0+

1

t

∫
D

F (∇u(x) + t∇(v(x)− u(x)))dx =

∫
D

F ′(∇u) · (∇(v − u))dx.

Comparing this to (8) we see that we must have equality in (8). But as we
remarked earlier we only have equality in (8) if ∇u(x) = ∇v(x). It follows that
u(x)− v(x) is constant.

If u(x) = v(x) on ∂D then clearly u(x) − v(x) = 0 and it follows that the
minimizer is unique among the functions with the same boundary data.

The importance of the existence theorem and the uniqueness proposition is,
of course, the following Theorem from Evans’ book.

Theorem 2.3. [Dirichlet’s Principle.] Assume that u ∈ C2(D) solves

∆u(x) = f(x) in D
u(x) = g(x) on ∂D.

(10)

Then∫
D

(
1

2
|∇u(x)|2 − u(x)f(x)

)
dx = inf

w∈K

∫
D

(
1

2
|∇w(x)|2 − w(x)f(x)

)
dx, (11)

where K = {w ∈ C2(D); w(x) = g(x) on ∂D}.
Conversely, if u ∈ K satisfies (11) then u(x) solves (10).
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The minimizer u(x) of the Dirichlet energy therefore is a very good candidate
to be the solution to Laplace equation - and is indeed the unique solution if it
is C2. It is indeed the case that the minimizer of the Dirichlet energy is C2 and
we thus have a new way to find solutions to Laplace equation. Furthermore, the
existence proofs you have seen previously in this course (by means of explicitly
constructing a Green’s function) only works for very nice domains, such as
balls and half-spaces, where the explicit calculations can be carried out. The
variational existence theorem works for any domain. However, one has to impose
some restrictions on the domain in order to assure that the minimizer assumes
the right boundary data, see Corollary 2.2.

Exercises.

1. [The Maximum principle.] You already know that if u(x) is harmonic
in D then supx∈D u(x) = supx∈∂D u(x). Prove this using that harmonic
functions minimize the Dirichlet energy

∫
D
|∇u(x)|2dx among all functions

with the same boundary values.

Hint: Let M = supx∈∂D u(x) and consider the energy of the function
uM (x) = min (u(x),M, ). Show that uM has less than or equal Dirichlet
energy as u and use uniqueness of minimizers.

2. * [Comparison principle.] Assume that u(x) and v(x) are harmonic in
D and that u(x) ≤ v(x) on ∂D. Use the variational formulation of the
Dirichlet problem to prove that u(x) ≤ v(x) in D.

Hint: See previous exercise.

3. [Generalizations.] Theorem 2.3 states that finding minimizers to the
Dirichlet energy is the same as solving ∆u(x) = 0. However, the real
strength of the calculus of variations is that it easily generalizes to a wide
variety of problems.

(a) Assume that a(x) > 0 and a(x) ∈ C1(D). Show that there exists a
minimizer to

∫
D
a(x)|∇u(x)|2dx in the setK = {u ∈W 1,2(D); u(x) =

f(x) on ∂D}. What partial differential equation does the minimizer
solve?

Hint: Follow the proof of Theorem 2.3.

(b) Assume that we have a minimizer8 to
∫
D
|∇u(x)|p in K = {u ∈

W 1,p(D); u(x) = f(x) on ∂D} for some 1 < p < ∞. Assume fur-
thermore that the minimizer u(x) ∈ C2(D). What partial differential
equation does u(x) solve?9

8This is actually just as easy to prove as the theorem above. At least if one knows a little
basic functional analysis that I do not feel that we have time for right now.

9The PDE is called the p−laplacian and the function u(x) is called p−harmonic. This
example is interesting since the p−laplacian is non-linear and one can not construct solutions
using the Green-function methods used in Evans to find solutions.
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(c) Finally, consider a minimizer u(x) to
∫
D
|∆u(x)|2dx. What PDE

does u(x) solve?10

4. * [Neumann Data.] Let u(x) minimize the Dirichlet energy∫
B1(0)

|∇u(x)|2dx in the set

K = {u ∈W 1,2(B1(0)); u(x) = f(x) on ∂B1(0) ∩ {xn ≤ 0}}.

Notice that the boundary data is only imposed on the negative half of the
ball. Show that

∂u(x)

∂ν
= 0 on ∂B1(0) ∩ {xn > 0},

where ν = x
|x| is the outer normal of ∂B1(0).

Hint: Make variations w(x) = u(x) + tφ(x) in the proof of Theorem 2.3
where φ(x) is not necessarily zero on ∂B1(0) ∩ {xn > 0}.

5. ** Find an F ∈ C1(Rn 7→ R) so that the functional J(u) =
∫
D
F (∇u(x))dx

admits several minimizers.

Hint: What is the difference in the assumptions in the existence Theorem
2.2 and the uniqueness Proposition 2.1?

2.1 Appendix. A painfully brief introduction to Sobolev
spaces and weak convergence.

In this appendix we gather some facts about the convergence of functions that
we need in order to show the existence of minimizers. Ideally we would prove
all the results in the appendix - but we will not strive for the ideal. Some of the
results belong properly to functional analysis and measure theory11 and would
take us to far off topic. We will however try to motivate some of the results
informally.

The central concept in analysis is convergence. We see this already in a first
calculus course; when we learn about the convergence of difference quotients in
order to define derivatives and the convergence of Riemann sums in order to de-
fine the integral. The next order of sophistication is to consider the convergence
of functions.

What does it mean for a sequence of functions fj to converge to a function f0?
The answer to that question is manifold and it depends much on the situation

10This is an important example in R2 since it is a model for the bending of a thin metal
plate.

11If you take the course “Advanced real analysis I” you will see proper proofs of some of
the theorems in this appendix.
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which kind of convergence is relevant. In the calculus of variations we are often
interested in sequences of functions uj(x) such that∫

D

|∇uj(x)|2dx ≤ C

for some given domain D and constant C. That is functions whose derivative
is square integrable. The natural space to consider would therefore be

Definition 2.1. Let D ⊂ Rn be a given set. Then we write L2(D) for the set
of all functions u(x) defined on D such that

‖u‖L2(D) =

(∫
D

|u(x)|2dx
) 1

2

<∞.

Remark: The L in L2(D) stands for Lebesgue since for these spaces are
always considering the Lebesgue integral. However, if you are not familiar with
the Lebesgue integral you can think of the integral as being a Riemann integral.
There are some instances where we will use a fact that is true only for the
Lebesgue integral but not for the Riemann integral - you will have to accept
those facts.

The importance of the space L2(D) comes form the following Theorem.

Theorem 2.4. The Space L2(D) with the norm ‖u‖L2(D) is a complete space.

That is if uj ∈ L2(D) is a Cauchy sequence, limj,k→∞ ‖uj −uk‖L2(D) = 0, then
there exists a function u0 ∈ L2(D) such that limj→∞ ‖uj − u0‖L2(D) = 0.

Remark: The completeness is not true for Riemann integrable functions.
For instance the sequence uj(x) ∈ L(0, 1) defined so that uj(x) = 1 if x is one
of the first j rational numbers (in some ordering) and uj(x) = 0 else. Then

the Riemann integral
∫ 1

0
|uj |2dx = 0 and uj converges point-wise to a function

u0(x) =

{
1 if x ∈ Q
0 if x /∈ Q that is not Riemann integrable.

In L2(D) we say that uj(x) → u0(x) if ‖uj − u0‖L2(D) → 0 as j → ∞.
We would want this convergence to have some good properties. We would in
particular like the Bolzano-Weierstrass Theorem12 to hold. Let us briefly remind
ourselves of the Bolzano-Weierstrass Theorem in Rn.13

Theorem 2.5. Let K ⊂ Rn be a closed and bounded set and {xj}∞j=1 be a se-

quence such that xj ∈ K. Then there exists a sub-sequence {xjk}∞k=1 of {xj}∞j=1

such that limk→∞ xjk exists.

12That is every sequence uj such that ‖uj‖L2(D) ≤ C for some constant C has a convergent
sub-sequence.

13I am a strong believer that there is no difference between first year calculus courses and
PhD level courses and must therefore consistently refer back to undergraduate stuff in all my
courses. But you shouldn’t complain - I refer to PhD level stuff in my first year undergraduate
courses as well so you are better off than my first year students...
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Sketch of the Proof: Let xj = (xj1, x
j
2, ..., x

j
n) then by the Bolzano-Weierstrass

Theorem in R we may find a sub-sequence, which we may denote {xjk,11 }∞k=1, of

{xj1}∞j=1 such that {xjk,11 }∞k=1 converges.
Again by the one dimensional Bolzano-Weierstrass Theorem we may find

a subsequence of jk,1, lets denote it jk,2, such that {xjk,22 }∞k=1 converges. We

may then find a subsequence of jk,2, lets denote it jk,3, such that {xjk,33 }∞k=1

converges et.c.
In the end we find a sequence jk = jk,n such that {xjkn }∞k=1 converges. But

since jk, by construction, is a sub-sequence of each sequence {jk,l}∞k=1, l =
1, 2, ..., n it follows that

lim
k→∞

xjkl = x0
l for l = 1, 2, ..., n.

This finishes the proof.

In order to gain some feeling for the convergence properties of functions in
L2(D) we need to make some calculations. Before we start our investigation into
convergence in L2 we remind ourselves of Paresval’s Theorem and the Cauchy-
Schwartz inequality.

Theorem 2.6. Let u(x), v(x) ∈ L2(−π, π) and

u(x) =
a0(u)√

2π
+

∞∑
k=1

ak(u)
cos(kx)√

π
+

∞∑
k=1

bk(u)
sin(kx)√

π

and

v(x) =
a0(v)√

2π
+

∞∑
k=1

ak(v)
cos(kx)√

π
+

∞∑
k=1

bk(v)
sin(kx)√

π

then

• [Parseval’s Theorem.]∫ π

−π
|u(x)|2dx = a0(u)2 +

∞∑
k=1

(
ak(u)2 + bk(u)2

)
.

• [Cauchy-Schwartz Inequality.] For any two functions g, h ∈ L2(D)
the following inequality holds∫

D

g(x)h(x)dx ≤
(∫

D

|g(x)|2dx
)1/2(∫

D

|h(x)|2dx
)1/2

(12)

this can be formulates for u(x) and v(x) as∫ π

−π
u(x)v(x)dx = a0(u)a0(v) +

∞∑
k=1

(ak(u)ak(v) + bk(u)bk(v)) .
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Parseval’s Theorem allows us to view L2(−π, π) as an infinite dimensional

vector space with basis sin(kx)√
π

and cos(kx)√
π

. This allows us to make some of the

calculations more explicit in the one dimensional setting.14 Next we provide
an example that shows that the Bolzano-Weierstrass Theorem does not hold in
L2(−π, π).

Example: The Bolzano-Weierstrass Theorem does not hold on L2([−π, π]).
In particular, we may find a sequence of functions uj ∈ L2([−π, π]) such that
‖uj‖L2([−π,π]) = 1 but uj does not contain any convergent sub-sequence.

Proof of the example: We will use some Fourier analysis. For a function
u(x) we will write

u(x) =
a0√
2π

+

∞∑
k=1

ak
cos(kx)√

π
+

∞∑
k=1

bk
sin(kx)√

π
,

where

ak =

∫ π

−π
u(x)

cos(kx)√
π

dx and bk =

∫ π

−π
u(x)

sin(kx)√
π

dx.

The sequence uj(x) = 1√
π

cos(jx) will satisfy ‖uj‖L2(−π,π) = 1. The only

non-zero Fourier-coefficient of uj is aj = 1. We claim that uj(x) cannot have
any convergent subsequence. To see this we assume the contrary; that uj → u0,
for a sub-sequence, where

u0(x) =
a0√
2π

+

∞∑
k=1

ak
cos(kx)√

π
+

∞∑
k=1

bk
sin(kx)√

π
.

By Parseval’s Theorem

∫ π

−π
|uj(x)− u0(x)|2dx =

a2
0 +

∞∑
k=1,k 6=j

(
a2
k + b2k

)
+ (1− aj)2

+ b2j



≥

(
a2

0 +

j−1∑
k=1

(
a2
k + b2k

))
.

Since, if uj → u0, then the right hand side tends to zero (for some sub-sequence)
we can conclude that if uk → u0 then ak = 0 and bk = 0 for all k. That is
u0 = 0. But this implies that

‖uj − u0‖L2(−π,π) = ‖uj‖L2(−π,π) = 1

14Any basic course in functional analysis will teach you that L2(D) is a Hilbert space and
thus has a basis. The difference with L2(−π, π) is that we may write down the basis explicitly
with familiar trigonometric functions.
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which contradicts ‖uj − u0‖L2(−π,π) → 0. We can conclude that uj 6→ u0 for
any subsequence.

The above example shows that we cannot hope for a Bolzano-Weierstrass
Theorem for L2(D) for any domain D.

However, we are still able to salvage something from the proof of the finite
dimensional Bolzano-Weierstrass Theorem to the infinite dimensional case. If
we assume that uj(x) is a sequence of functions in L2(−π, π) with the Fourier
expansion

uj(x) =
aj0√
2π

+

∞∑
k=1

ajk
cos(kx)√

π
+

∞∑
k=1

bjk
sin(kx)√

π

and ‖uj‖L2(−π,π) ≤ C then the sequence of numbers {cjk}∞j=1 (c1k = a1
k, c

2
k =

b1k, c
3
k = a2

k, c
4
k = b2k, c

5
k = a2

k...) must be bounded: |cjk| ≤ C and |cjk| ≤ C. This

means that we can find a sub-sequence c
l1,j
1 of cj1 that converges c

l1,j
1 → c01, a

subsequence l2,j of l1,j such that c
l2,j
2 → a0

2 and inductively a subsequence lk,j

of lk−1,j such that c
lk,j
k → c0k.

By choosing the diagonal sequence lj = lj,j , just as in the Arzela-Ascoli

Theorem, we see that a
lj
k → a0

k and b
lj
k → b0k for any k. Thus there exists a

subsequence ulj whose Fourier coefficients all converge to a0
k and b0k respectively.

We may thus find a subsequence of any bounded sequence uj ∈ L2(−π, π) such
that all the Fourier coefficients converge - it is not what we want but it will have
to do.

The mode of convergence of the sequence above is called weak convergence.
Since weak convergence is a much more general concept than something that ap-
plies only for L2(−π, π) we will give the classical definition of weak convergence.
Later we will prove that the above convergence of all the Fourier coefficients is
indeed weak convergence defined as follows.

Definition 2.2. We say that uj converges weakly in L2(D) to u0, or simply
write uj ⇀ u0, if for every function v ∈ L2(D)∫

D

uj(x)v(x)dx→
∫
D

u0(x)v(x)dx. (13)

Remark: Observe that we use the symbol ⇀ and not → for weak conver-
gence. It is also important that we have the same function v(x) in the integrals
(13).

Our first Lemma for weakly converging functions is.

Lemma 2.1. Let uj ⇀ u0 in L2(D) for some domain D. Then

lim inf
j→∞

‖uj‖L2(D) ≥ ‖u0‖L2(D).

Proof: Consider

lim inf
j→∞

(
‖uj‖L2(D) − ‖u0‖2L2(D)

)
= lim inf

j→∞

∫
D

(
|uj(x)|2 − |u0(x)|2

)
dx =
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= lim inf
j→∞

∫
D

(
|uj(x)|2 − |u0(x)|2 − 2uj(x)u0(x) + 2|u0(x)|2

)
dx = (14)

= lim inf
j→∞

∫
D

(
|uj(x)− u0(x)|2

)
dx ≥ 0,

where we used that, by weak convergence,

lim
j→∞

∫
D

(
uj(x)u0(x)− |u0(x)|2

)
dx =

∫
D

(
u0(x)u0(x)− |u0(x)|2

)
dx = 0,

in the equality leading to (14). The Lemma follows.
So far we have not shown that any sequence whatsoever of functions uj ∈

L2(D) converges weakly - but we suspect that the convergence of the Fourier
coefficients should imply weak convergence. But as a matter of fact we regain
the Bolzano-Weierstrass Theorem if we consider weak convergence instead of
strong.

Theorem 2.7. [Weak Compactness Theorem.] Let uj(x) ∈ L2(D), D ⊂
Rn, be a bounded sequence15. Then there exists a sub-sequence, which we still
denote uj, that converges weakly uj ⇀ u0 for some function u0 ∈ L2(D).

Sketch of proof: The Theorem is formulated for any domain D ⊂ Rn. We
will for the sake of simplicity sketch the proof in L2(−π, π). The general proof
is based on the same ideas - but would use more functional analysis that we
neither want to prove not presuppose for this course.

Step 1: The set up.

We assume that uj is a sequence of functions with the Fourier expansions

uj(x) =
aj0
2

+

∞∑
k=1

ajk cos(kx) +

∞∑
k=1

bjk sin(kx).

Since, by assumption, ‖uj‖L2(−π,π) is bounded it follows that |ajk| and |bjk| are
bounded. By the one dimensional Bolzano-Weierstrass Theorem we can find

a subsequence, uj0,k of uj such that a
j0,k
0 → a0

0 and b
j0,k
0 → b00. Choosing a

subsequence again, which we denote uj1,k , we can assure that a
j1,k
1 → a0

1 and

b
j1,k
1 → b01. Continuing inductively we may define the diagonal sequence jk,k for

which a
jk,k
l → a0

l and b
jk,k
l → b0l for every l.

We will denote

u0(x) =
a0

0√
2π

+

∞∑
k=1

a0
k

cos(kx)√
π

+

∞∑
k=1

b0k
sin(kx)√

π
.

We claim that ujk,k ⇀ u0. In order to simplify notation we will write j = jk,k
knowing that we have choses a sub-sequence already.

15When we talk about bounded sequences in L2 we always mean sequences with bounded
norm: ‖uj‖L2(−π,π) ≤ Cu for some constant Cu independent of j.



2 THE CALCULUS OF VARIATIONS. 17

We need to show (13) for any function v ∈ L2(−π, π). We define the Fourier-
coefficients of v according to

v(x) =
av0√
2π

+

∞∑
k=1

avk
cos(kx)√

π
+

∞∑
k=1

bvk
sin(kx)√

π
.

Step 2: Proof if avk = 0 and bvk = 0 if k > M .

Proof of Step 2: By Pareval’s Theorem we get∫ π

−π

(
uj(x)− u0(x)

)
v(x)dx =

∞∑
k=0

(ajk − a
0
k)avk +

∞∑
k=1

(bjk − b
0
k)bvk = (15)

=

{
use avk, b

v
k = 0

for k > M

}
=

M∑
k=0

(ajk − a
0
k)avk +

M∑
k=1

(bjk − b
0
k)bvk → 0

where we used that ajk − a0
k → 0 and bjk − b0k → 0. This implies (13).

Step 3: Proof for general v ∈ L2(−π, π).

Proof of Step 3: We may write v(x) = vM (x) + wM (x) where

vM (x) =
av0√
2π

+

M∑
k=1

avk
cos(kx)√

π
+

M∑
k=1

bvk
sin(kx)√

π

and

wM =

∞∑
k=M+1

avk
cos(kx)√

π
+

∞∑
k=M+1

bvk
sin(kx)√

π
.

Since v ∈ L2(−π, π) we know, from Parseval’s Theorem, that the series

∞∑
k=1

(avk)2 +

∞∑
k=1

(bvk)2

converges. We may therefore, for any ε > 0, choose M so that

‖wM‖2L2(−π,π) =

∞∑
k=M+1

(avk)2 +
∞∑

k=M+1

(bvk)2 < ε2. (16)

It follows that ∣∣∣∣∫ π

−π

(
uj(x)− u0(x)

)
v(x)dx

∣∣∣∣ =

=

∣∣∣∣∫ π

−π

(
uj(x)− u0(x)

)
vM (x)dx

∣∣∣∣+

∣∣∣∣∫ π

−π

(
uj(x)− u0(x)

)
wM (x)dx

∣∣∣∣ ≤ (17)

≤
∣∣∣∣ ∫ π

−π

(
uj(x)− u0(x)

)
vM (x)dx︸ ︷︷ ︸

→0 by Step 2

∣∣∣∣+ ‖uj − u0‖L2(−π,π)‖wM‖L2(−π,π),
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where we used Cauchy-Schwartz inequality in the last step of the calculation.
Notice that by the triangle inequality and Lemma 2.1

‖uj − u0‖L2(−π,π) ≤ ‖uj‖L2(−π,π) + ‖u0‖L2(−π,π) ≤ 2Cu (18)

where Cu is the bound on ‖uj‖L2(−π,π).
By choosing M large enough we can, by (16) and (18), make the term

‖uj − u0‖L2(−π,π)‖wM‖L2(−π,π) < ε. (19)

Passing to the limit in (17) and using (19) we can conclude that

lim
j→∞

∣∣∣∣∫ π

−π

(
uj(x)− u0(x)

)
v(x)dx

∣∣∣∣ < ε,

for any ε > 0. The Theorem follows.

When we do calculus of variations we are really interested in functions whose
derivatives are in the space L2(D). We need the following definitions.

Definition 2.3. Let u be integrable in some domain D ⊂ Rn. Then if there
exists an integrable function w(x) such that∫

D

∂v(x)

∂xi
u(x)dx = −

∫
D

v(x)w(x)dx for every v(x) ∈ C1
c (D) (20)

then we say that u(x) is weakly differentiable in xi and that w(x) is the weak

xi-derivative of u(x) and write ∂u(x)
∂xi

= w(x).

Remark: Notice that the definition is made so as the partial integration
formula works. In particular, if u(x) is weakly differentiable in xi then (20)
become the normal integration by parts formula∫

D

∂v(x)

∂xi
u(x)dx = −

∫
D

v(x)
∂u(x)

∂xi
dx.

It follows directly that every continuously differentiable function is weakly dif-
ferentiable.

Definition 2.4. Let u(x) ∈ L2(D) be weakly differentiable in every direction
xi, i = 1, 2, ..., n and the weak derivatives ∂u

∂xi
∈ L2(D) for all i = 1, 2, ..., n.

Then we say that u ∈W 1,2(D). We call the space of all such functions equipped
with the norm

‖u‖W 1,2(D) =

(∫
D

|u(x)|2dx+

∫
D

|∇u(x)|2dx
)1/2

, (21)

where ∇u(x) =
(
∂u(x)
∂x1

, ∂u(x)
∂x2

, ..., ∂u(x)
∂xn

)
.
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We will also write W k,2(D) for all functions defined on D such that all weak
derivatives up to order k exists and

‖u‖Wk,2(D) =

∑
|α|≤k

∫
D

|Dαu|2
1/2

<∞,

where the summation is over all mutiindexes α of length |α| ≤ k.

Remark: Often in analysis one uses the Sobolev space W k,p(D) with norm:

‖u‖Wk,p(D) =

∑
|α|≤k

∫
D

|Dαu|p
1/p

<∞.

We will not use this space in this course.

Lemma 2.2. The space W 1,2(D) with norm (21) is a complete space.
Furthermore every bounded sequence of functions uj ∈ W 1,2(D) has a sub-

sequence ujk so that ujk ⇀ u0 and ∂ujk
∂xi

⇀ ∂u0

∂xi
in L2(D) for some u0 ∈

W 1,2(D).

Remark: We say that the subsequence ujk converges weakly to u0 in
W 1,2(D), written ujk ⇀ u0 in W 1,2(D).

Proof: ThatW 1,2(D) is complete follows from the same statement for L2(D),
Theorem 2.4.

By Theorem 2.7 we can clearly extract a subsequence such that ujk and
∂ujk
∂xi

, for all i = 1, 2, ..., n, converges weakly. We need to show that the limit of

the partial derivatives converges to the partial derivatives of the limit ujk ⇀ u0.
That is easy. For any φ ∈ C1(D) we have∫

D

∂φ(x)

∂xi
u0(x)dx←

∫
D

∂φ(x)

∂xi
ujk(x)dx = (22)

−
∫
D

φ(x)
∂ujk(x)

∂xi
dx→ −

∫
D

φ(x) lim
jk→∞

∂ujk(x)

∂xi
dx,

Since (22) holds for every φ it follows that ∂ujk (x)
∂xi

⇀ ∂u0(x)
∂xi

. This finishes
the proof.

We need one final, and rather subtle, concept regarding Sobolev spaces in
order to use them in the calculus of variations.

Theorem 2.8. [Traces.] Let D be a bounded domain with continuously dif-
ferentiable boundary. Then there exists an operator

T : W 1,2(D) 7→ L2(∂D)

that assigns boundary values (in the trace sense) of u ∈ W 1,2(D) onto the
boundary ∂D.

Furthermore Tu = ub∂D for all functions u ∈ C(D) ∩W 1,2(D).
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Before we prove this theorem we will try to motivate its importance. We do
not require functions u ∈ W 1,2(D) to be continuous - and assume even less we
that functions u ∈ W 1,2(D) have a continuous extension to D. It is therefore
not obvious that we can talk about boundary values for functions in W 1,2(D).
Consider the simple example cos(1/x) ∈ C(0, 1) which is continuous, but have
no continuous extension to [0, 1) - wherefore we can not in any meaningful way
ascribe a boundary value to cos(1/x). In order to solve the Dirichlet problem we
need the function to take a prescribed boundary value; and therefore we need
to have a notion of boundary values. The “boundary values” are given by the
trace operator T whose existence is assured by the Theorem.

Sketch of the proof of Theorem 2.8: This proof actually goes beyond this
course. But I want to indicate how the Trace Theorem is proved for several
reasons. First of all we need the theorem. Secondly, in proving the theorem we
will encounter some standard techniques in PDE theory. Thirdly, the proof will
also indicate why there is more to Sobolev spaces than an integration by parts
formula. In particular, I want to stress that measure theory (as in “Advanced
Real Analysis”) is important for the general analysis of PDE.

Step 1 [Straightening of the boundary.]: It is enough to prove that
the operator T : W 1,2(B+

1 (0)) 7→ L2(B3/4(0) ∩ {xn = 0}), where B+
1 (0) =

B1(0) ∩ {xn > 0} exists.

Proof of Step 1: By definition a domain has C1 boundary if we can cover
∂B1(0) by finitely many balls Brj (x

j) such that ∂D ∩ B2rj (x
j) is the graph of

a C1 function f j in some coordinate system.

D

x

x

D

f(x)

Figure: The left figure shows a domain D with C1 boundary. This means
that we may cover ∂D by a finite number of balls Brj (x

j) such that for each ball
there is a coordinate system so that ∂D ∩B2rj (x

j) is a graph in the coordinate
system. The right picture shows the same coordinate system rotated and the
boundary portion ∂D ∩ B2rj (x

j) (in red) which is clearly the graph of some
function f(x). We will change coordinates to straighten the red part of the
boundary.
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The idea of the proof is that we may “straighten the boundary” in B2rj (x)
by defining the new coordinates x̂ so that

(x1, x2, ..., xn) = (x̂1, x̂2, ..., x̂n+f j(x̂′))⇔ (x̂1, x̂2, ..., x̂n) = (x1, x2, ..., xn−f j(x′)).

Then the part of the boundary xn = f j(x′) will be mapped to the hyperplane
x̂n = 0 in the x̂ coordinates. We may write the function u(x) in these coordinates
as û(x̂).

By the chain rule we get that

∂û(x̂)

∂x̂i
=

n∑
k=1

∂xk
∂x̂i

∂u(x)

∂xk
=

n∑
k=1

(
∂u(x)

∂xk
+
∂f j(x′)

∂xk

∂u

∂xn

)
.

In particular, |∇û(x̂)| will be comparable in size with |∇u(x)|.
Since f(x) is continuously differentiable we can conclude that∫

D∩B2r(x0)

|∇û(x̂)|2dx̂ ≤ C
∫
D∩B2r(x0)

|∇u(x)|2dx,

where the constant C only depend on the maximum value of |∇′f(x′)|.
Notice that û(x̂) is defined in a set where part of the boundary is straight

(in the x̂ coordinates). If we can define boundary values for û on the straight
part of the boundary then we can define boundary values of u(x) on the portion
of the boundary that lays in Brj (x

j) by the equality u(x) = û(x′, 0). But the
entire boundary ∂D can be covered by finitely many balls Rrj (x

j) so we can
define boundary values for u(x) on the entire boundary ∂D.

Step 2: Let u(x) ∈W 1,2(B+
2 (0)) then∫

B′
1(0)

|u(x′, t)− u(x′, s)|2dx′ ≤ |s− t|‖∇u(x)‖2
L2(B+

2 )

where B′1(0) = {x′ ∈ Rn−1; |x′| ≤ 1} is the unit ball in the x′ coordinates.

Proof of step 2: Using the fundamental theorem of calculus16

∫
B′

1(0)

|u(x′, t)− u(x′, s)|2dx′ =

∫
B′

1(0)

∣∣∣∣∫ t

s

∂u(x)

∂xn
dxn

∣∣∣∣2 dx′ ≤
≤ |s− t|

∫
B′

1(0)

∫ t

s

∣∣∣∣∂u(x)

∂xn

∣∣∣∣ dx′dxn ≤ |s− t|‖∇u(x)‖2
L2(B+

2 )

where we used the Cauchy-Schwartz inequality (12)17 in the first inequality.

16This is just a sketch of a proof. But this is the part of the proof that is most sketchy. We
have note proved, nor will we prove, that the fundamental theorem of calculus is applicable
to functions in W 1,2 in the way we use it here.

17With g(x) =
∂u(x)
∂xn

and h(x) = 1.
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Step 3: Let u(x) ∈ W 1,2(B+
2 (0)) then the limit limt→0′ u(x′, t) = u0(x′, 0)

exists (and is therefore unique) and the function u0(x′, 0) ∈ L2(B′1(0)) and
satsifies the estimate

‖u0‖L2(B′
1(0)) ≤ C‖u‖W 1,2(B+

2 (0))

where the constant C does not depend on u. This finishes the proof.

Proof of Step 3: Since u(x) ∈W 1,2(B+
2 (0)) it follows that∫ 1/4

0

∫
B′

1(0)

|u(x)|2dx′dxn ≤
∫
B+

2 (0)

|u(x)|2dx <∞, (23)

where we used B′1(0)×(0, 1/4) ⊂ B+
2 (0) in the first inequality and the definition

of W 1,2(B+
2 (0)) (see Definition 2.4) in the second inequality.

From (23) we can conclude that there exists an s ∈ (0, 1/4) such that∫
B′

1(0)

|u(x′, s)|2dx′ ≤ 4

∫
B+

2 (0)

|u(x)|2dx.

This implies that u(x′, s) ∈ L2(B′1(0)) and therefore, from step 2, that u(x′, t) ∈
L2(B′1(0)).

By Step 2 the sequence of functions u(x′, s/j) will form a Cauchy sequence
and is therefore convergent, in L2(B′1(0)) to some function u0(x′, 0) ∈ L2(B′1(0)).
Also, by step 2,

‖u(x′, s/j)− u0(x′, 0)‖L2(B′
1(0)) ≤

√
s/j‖∇u(x)‖L2(B+

2 ).

We only need to assure that limt→0+ u(x′, t) = u0(x′, 0). But that follows
from step 2 and the triangle inequality:

‖u(x′, t)− u0(x′, 0)‖L2(B′
1(0)) ≤ (24)

≤ ‖u(x′, t)− u0(x′, s/j)‖L2(B′
1(0)) + ‖u(x′, s/j)− u0(x′, 0)‖L2(B′

1(0)) ≤ (25)(√
t− s/j +

√
s/j
)
‖∇u(x)‖L2(B+

2 ), (26)

where we choose j so large that s/j ≤ t. It clearly follows from (24)-(26) that

‖u(x′, t)− u0(x′, 0)‖L2(B′
1(0)) ≤ 2

√
t‖∇u(x)‖L2(B+

2 ). (27)

It follows that limt→0′ u(x′, t) = u0(x′, 0) in L2(B′1(0)).
We also need two more results on Sobolev spaces and traces.

Corollary 2.1. Let D be a bounded C1 domain and u ∈ W 1,2(D) and u = f
on ∂D in the sense of traces. Then

‖u‖L2(D) ≤ C
(
‖∇u‖L2(D) + ‖f‖L2(∂D)

)
, (28)

where the constant C does not depend on u.
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Sketch of the Proof: We will only sketch the proof. We begin with the special
case f(x) = 0. Since D is bounded there is a cube QR = {x ∈ Rn; |xi| <
R for i = 1, 2, ..., n} and D ⊂ QR. We will extend u to zero in QR \D:

u(x) =

{
u(x) for x ∈ D
0 for x ∈ QR \D.

By the fundamental theorem of calculus

u(x′, xn) =

∫ xn

−R

∂u(x′, t)

∂xn
dt. (29)

If we take absolute values and square both sides of (29) and then integrate over
D we get ∫

D

|u(x)|2dx =

∫
D

∣∣∣∣∫ xn

−R

∂u(x′, t)

∂xn
dt

∣∣∣∣2 dx ≤
≤ 2R

∫
D

∫ xn

−R

∣∣∣∣∂u(x′, t)

∂xn

∣∣∣∣2 dtdx ≤ 2R

∫
D

∫ xn

−R
|∇u(x′, t)|2 dtdx,

where we used the Cauchy-Schwartz inequality18 in the first inequality. Chang-
ing the order of integration leads to∫

D

|u(x)|2dx ≤ 2R

∫ R

−R

∫
D

|∇u(x′, xn)|2 dxdt ≤ 4R2

∫
D

|∇u(x′, xn)|2 dx,

where we also increased the interval of integration from −R < t < xn to −R <
t < R which clearly increases the value of the integral. This proves (28) in the
case f(x) = 0.

For the general case we may define a cut-off function ψ(x) ∈ C∞c (D) such
that 0 ≤ ψ(x) ≤ 1 and ψ(x) = 1 for dist(x, ∂D) > r0/2 where r0 is the
smallest radius in the proof of the Trace Theorem. We then split up u(x) =
(1− ψ(x))u(x) + ψ(x)u(x). Then ψ(x)u(x) has trace equal to zero on ∂D and
the argument in the previous paragraph applies. The function (1 − ψ(x))u(x)
can be estimated in terms of the boundary values and the norm ‖∇(1−ψ)u‖L2

as in (27). We leave the details to the reader.
The final corollary we state without proof.

Corollary 2.2. Let uj ⇀ u0 in W 1,2(D) where D is a bounded C1 domain.
Assume furthermore that uj = f on ∂D in the trace sense. Then u0 = f on
∂D.

Exercises.

1. Let D be a bounded domain and u(x) ∈ C1(D). Show that u(x) ∈
W 1,2(D).

18Theorem 2.6 with g(x) =
∂u(x′,t)
∂xn

and h(x) = 1.
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2. * Consider the function u(x) = ln(1/|x|) defined in B1(0) ⊂ R3.

(a) Show that u(x) ∈W 1,2(B1(0)).

(b) Conclude that there are discontinuous, and even unbounded, func-
tions u(x) ∈W 1,2(B1(0)).

3. ** Let D be a bounded domain and u(x) ∈ C1(D).

(a) If D = B1(0) and u(x) = 0 on ∂B1(0) show that

u(0) =
1

ωn

∫
B1(0)

y · ∇u(y)

|y|n
dy.

Hint: By the fundamental theorem of calculus u(x) =
∫ 1

0
y ·∇u(ty)dt

for any y such that |y| = 1. Integrate this over the unit sphere
∂B1(0) = {y; |y = 1|}.

(b) Show that for all x ∈ B1(0).

u(x) =
1

ωn

∫
B1(0)

(y − x) · ∇u(y)

|y − x|n
dy.

(c) Use the following inequality, known as Hölder’s inequality,∫
B1

f(x)g(x)dx ≤
(∫

B1

|f(x)|pdx
)1/p(∫

B1

|f(x)|qdx
)1/q

for 1
p + 1

q = 1, to show that for any ε > 0 there exists a constant Cε
such that

sup
B1(0)

|u(x)| ≤ Cε

(∫
B1(0)

|∇u(x)|n+ε

) 1
n+ε

.

[Remark:] The assumption that u ∈ C1 is not needed in the above
argument. It is enough to assume that u ∈ W 1,n+ε(B1(0)). The exer-
cise therefore shows that any function in W 1,p(B1(0)) that vanishes on
∂B1(0)is bounded.

4. Assume that uj(x) ⇀ u0(x) in L2(−π, π). Show that all the Fourier
coefficients of uj converges to the corresponding Fourier coefficients of u0.

5. * Show that the weak derivatives of the following functions, f(x), either
exist or does not exist. Then calculate the weak derivative.

(a) f(x) =

{
x if x > 0
0 if x < 0

where f(x) is defined on [−1, 1] ⊂ R.

Does weak derivatives have to be continuous?
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(b) f(x) =

{
1

x1/4 if x > 0
0 if x < 0

where f(x) is defined on [−1, 1] ⊂ R.

(c) f(x) =

{
x3/4 if x > 0
0 if x < 0

where f(x) is defined on [−1, 1] ⊂ R.

Does weak derivatives have to be bounded?

(d) f(x) =

{ x1

|x| if |x| > 0

0 if x = 0
where f(x) is defined on B1 ⊂ R3.

6. * [The need for traces.] The following exercise is meant to shed light
on the trace theorem.

(a) Let u = cos(ln(|x|)) be a function defined on (0, 1). Does u(x) sat-
isfy the assumptions of the trace Theorem? Can you think of any
meaningful way to assign a boundary value of u(x) at x = 0?19 and
u = cos(1/|x|) in Rn.

(b) Let u(x) = cos(ln |x|) be a function defined on B1 \ {0} in R3. Show
that the function u(x) ∈ W 1,2(B1 \ {0}). However, there is no any
meaningful way to ascribe a boundary value of u(x) to the bound-
ary point x = 0. Note that the boundary is not the graph of a
C1−function at x = 0.

7. ** [A really bad function.] In this exercise we will construct a really
bad function - in mathematical analysis we love bad functions as examples.

(a) Show that u(x) =

{ x1

|x|4/3 if |x| > 0

0 if x = 0
satisfies u(x) ∈ W 1,2(B2(0))

when the space dimension n ≥ 3. Also show that u(x) is not bounded
in any neighborhood of x = 0.

(b) Since Q3 is countable we may define a sequence {qj}∞j=1 such that

∪∞j=1{qj} = Q3∩B+
1 (0). Define w(x) =

∑∞
j=1 2−ju(x− qj) and show

that w(x) ∈ W 1,2(B+
1 (0)) and that w(x) is not bounded, neither

from above nor from below, on any open set of B+
1 (0).

[Hint:] In order to show that w(x) ∈ W 1,2(B+
1 (0)) it might be

helpful to use the following triangle inequality
∥∥∥∑j fj(x)

∥∥∥
W 1,2

≤∑
j ‖fj(x)‖W 1,2 .

(c) What is lim supx→x0 w(x) and lim infx→x0 w(x) for x0 ∈ B1(0) ∩
{xn = 0}?

(d) Does this weird function have well defined boundary values, in the
trace sense, on B1/2(0) ∩ {xn = 0}?

19The point of the second question is that you should realize that it is not obvious for a
function to have boundary values.
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3 The Obstacle Problem.

In this section we will consider the obstacle problem. The obstacle problem
consists of to minimizing

J(u) =

∫
D

F (∇u(x))dx =

∫
D

|∇u(x)|2dx, (30)

in the set

K = {u ∈W 1,2(D); u(x) = f(x) on ∂D and u(x) ≥ g(x) in D}. (31)

Notice that the set K is the convex set of all functions u(x) that achieves
the boundary data f(x) (in the trace sense) and u(x) ≥ g(x) in the domain D.
The difference between the obstacle problem and the minimization in Theorem
2.3 is that in the obstacle problem we require that the graph of the minimizer
should stay above a prescribed obstacle g(x).

D

f

g

Figure 5: The graph of a typical solution to the obstacle problem.

The obstacle problem is much more complicated than the normal Dirichlet
problem. For instance, the obstacle problem is non-linear and the obstacle
problem has a new unknown: the set where u(x) = g(x) or equivalently the set
Ω = {x; u(x) > g(x)}. Of particular importance is the boundary of the set Ω,
we call this boundary The Free Boundary and denote it Γ = ∂Ω.

We will denote

Ω = {x ∈ D; u(x) > g(x)}, Γ = ∂Ω (=Free Boundary).

We are interested in existence of solutions and properties of the solutions
and in particular the properties of the sets Ω and Γ.
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3.1 Existence of Solutions and some other questions.

To prove that a solution exists is a standard application of Theorem 2.2. In
particular we have the following theorem.

Theorem 3.1. Let D be a bounded domain with C1 boundary, f(x) ∈ C(∂D)
and g(x) ∈W 1,2(D). Assume furthermore that the set

K = {u ∈W 1,2(D); u(x) = f(x) on ∂D and u(x) ≥ g(x) in D}.

is non-empty. Then there exists a unique function u(x) ∈ K such that

J(u) =

∫
D

|∇u(x)|2dx ≤
∫
D

|∇v(x)|2dx

for all v(x) ∈ K.

Proof: This is proved in the same way as Theorem 2.2. If uj is a minimizing
sequence20 then ‖∇uj‖L2(D) is bounded and, by Corollary 2.1 ‖uj‖W 1,2(D) is
bounded. We may thus find a sub-sequence uk ⇀ u in W 1,2(D). By Corollary
2.2 u0 = f on ∂D and thus u ∈ K. By convexity of the functional J(u) it
follows, as in Theorem 2.2, that J(u) ≤ limk→∞ J(ujk) = infv∈K J(v).

We have now entirely left the nice and comfortable kind of mathematics
where we can explicitly calculate our solutions. Theorem 3.1 is an abstract
existence theorem and does not indicate how we should even begin to calculate
the minimizer u(x). In general, even for rather nice domains D and functions
f(x) and g(x), we have no idea how to calculate the value of u(x). We have,
however, a minimizer u(x) and that minimizer is unique and we would like to
describe this minimizer as completely as possible. The questions we will ask
are:

1. Does the minimizer u(x) of the obstacle problem satisfy a partial differ-
ential equation (as the minimizer to the Dirichlet energy in Theorem 2.3
did.)? We usually call the PDE that the minimizer solves for the Euler-
Lagrange equation.

2. Does the minimizer of the obstacle problem satisfy any other “good” prop-
erties? Is the minimizer continuous, differentiable or even analytic?

3. What can be said about the set Ω? Is Ω an open set? Is the boundary
differentiable? Is there anything that characterize the boundary?21

The only thing we know about u(x) is that u(x) ∈ K and that u(x) is
a minimizer of the Dirichlet energy among all functions in K. Therefore, we
need to start our investigation with an investigation into what it means to be
a minimizer - what variations can we do and what can these variations tell us
about the solution.

20That is a sequence uj ∈ K such that J(uj)→ infv∈K J(v).
21In these notes we will not discuss the differentiability properties of Γ.
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Variations. If u(x) is a minimizer of J(u) in a convex set K (such as the
obstacle problem) and v ∈ K then, by convexity of K, (1− t)u+ tv ∈ K for all
t ∈ [0, 1]. Therefore, since u(x) is a minimizer,∫

D

|∇u(x)|2dx ≤
∫
D

|∇ ((1− t)u+ tv)|2 dx (32)

⇒
∫
D

(
2t∇u · ∇(v − u) + t2|∇v|2

)
≥ 0⇒

∫
D

∇u · ∇(v − u) ≥ 0., (33)

where we divided by t > 0 and then sent t→ 0 in the last implication.
We can therefore conclude that22

If v(x) ∈ K then

∫
D

∇u · ∇(v − u) ≥ 0. (34)

Furthermore, if v(x) ∈ K happens to be a function such that (1−t)u+tv ∈ K
for all t ∈ (−ε, ε) then ∫

D

∇u · ∇(v − u) = 0. (35)

This can easily be seen by replicating the argument in (32)-(33) and using that
the inequality reverses direction for t < 0.

If we choose the variation v(x) = u(x)+φ(x), for any φ ≥ 0 and φ ∈W 1,2(D)
with compact support, in (34) then we get∫

D

∇u · ∇φ ≥ 0. (36)

And if spt(φ) ⊂ {u(x) > g(x)} then we actually get, from (35), that∫
D

∇u(x) · ∇φ(x) = 0. (37)

u(x)

g(x)

Variations

22This condition is usually called “a variational inequality”.
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Figure 6: A graphical representation of the varations, if the bump φ is
added in a region where u(x) = g(x) (as in the left bump in the graph) then we
get the inequality (36). But if the bump is added away from the touching set
(as the right bump) then we may do variations with t ∈ (−ε, ε) and thus get the
full equality as in (37).

An informal argument and the way ahead: We would like to make an
integration by parts in (36) in order to deduce that

0 ≤
∫
D

∇u · ∇φ =

{
unjustified int.
by parts

}
= −

∫
D

φ∆u, (38)

Heuristically, since φ ≥ 0, the calculation (38) implies that ∆u ≤ 0 in D.
Similarly, from (37) we would like to deduce that ∆u = 0 in the set {x ∈
D; u(x) > g(x)}. Notice that this would directly imply that the equality
u(x) = g(x) can only happen whenever ∆g(x) ≤ 0. It would thus give us some
information about the set Ω (technically about Ωc).

The problem with the calculation in (38) is that is assumes that u(x) has
second derivatives. We must first prove that u(x) has second derivatives (in
some sense) in order to justify (38). This indicates that we need to develop
a regularity theory for the obstacle problem.23 Our next goal will be to show
that a solution to the obstacle problem has weak second derivatives. But before
we can do that we need to make a simplifying assumption and reformulate the
problem slightly.

Normalized solutions to the Obstacle problem: If we assume that
g ∈ C2(D) and define v(x) = u(x)− g(x) ≥ 0 then v(x) minimizes∫
D

|∇(v(x) + g(x))|2 =

∫
D

|∇v(x)|2dx+

∫
D

2∇v(x) · ∇g(x) +

∫
D

|∇g(x)|2dx =

= 2

∫
D

(
1

2
|∇v|2 − v∆g(x)

)
dx+

∫
D

|∇g(x)|2dx+

∫
∂D

v(x)
∂g(x)

∂ν
dA,

where we used an integration by parts in the last equality. Notice that since
g(x) is a given function (independent of v(x)) the integral

∫
D
|∇g(x)|2dx is

independent of v(x). Also, since u ∈ K which means that u(x) = f(x) on ∂D
it follows that v(x) = u(x)− g(x) = f(x)− g(x) on ∂D. In particular,∫

D

|∇g(x)|2dx+

∫
∂D

v(x)
∂g(x)

∂ν
dA =

=

∫
D

|∇g(x)|2dx+

∫
∂D

(f(x)− g(x))
∂g(x)

∂ν
dA

23Regularity theory is the part of PDE theory where one proves that solutions to a PDE
are more regular, that is have more derivatives, than what is needed to define the solution.
Regularity theory also includes deriving a priori estimates of the norm of the solution.
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is just a constant independent of v(x). It follows that v(x) is a minimizer of the
energy ∫

D

(
1

2
|∇v|2 − v∆g(x)

)
dx (39)

in the set

K̃ =
{
v ∈W 1,2(D); v(x) ≥ 0 and v(x) = f(x)− g(x) on ∂D

}
.

In many situations it is somewhat easier to work with the function v(x) instead
of u(x). It is in particular much easier to work with the formulation with v(x)
if ∆g(x) = −1. We therefore make the following definition.

Definition 3.1. We say that u(x) is a solution to the normalized obstacle prob-
lem if u(x) minimizes ∫

D

(
1

2
|∇u(x)|2 + u(x)

)
dx (40)

among all functions in the set

K =
{
u ∈W 1,2(D); u(x) ≥ 0 and u(x) = f(x) on ∂D

}
.

In the rest of these notes we will study solutions to the normalized obstacle
problem.

The normalized obstacle problem is somewhat less general than the general
obstacle problem. In particular the assumption that ∆g(x) = −1 is a sever
limitation. We are however willing to pay the price of a less general problem in
order to get a simpler problem.

Exercises:

1. [Comparison principle.] Let u(x) and v(x) be solutions to the normal-
ized obstacle problem in a domain D. Furthermore assume that v(x) ≥
u(x) on ∂D. Prove that v(x) ≥ u(x) in D.

Hint: Assume the contrary, that u(x) > v(x) in some set Σ, and make a
variation with φ = max(u(x)− v(x), 0).

2. ∗∗2 Let u(x) and v(x) be as in the previous exercise and assume furthermore
that v(x) > u(x) on part of the boundary ∂D and that D is connected.
Does it follow that v(x) > u(x) in the entire domain D? Would your
answer be the same if u(x) and v(x) where harmonic functions?

3. * Let u(x) and v(x) be solutions to the obstacle problem in D with ob-
stacles gu(x) and gv(x) respectively. Assume that u(x) = v(x) on ∂D and
prove that if gv(x) ≥ gu(x) in D then v(x) ≥ u(x) in D.
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4 Regularity Theory.

4.1 Solutions to the Normalized Obstacle Problem has
second derivatives

In this section we will show that a solution to the normalized obstacle problem
has weak second derivatives. We begin with a difference quotient argument,
this is a standard argument in PDE theory and the calculus of variations. In
the proof we use the notation e1 = (1, 0, 0, .., 0), · · · , ei = (0, .., 0, 1, 0, ..) for the
standard unit vectors.

Lemma 4.1. Let u(x) be a solution to the normalized obstacle problem in a
domain D. Then for each compact set C ⊂ D there exists a constant C only
depending on dist(C, Dc) such that∫

C

∣∣∣∣∇(u(x+ eih)− u(x))

h

∣∣∣∣2 dx ≤ C ∫
D

∣∣∣∣u(x+ eih)− u(x)

h

∣∣∣∣2 dx (41)

for any h ∈ R satisfying |h| < dist(C, Dc)/2.

Proof: We know that

0 ≤
∫
D

(∇u(x) · ∇φ(x) + φ(x)) dx (42)

for any φ with compact support such that v+ tφ ∈ K, that is if v+ tφ ∈ K ≥ 0,
for t ∈ (0, ε).

Now we choose φ(x) = ψ(x)2(u(x+ eih)− u(x)) for some ψ ∈ C∞c (D) that
satisfies

1. 0 ≤ ψ(x) ≤ 1 for all x ∈ D,

2. ψ(x) = 1 for x ∈ C,

3. ψ(x) = 0 for all x such that dist(x, C) > dist(C,Dc)
2 and

4. |∇ψ(x)| < 4
dist(C,Dc) .

Notice that for any t ∈ [0, 1) we have

u(x) + tφ(x) = tψ2(x)u(x+ eih) + (1− ψ2(x))u(x) ≥ 0,

since u(x) ≥ 0. Also u(x) + tψ2(x)(u(x + eih) − u(x)) = f(x) on ∂D since
ψ(x) = 0 on ∂D and u(x) = f(x) on ∂D.24

24There is a slight technical detail that should be mentioned here. Since u(x) is defined on
D it follows that u(x+hei) is defined on the set D−h = {x; x+hei ∈ D} 6= D. In particular,
the function u(x) + tψ(x)2(u(x+ eih)− u(x)) is only defined on D−h ∩D which is a strictly
smaller set than D. But since ψ(x) = 0 on D \ (D−h ∩ D) for |h| < dist(C, Dc)/2 we may
consider the function that equals u(x)+ tψ(x)2(u(x+eih)−u(x)) in D−h∩D and equals zero
in D\ (D−h∩D) for |h| < dist(C, Dc)/2. That function is well defined and all the calculations
goes through for that function. It is not uncommon that one uses the simplified convention
that an undefined function times zero is zero - it simplifies things.
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With this choice of φ(x) in (42) we arrive at∫
D

(
∇u(x) · ∇(ψ(x)2(u(x+ eih)− u(x))) + (ψ(x)2(u(x+ eih)− u(x)))

)
dx ≥ 0.

(43)
Next we notice that u(x + hei) is a minimizer if the normalized obstacle

problem in a slightly shifted domain with boundary values f(x+ hei). Arguing
similarly as above we arrive at (with φ(x) = ψ(x)2(u(x)− u(x+ hei))∫
D

(
∇u(x+hei)·∇(ψ(x)2(u(x)−u(x+hei)))+(ψ(x)2(u(x)−u(x+hei)))

)
dx ≥ 0.

(44)
If we add (43) and (44) and rearrange the terms we arrive at

0 ≥
∫
D

(
∇(u(x+ eih)− u(x))) · ∇

(
ψ(x)2(u(x+ eih)− u(x))

))
dx =

=

∫
D

(
ψ(x)2 |∇(u(x+ eih)− u(x))|2

)
dx+

+

∫
D

(2ψ(x)(u(x+ eih)− u(x))∇ψ(x) · ∇(u(x+ eih)− u(x))) dx

That is ∫
D

ψ(x)2 |∇(u(x+ eih)− u(x))|2 dx ≤ (45)

≤ −
∫
D

2ψ(x)(u(x+ eih)− u(x))∇ψ(x) · ∇(u(x+ eih)− u(x))dx.

In order to continue we use that for any vectors v,w ∈ Rn we have the
following inequality 2v ·w ≤ 2|v|2 + 1

2 |w|
2 which implies that

2ψ(x)(u(x+ eih)− u(x))∇ψ(x) · ∇(u(x+ eih)− u(x)) =

= (2(u(x+ eih)− u(x))∇ψ(x))︸ ︷︷ ︸
=v

· (ψ(x)∇(u(x+ eih)− u(x)))︸ ︷︷ ︸
=w

≤

≤ 8|∇ψ(x)|2(u(x+ eih)− u(x))2 +
1

2
|ψ(x)|2 |∇(u(x+ eih)− u(x))|2 − .

Using this in (45) we can deduce that∫
D

ψ(x)2 |∇(u(x+ eih)− u(x))|2 dx ≤ 16

∫
D

|∇ψ(x)|2(u(x+ eih)− u(x))2dx.

(46)
Since ψ(x) = 1 in C we can estimate the left side of (46) according to∫
C
|∇(u(x+ eih)− u(x))|2 dx ≤

∫
D

ψ(x)2 |∇(u(x+ eih)− u(x))|2 dx (47)
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and using that |∇ψ| ≤ 4
dist(C,Dc) we can estimate the right side of (46) according

to

16

∫
D

|∇ψ(x)|2(u(x+ eih)− u(x))2dx ≤ (48)

≤ 256

dist(C, Dc)2

∫
D

(u(x+ eih)− u(x))2dx.

Putting (46), (47) and (48) and dividing by h2 we arrive at (41).
Lemma 4.1 provides an integral estimate for the difference quotient of the

derivatives. But unless we can also show that the right side in (41) is uniformly
bounded in h the Lemma would not be very useful. We therefore need the
following integral version of the mean value property for the derivatives.

Lemma 4.2. Assume that u ∈ W 1,2(D) and C ⊂ D is a compact set. Then
there exists a constant C depending only on the dimension such that for any
|h| ≤ dist(C, Dc)∫

C

∣∣∣∣u(x+ eih)− u(x)

h

∣∣∣∣2 dx ≤ C ∫
Σ

∣∣∣∣∂u(x)

∂xi

∣∣∣∣2 dx. (49)

Proof: We will use the following simple version of the Cauchy-Schwartz
inequality: Let f ∈ L2(Σ) and |Σ| denote the area of Σ then∣∣∣∣∫

Σ

|f(x)|dx
∣∣∣∣2 ≤ |Σ|1/2 ∫

D

|f(x)|2dx. (50)

From the fundamental Theorem of calculus25 we see that

u(x+ eih)− u(x)

h
=

1

h

∫ h

0

∂u(x+ sei)

∂xi
ds.

Thus ∫
C

∣∣∣∣u(x+ eih)− u(x)

h

∣∣∣∣2 dx =

∫
C

∣∣∣∣∣ 1h
∫ h

0

∂u(x+ sei)

∂xi
ds

∣∣∣∣∣
2

dx ≤ (51)

≤
∫
C

1

h

∫ h

0

∣∣∣∣∂u(x+ sei)

∂xi

∣∣∣∣2 dsdx, (52)

where we used (50), with Σ = (0, h), in the last inequality. We may continue to
estimate (52) by using the Fubini Theorem∫

C

1

h

∫ h

0

∣∣∣∣∂u(x+ sei)

∂xi

∣∣∣∣2 dsdx =
1

h

∫ h

0

∫
C

∣∣∣∣∂u(x+ sei)

∂xi

∣∣∣∣2 dxds ≤ (53)

≤ 1

h

∫ h

0

∫
D

∣∣∣∣∂u(x)

∂xi

∣∣∣∣2 dxds ≤ ∫
D

∣∣∣∣∂u(x)

∂xi

∣∣∣∣2 dx. (54)

25Here again we use that the fundamental theorem of calculus holds for Sobolev functions.
This is true in an a.e. sense - but we will simply assume it here.
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Putting (51), (52), (53) and (54) together gives the Lemma.
We continue to prove that boundedness of the integral of the difference

quotients implies weak differentiability.

Lemma 4.3. Let C ⊂ D be a compact set such that C̃δ = {x; dist(x, C) < δ} ⊂
D.

Furthermore assume that u(x) ∈ L2(D) and that there exists a constant C
such that ∫

C̃δ

∣∣∣∣u(x+ eih)− u(x)

h

∣∣∣∣2 dx ≤ C, (55)

for all |h| < δ.
Then the weak derivative ∂u

∂xi
exists in C and∫

C

∣∣∣∣∂u(x)

∂xi

∣∣∣∣2 dx ≤ C.
Proof: Notice that (55) just states that for any sequence hj → 0 the functions

u(x+eih)−u(x)
h are bounded in L2(C̃δ). Thus, by the weak compactness theorem

for L2−functions, Theorem 2.7, there exists a sub-sequence, still denoted hj ,
such that

u(x+ eihj)− u(x)

hj
⇀ gi(x) ∈ L2(C̃δ).

By Lemma 2.1 it follows that ‖gi‖L2(C̃δ) ≤ C.

We claim that gi(x) is the weak xi−derivative of u(x). To see this we
calculate, for any φ ∈ C1

c (D),

−
∫
C

∂φ(x)

∂xi
u(x)dx = lim

hj→0
−
∫
C

φ(x+ hjei)− φ(x)

hj
u(x)dx =

=

 Change of var.
x+ hjei → x
in φ(x+ hjei)

 = lim
hj→0

∫
x−eihj∈C

φ(x)
u(x)− u(x− eihj)

hj
dx ⇀

⇀

∫
C
φ(x)gi(x)dx.

This proves that gi(x) = ∂u(x)
dxi

.
We are now ready to formulate the statement of this section as a theorem.

Theorem 4.1. Let u(x) be a solution to the normalized obstacle problem. Then
u(x) has weak derivatives of second order on any compact subset C of D and
there exists a constant CC (depending on C) such that∫

C

∣∣D2u(x)
∣∣2 dx ≤ CC ∫

D

|∇u(x)|2dx.
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Proof: From (41) and (49) we see that∫
C̃δ

∣∣∣∣∇(u(x+ eih)− u(x))

h

∣∣∣∣2 dx ≤ C ∫
D

∣∣∣∣∂u(x)

∂xi

∣∣∣∣2 dx, (56)

where we have used the notation C̃δ = {x; dist(x, C) < δ} ⊂ D introduced in
Lemma 4.3 and chosen δ > 0 small enough so that C̃δ ⊂ D.

From Lemma 4.3 and (56) we can conclude that ∇u(x) is weakly differen-
tiable in xi and ∫

C

∣∣∣∣∇∂u(x)

∂xi

∣∣∣∣2 dx ≤ CC ∫
D

∣∣∣∣∂u(x)

∂xi

∣∣∣∣2 dx.
If we sum this over i = 1, 2, ..., n the theorem follows.

Exercises:

1. * [Difference Quotients and Regularity Theory.]

(a) Let u(x) be a minimizer of the Dirichlet energy
∫
D
|∇u(x)|2dx. Use

a difference quotient argument to show that u ∈ W 2,2(C) for any
compact set C ⊂ D.

(b) Let ui(x) = ∂u(x)
∂xi

and show that for any ψ ∈ C2
c (C)∫

C
∇φ(x) · ∇ui(x)dx = 0.

Conclude that ui is a minimizer to the Dirichlet energy in C.
(c) Show, by using induction that, u ∈W k,2(C) for any k ∈ N.

2. * Let g ∈W 1,2(D) and assume that u(x) minimizes∫
D

(
|∇u(x)|2 + 2u(x)g(x)

)
dx.

Show that u ∈W 2,2(D).

Remark: The same is true for g ∈ L2(D), can you prove it?**

3. Verify the change of variables in the proof of Lemma 4.3.

4. * Show that the function

u(x) =

{
x if x > 0
0 if x ≤ 0

is not a function in W 2,2(−1, 1).
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4.2 The Euler Lagrange Equations.

Knowing that solutions u(x) to the normalized obstacle problem has second
derivatives we are now in position to derive the Euler-Lagrange equations for
the obstacle problem. We aim to prove the following theorem.

Theorem 4.2. Assume D is a C1−domain and that u(x) minimizes∫
D

(
1

2
|∇u(x)|2 + u(x)

)
dx (57)

among all functions in the set

K =
{
u ∈W 1,2(D); u(x) ≥ 0 and u(x) = f(x) on ∂D

}
.

Then
∆u(x) = χ{u(x)>0} in D
u(x) ≥ 0 in D

u ∈W 2,2
loc (D),

where

χ{u(x)>0} =

{
1 if u(x) > 0
0 if u(x) < 0.

Proof: That u(x) ∈ W 2,2
loc (D) follows from Theorem 4.1. That u(x) ≥ 0

follows from the fact that u ∈ K. Therefore we only need to show that

∆u(x) = χ{u(x)>0}. (58)

Since u(x) is a minimizer it satisfies the variational inequality∫
D

(∇φ(x) · ∇u(x) + φ(x)) dx ≥ 0 (59)

for all φ(x) ≥ 0 such that φ(x) ∈W 1,2
0 (D) where we used the notation

W 1,2
0 (D) = {v ∈W 1,2(D); v(x) = 0 on ∂D in the trace sense.}

Choosing φ with compact support in D we may, since u ∈ W 2,2, integrate
by parts in (59) and derive

0 ≤
∫
D

(−φ(x)∆u(x) + φ(x)) dx =

∫
D

φ(x) (1−∆u(x)) dx.

Since φ(x) is arbitrary this already implies that 0 ≤ ∆u(x) ≤ 1. But we
claim something stronger, that ∆u(x) = χ{u(x)>0}. In order to derive this we
need to make a more refined choice of φ(x). To that end we choose φ(x) =
ψ(x) max(u(x)− ε, 0) for some ψ ∈ C1

c (D) satisfying 0 ≤ ψ(x) ≤ 1. Notice that,
with this choice of φ it follows that u(x) + tφ(x) ∈ K for all t ∈ (−ε, ε). We can
conclude that

0 =

∫
D

φ(x) (1−∆u(x)) dx =

∫
D

ψ(x) max(u(x)− ε, 0)(1−∆u(x))dx. (60)
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We will use (60) and a contradiction argument to show that ∆u(x) = 1 in
the set {u(x) ≥ 2ε}. Remember that 0 ≤ 1 − ∆u(x) ≤ 1 so if ∆u(x) 6= 1
somewhere in some set Σ ⊂ {u(x) ≥ 2ε} then 1−∆u(x) < 0 in that set. If we
choose ψ(x) ≥ 0 to be a function that is strictly positive in (part of) Σ then
(60) becomes

0 =

∫
D

φ(x) (1−∆u(x)) dx =

∫
D

ψ(x) max(u(x)− ε, 0)︸ ︷︷ ︸
≥0

(1−∆u(x))︸ ︷︷ ︸
≤0

dx ≤

≤
∫

Σ

ψ(x) max(u(x)− ε, 0)︸ ︷︷ ︸
≥ε

(1−∆u(x))︸ ︷︷ ︸
<0

dx,

this is only possible if Σ has measure zero. We can conclude that ∆u(x) = 1 in
{u > 2ε} for any ε > 0. Sending ε→ 0 we can conclude that ∆u(x) = 1 in the
set {u(x) > 0}.

When u(x) = 0 then we naturally have ∆u(x) = 0 at almost every point.26

Therefore

∆u(x) =

{
1 if u(x) > 0
0 if u(x) < 0.

which is exactly what we wanted to prove.

Remark: There is a qurious statement at the end of the proof where we
state that ∆u(x) = 0 “at almost every point” of {u(x) = 0}. The reason for
this statement is that, as we will see later, the function

u(x) =
1

2
(xn)2

+ =

{
1
2x

2
n if xn > 0

0 if xn < 0.

satisfies ∆u(x) = χ{u(x)>0}. But on the line xn = 0 we have u(x) = 0 but
u(x) is not even twice differentiable at xn = 0 so ∆u(x) is not even defined on
{xn = 0}. Similarly, u(x) = 1

2n |x|
2 satisfies ∆u(x) = 1 in Rn so ∆u(0) 6= 0

even though u(0) = 0. The almost every means for every x except a set that
has zero area. In the above examples the line {xn = 0} and point {x = 0} both
have finite area and are therefore allowed exceptions. As we already remarked,
the theory that we really need in order to make this precise goes beyond this
course.

Theorem 4.2 provides us with the Euler-Lagrange equations for solutions to
the obstacle problem. In order to continue our investigation of the solutions
to the Obstacle problem we would first want to establish that the solutions are
continuously differentiable since it is more practical to work with continuously

26This result actually needs to be proved (a proof can be found in pretty much any book
on Sobolev spaces). But to prove this we need to understand what almost every point means.
Since we do not want to use to much measure theory in this course we will accept this final
statement on faith. But you must admit - it makes you a little curious to see how this is
proved.
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differentiable functions than with the rather abstract space W 2,2(D). We would
also like to say something about the free boundary Γ = ∂{u > 0}.

f
Gamma (Blue)

Figure 7: The graph of a typical solution to the normalized obstacle prob-
lem in the ball. The graph takes the values f(x) on the boundary. The solution
satisfies ∆u(x) = 1 in part of D and u(x) = 0 in the rest of D. In between we
have the free boundary Γ (in blue).

Exercises:

1. * Show that the (normalized) obstacle problem is non-linear. That is prove
that if u(x) and v(x) are solutions to the normalized obstacle problem in
D. Then it is, in general, not true that u(x) + v(x) is a solution to the
normalized obstacle problem.

2. * Show that for any α > 0 the function u(x) = |x|−α belongs to W 2,2(B1)
if the space dimension n is large enough. Given an α how large must n
be?

5 Continuity of the Solution and its Derivatives.

5.1 Heuristics about the free-boundary.

Theorem 4.2 provides the Euler-Lagrange equations for the normalized obstacle
problem. But it does not provide any real information on the free boundary Γu =
∂Ωu = ∂{x; u(x) > 0}. In the next section we will show that the solution to
the obstacle problem is a continuously differentiable function which implies that
both u(x) = 0 and |∇u(x)| = 0 on Γu - this is actually rather strong information
on the free boundary itself. In this section we will provide some discussion of
the free boundary and try to argue that the Euler-Lagrange equations

∆u(x) = χ{u(x)>0} in D
u(x) ≥ 0 in D

u ∈W 2,2
loc (D)

(61)
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actually contains some important information about the free boundary.
In applications the free boundary Γ = ∂{v > 0} is often just as important

to understand (and calculate) as the solution itself. In particular, the free
boundary often describes the boundary of some set of particular importance -
such as the region of ice in a melting problem.

Obstacle Problem 

From Above.

v>0
v=0

Figure 8: To the left is the graph of a solution, v(x), to the normalized
obstacle problem. In applied problems we are often just as interested in the
free boundary Γ, which can be the interface between ice and water in a melting
problem. The right picture shows the domain from above with the free boundary
marked out. One of the most important questions in free boundary theory is:
“Can we describe the free boundary Γ.”

To understand how the free boundary is determined by the Euler-Lagrange
equations we we need to understand that The Euler-Lagrange equations (61) is
not the same as the solution to

∆v(x) = 1 in the set {v(x) > 0}
∆v(x) = 0 in the set {v(x) = 0}.

The information that u ∈W 2,2(D) provides extra information that specifies the
solution.

To see this we consider the one dimensional example.

Example: Consider the function

f(x) =

{
1
2 (x− 1)2 + (1− x) for 0 < x ≤ 1
0 for 1 < x < 2.

Then
∆f(x) = f ′′(x) = 1 in the set {v(x) > 0}
∆f(x) = f ′′(x) = 0 in the set {v(x) = 0}, (62)

but f /∈W 2,2([0, 2]).
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f(x)

x x

f ’(x)

x x
0 0 Then

Figure 9: The graph of the function f(x) and its derivative f ′(x).

In particular, for small h > 0∫ 3/2

1/2

∣∣∣∣f ′(x+ h)− f ′(x)

h

∣∣∣∣2 ≈ ∫ 1

1−h

∣∣∣∣ 1h
∣∣∣∣2 dx =

1

h
→∞, (63)

since f ′(x) =

{
x− 2 if x < 1
0 if x > 1.

It follows that the difference quotients

f ′(x+h)−f ′(x)
h does not converge in L2. The function f(x) is therefore not a

solution to the obstacle problem even though it satisfies the equations (62).

From the above example we see that it is not really the following equations
that are important:

∆u(x) =

{
1 in the set {u(x) > 0}
0 in the set {u(x) = 0}.

But the equation
∆u(x) = χ{u(x)>0},

together with the fact that u ∈W 2,2(D).

The minimization problem “chooses” the free boundary Γ = ∂{u > 0} in
such way that u ∈ W 2,2

loc (D). From the example above it seems reasonable to
conjecture that what determines the position of the free boundary Γ is that the
solution should satisfy two boundary conditions, u(x) = 0 and |∇u(x)| = 0 on
Γ. The aim of the next section is to prove this.

Exercises:

1. * Find the solution to the following normalized obstacle problem:

minimize

∫ 2

−2

(
1

2

(
∂u(x)

∂x

)2

+ u(x)

)
dx
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in the set

K =
{
u(x) ∈W 1,2(−2, 2); u(−2) = 0, u(2) = 2 and u(x) ≥ 0

}
.

Hint: Since this is a one dimensional problem you can calculate it explic-
itly. Assume that u > 0 in (γ, 2] and use the equation ∆u(x) = 1 in (γ, 2)
to calculate u(x). For which γ is u ≥ 0 satisfies? What is the energy of
the function u(x) for a given γ?

2. Check the calculation (63).

5.2 C1,1−estimates for the solution.

In this section we aim to prove that the solution satisfies two boundary condi-
tions on the free boundary Γ.

Remember that the Dirichlet problem:

∆u(x) = h(x) in D
u(x) = f(x) on ∂D

has a unique solution.27 This means that the boundary data f(x) and the
domain D determines the value of ∇u(x) for every x ∈ ∂D.

For the obstacle problem things are different. The set Ω = {x ∈ D; u(x) >
0} is part of the solution and we might ask what is the criteria that determined
the set Ω; or equivalently the free boundary Γ = ∂Ω. In this section we will
prove that the set Ω is the unique set such that:

1. Ω ⊂ D,

2. spt(f) ⊂ Ω and

3. if u(x) solves the Dirichlet problem

∆u(x) = 1 in Ω
u(x) = f(x) on ∂Ω ∩ ∂D
u(x) = 0 on ∂Ω \ ∂D

then |∇u| = 0 on ∂Ω \ ∂D and u ≥ 0 in Ω.

This means that Ω is a very special set - and an arbitrarily chosen set Σ ⊂ D
will not satisfy 3.

We begin our proof with a Lemma about solutions to the Poisson equation.

27As a matter of fact, we need some mild extra assumption on the solution in order to
proclaim uniqueness. For instance, there exists only one solution u ∈ C2(D) that is continuous
in D.
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Lemma 5.1. Let h(x) be a bounded and integrable function, |h(x)| ≤ M , with
support in a bounded set D ⊂ Rn, n ≥ 3, and define

u(x) = − 1

(n− 2)ωn

∫
Rn

h(z)

|x− z|n−2
dz, (64)

where ωn is the area of the unit sphere in Rn
Then

sup
x∈Rn

|u(x)| ≤ M

2(n− 2)
diam(D)2 (65)

and there exists constant Cn, that only depend on the dimension, such that

|u(x)− u(y)| ≤ Cndiam(D)M |x− y| (66)

for any x, y ∈ Rn. Here diam(D) is the diameter of the smallest ball that
contains D.

Remark: Remember that the function u(x) defined as in (64) satisfies
∆u(x) = h(x). A proof of this, for h(x) ∈ C2

c (Rn) can be found in Evans.
The result is also true for bounded and integrable h(x). It is also true for more
general integrable functions h(x).

In the Lemma we assume that n ≥ 3. A similar result is also true for n = 2.
But when n = 2 the Newtonian kernel is logarithmic and thus not bounded at
infinity. This leads to some small technical differences in the statement of the
theorem. For the sake of brevity we will not include the R2 case in these notes.

Proof: We begin by proving (65). Pick an arbitrary point x ∈ Rn. Then

|u(x)| ≤ 1

(n− 2)ωn

∣∣∣∣∫
Rn

h(z)

|x− z|n−2
dz

∣∣∣∣ ≤
≤ M

(n− 2)ωn

∣∣∣∣∣
∫
Bdiam(D)(x)

1

|x− z|n−2
dz

∣∣∣∣∣ ≤
≤ M

(n− 2)ωn

∣∣∣∣∣
∫
Bdiam(D)(0)

1

|z|n−2
dz

∣∣∣∣∣ , (67)

where we translated the coordinates x− z 7→ z in the last step.
If we change to polar coordinates in (67) we arrive at

|u(x)| ≤ M

(n− 2)

∫ diam(D)

0

rdr =
M

2(n− 2)
diam(D)2

Since x was arbitrary this proves (65).

Next we prove (66). To that end we pick two points x, y ∈ Rn. If |x− y| ≥
diam(D) then (65) implies that

|u(x)− u(y)| ≤ |u(x)|+ |u(y)| ≤ M

(n− 2)
diam(D)2 ≤ M

(n− 2)
diam(D)|x− y|.
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It is therefore enough to prove (66) for |x − y| < diam(D). For the rest of
the proof we define r = |x − y| and assume, without loss of generality, that
r < diam(D).

From the defining formula of u we can derive

|u(x)− u(y)| ≤ 1

(n− 2)ωn

∣∣∣∣∫
Rn

(
h(z)

|x− z|n−2
− h(z)

|y − z|n−2

)
dz

∣∣∣∣ ≤
≤ 1

(n− 2)ωn

∣∣∣∣∣
∫
Rn\B3r((x+y)/2)

(
h(z)

|x− z|n−2
− h(z)

|y − z|n−2

)
dz

∣∣∣∣∣+
+

1

(n− 2)ωn

∣∣∣∣∣
∫
B3r((x+y)/2)

h(z)

|x− z|n−2
dz

∣∣∣∣∣+
+

1

(n− 2)ωn

∣∣∣∣∣
∫
B3r((x+y)/2)

h(z)

|y − z|n−2
dz

∣∣∣∣∣ = I1 + I2 + I3. (68)

We need to estimate I1, I2 and I3 separately.
We begin to estimate

I2 ≤
M

(n− 2)ωn

∫
B3r((x+y)/2)

1

|x− z|n−2
dz ≤

≤ M

(n− 2)ωn

∫
B4r(x)

1

|x− z|n−2
dz, (69)

since the integrand is positive and B3r((x+ y)/2) ⊂ B4r(x). Changing to polar
coordinates in (69) gives

I2 ≤
8M

(n− 2)
r2.

Interchanging the roles of x and y we may estimate I3 in exactly the same
way as we estimated I2:

I3 ≤
8M

(n− 2)
r2.

It remains to estimate I1. In order to do that we begin with a simple
geometric estimate. By a translation of the coordinate system we may assume
that (x+ y)/2 = 0. If z ∈ Rn \B3r((x+ y)/2) = Rn \Br(0) then, for t ∈ [0, 1],

|tx+ (1− t)y − z| ≥ |z| − |tx+ (1− t)y| ≥ |z| − r > |z|
2
, (70)

since |z| ≥ 3r and |tx+ (1− t)y| = |(2t− 1)x| < r if x+ y = 0 and |x− y| = r.
Using the fundamental theorem of calculus we can also estimate∣∣∣∣ 1

|x− z|n−2
− 1

|y − z|n−2

∣∣∣∣ =

∣∣∣∣∫ 1

0

d

dt

1

|tx+ (1− t)y − z|n−2
dt

∣∣∣∣ =
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= (n− 2)

∣∣∣∣∫ 1

0

(x− y) · (tx+ (1− t)y − z)
|tx+ (1− t)y − z|n

dt

∣∣∣∣ ≤ (71)

≤ (n− 2)|x− y|
∫ 1

0

1

|tx+ (1− t)y − z|n−1
dt ≤

≤ 2n−1(n− 2)|x− y|
|z|n−1

,

where we used (70) in the last inequality.
Using (71) we may estimate

I1 =
1

(n− 2)ωn

∣∣∣∣∣
∫
Rn\B3r(0)

(
h(z)

|x− z|n−2
− h(z)

|y − z|n−2

)
dz

∣∣∣∣∣ ≤
≤ M

(n− 2)ωn

∣∣∣∣∣
∫

spt(h)\B3r(0)

(
1

|x− z|n−2
− 1

|y − z|n−2

)
dz

∣∣∣∣∣ ≤
≤ 2n−1M |x− y|

ωn

∫
spt(h)\B3r(0)

1

|z|n−1
dz. (72)

The last integral in (72) can be estimated by noticing that28∫
spt(h)\B3r(0)

1

|z|n−1
dz ≤

∫
Bdiam(D)

1

|z|n−1
dz =

= ωn

∫ diam(D)

0

ds = ωndiam(D),

where we changed to polar coordinates in the final step. Using this in (72) we
can conclude that

I1 ≤ 2n−1M |x− y|diam(D).

Inserting the estimates of I1, I2 and I3 in (68) we can conclude that

|u(x)− u(y)| ≤ 16M

(n− 2)
|x− y|2 + 2n−1M |x− y|diam(D) ≤

≤
(

16

(n− 2)
+ 2n−1

)
diam(D)M |x− y|. (73)

Noticing that the quantity in the brackets in (73) only depend on the dimension
we may call that quantity cn. This proves (66)

28The integral increases if spt(h) is centered at the origin where 1/|z|n−1 is large. The
integral therefore achieves its maximum if spt(h) = Bdiam(D)(0).
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Lemma 5.2. Assume that h(x) is a bounded, |h(x)| ≤M , and integrable func-
tion in B3(0) and that

∆u = h(x) in B3(0)
supB3(0) u(x) ≤ N.

Then

|u(x)− u(y)| ≤ Cn (M +N) |x− y| for all x, y ∈ B2(0).

Proof: If we define

v(x) = − 1

(n− 2)ωn

∫
B3(0)

h(z)

|x− z|n−2
dz,

then, by Lemma 5.1,
|v(x)− v(y)| ≤ CnM |x− y|. (74)

And, since v(x) is defined by means of a convolution by the Newtonian kernel,
∆v(x) = h(x).

Also the function w(x) = u(x)− u(y) satisfies

∆w(x) = ∆u(x)−∆v(x) = h(x)− h(x) = 0

and

sup
B3(x)

|w(x)| ≤ sup
B3(x)

|u(x)|+ sup
B3(x)

|v(x)| ≤ N +
9M

2(n− 2)
,

where we used Lemma (5.1) in the last inequality.
Since w(x) is harmonic we may use the following estimate29 of the derivatives

of w(x)

|∇w(x)| ≤ C‖w‖L1(B1(x)) ≤ Cn(N +M) for any x ∈ B2(0). (75)

From (75) and the mean value property for the derivative we can conclude that
for any x, y ∈ B2(0) there exists a ξ between x and y such that.

|w(x)− w(y)| ≤ |∇w(ξ)||x− y| ≤ Cn(N +M)|x− y| (76)

Finally we may use (74), (76) and the triangle inequality to conclude that
for any x, y ∈ B2(0)

|u(x)− u(y)| = |(w(x)− w(y)) + (v(x)− v(y))| ≤

≤ |w(x)− w(y)|+ |v(x)− v(y)| ≤ Cn (M +N) |x− y|,

where Cn may be different from the constant Cn in (76).

29See for instance Theorem 7 in section 2.2 in Evans
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Corollary 5.1. Let hk(x) be a sequence of uniformly bounded, |hk(x)| ≤ M ,
and integrable functions and uk(x) be a sequence of functions that satisfies

∆uk = hk(x) in B3(0)
supB3(0) u

k(x) ≤ N.

Then there exists a function u0 and a subsequence ukj such that ukj → u0

uniformly in B2(0)

Proof: The sequence uk is equicontinuous by Lemma 5.2. By the Arzela-
Ascoli Theorem we may extract a uniformly converging sub-sequence.

Corollary 5.2. Let u(x) be a solution to the normalized obstacle problem in D.
Then the set Ω = {x ∈ D; u(x) > 0} is open.

Proof: This follows from the continuity of the solution to ∆u(x) = χ{u>0}.

Lemma 5.3. [Comparison Principle.] Let f(x) and g(x) be bounded func-
tions in a bounded domain D. Furthermore assume that ∆u(x) = f(x) and
∆v(x) = g(x) in D.30 Then if f(x) ≥ g(x) in D and u(x) ≤ v(x) on ∂D it
follows that

u(x) ≤ v(x) in D

Proof:31 It is enough to show that w(x) = u(x)− v(x) ≤ 0 in D. That is we
need to show that any function w(x) that satisfies

∆w(x) = f(x)− g(x) ≥ 0 in D
w(x) = u(x)− v(x) ≤ 0 on ∂D

(77)

will be non-positive.
Notice that w is the minimizer of∫

D

(
1

2
|∇w(x)|2 + w(x)(f(x)− g(x))

)
dx (78)

in K = {w ∈ W 1,2(D); w = u(x) − v(x) on ∂D} since the Euler-Lagrange
equations of (78) is ∆w(x) = f(x)− g(x) and the solution is unique.

By the function w̃(x) = min(w(x), 0) ∈ K and clearly∫
D

(
1

2
|∇w̃(x)|2 + w̃(x)(f(x)− g(x))

)
dx = (79)

=

∫
D∩{w≤0}

(
1

2
|∇w̃(x)|2 + w̃(x)(f(x)− g(x))

)
dx = (80)

=

∫
D∩{w≤0}

(
1

2
|∇w(x)|2 + w(x)(f(x)− g(x))

)
dx ≤ (81)

30Assume for instance that u, v ∈W 2,2(D) in order to make sense of these equations.
31The proof is more or less the same as in a previous exercise.
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≤
∫
D

(
1

2
|∇w(x)|2 + w(x)(f(x)− g(x))

)
dx, (82)

with equality only if w(x) ≤ 0 in D. But since w is a minimizer we must have
equality in (79)-(82). This finishes the proof.

Theorem 5.1. Let u(x) be a solution to the normalized obstacle problem in the
domain D. Assume furthermore that for some s > 0

x0 ∈ Γ ∩ {x ∈ D; dist(x, ∂D) > s}.

Then there exists a constant C, depending on the dimension n and on N ,
such that

sup
x∈Br(x0)

u(x) ≤ Cr2 for every r ≤ s

2
,

where the constant C depend only on the dimension.

Remark: Notice that the constant C does not depend on the solution.
Proof: We will prove the Theorem in several steps.

Step 1: Reduction to the statement that it is enough to prove that: If u(x)
is a solution to the normalized obstacle problem in B2(0) such that u(0) = 0
then supB1(0) u ≤ C for some C depending only on the dimension.

Proof of step 1: Let u(x) and x0 is as in the Theorem. Then the function

ur(x) =
u(rx+ x0)

r2

will satisfy ur ∈W 2,2(B2(0)) and

∆ur(x) = ∆

(
u(rx+ x0)

r2

)
= ∆u(y)by=rx+x0 =

=

{
1 if u(rx+ x0) > 0⇒ ur(x) > 0
0 if u(rx+ x0) = 0⇒ ur(x) = 0,

}
= χ{ur>0}

in the set x ∈ {x; rx+ x0 ∈ D}. This is a convoluted way of trying to indicate
how the chain rule implies that

∆ur(x) = χ{ur(x)>0} in {x; rx+ x0 ∈ D}.

Notice that if Bs(x
0) ⊂ D then B2(0) ⊂ {x; rx + x0 ∈ D}. Thus ur solves

the normalized obstacle problem in B2(0) and ur(0).
Thus if any solution v(x) to the normalized obstacle problem in B2(0) that

satisfies v(0) = 0 satisfies supB1(0) v(x) ≤ C then this applies to ur. We may
conclude that

u(rx+ x0)

r2
= ur(x) ≤ C for every x ∈ B1(0).
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But this implies that
sup

x∈Br(x0)

u(x) ≤ C.

Step 1 is therefore proved.

Step 2: If u(x) is a solution to the normalized obstacle problem in B2(0)
and u(0) = 0 then ther exists a constant cn such that if y ∈ ∂B1(0) then

u(x) ≥ cnu(y)− 1

2n
for all x ∈ B1/2(0) ∩ ∂B1(0).

Proof of Step 2: Since ∆u(x) ≤ 1 it follows from the comparison principle
that u(x) ≤ v(x) where v(x) is defined by

∆v(x) = 0 in B1(y)
v(x) = u(x) on ∂B1(y).

(83)

If we define w(x) = v(x)− 1
2n + 1

2n |x− y|
2 then

∆w(x) = 1 ≥ ∆u(x) in B1(y)
w(x) = u(x) on ∂B1(y).

We may conclude that

v(x)− 1

2n
≤ w(x) ≤ u(x) ≤ v(x) in B1(y). (84)

Since v(x) ≥ u(x) ≥ 0 and v(y) ≥ u(y) we may conclude from the Harnack
inequality that, for some constant Cn only depending on the dimension,

v(y) ≤ sup
B1/2

v(x) ≤ Cn inf
B1/2(y)

v(x)⇒ inf
B1/2(y)

v(x) ≥ v(y)

Cn
≥ u(y)

Cn
, (85)

where we also used that v(y) ≥ u(y) in the last inequality.
But from (84) and (85) we can conclude that

u(y)

Cn
≤ inf
B1/2(y)

v(x) ≤ inf
B1/2(y)

u(x) +
1

2n
⇒ u(y)

Cn
− 1

2n
≤ inf
B1/2(y)

u(x).

This proves step 2 with cn = 1
Cn

.

Step 3: Assume that u(x) is a solution to a normalized obstacle problem in
B2(0) such that u(0) = 0 then supB1(0) u(x) ≤ Cn for some universal constant
Cn depending only on the dimension.

Proof of Step 3. If we let h(x) be the function defined by

∆v(x) = 0 in B1(0)
v(x) = u(x) on ∂B1(0).

(86)
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Then we may argue as in step 2 to conclude that that v(x)− 1
2n ≤ u(x) ≤ v(x).

Since u(0) = 0 we can conclude that

v(0) ≤ 1

2n
. (87)

By the mean-value property for harmonic functions we can conclude from
(87) that

1

2n
≥ 1

ωn

∫
∂B1(0)

v(x)dx =
1

ωn

∫
∂B1(0)

u(x)dx, (88)

since v(x) = u(x) on ∂B1(0).
If u(y) = supx∈∂B1(0) u(x) then we may estimate the right side in (88) ac-

cording to

1

2n
≥ 1

ωn

∫
∂B1(0)

u(x)dx ≥ 1

ωn

∫
∂B1(0)∩B1/2(y)

u(x)dx ≥ (89)

≥ 1

ωn

∫
∂B1(0)∩B1/2(y)

inf
z∈B1/2(y)

u(z)dx ≥ K

ωn

(
cnu(y)− 1

2n

)
,

where K =
∫
∂B1(0)∩B1/2(y)

dA and we used that u ≥ 0 in the second inequality

and Step 2 as well as the fact that B1/2(y)∩∂B1(0) consists of a fixed proportion
of ∂B1(0) in the last inequality.

Rearranging the terms in (89) we arrive at

u(y) ≤ K + 1

2Kcn
,

where the right side depend only on the dimension. This finishes the proof.

Corollary 5.3. If u is a solution to the normalized obstacle problem in a domain
D. Then |∇u(x)| = 0 for any point x ∈ Γ.

Proof: Let x0 ∈ Γ ∩D. We need to show that

lim
x→x0

u(x)− u(x0)

|x− x0|
= 0.

But if we use the notation r = r(x) = |x − x0| then it directly follows from
Theorem 5.1 and the assumption x0 ∈ Γ (which implies that u(x0) = 0 since u
is continuous by Lemma 5.2) that∣∣∣∣u(x)− u(x0)

|x− x0|

∣∣∣∣ ≤ Cr2

r
= Cr → 0 as r → 0.

The Corollary follows.
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Theorem 5.2. Let u(x) be a solution to the normalized obstacle problem in a
domain D. Then there exists a constant Cn depending only on the dimension
such that if u(y) = 0 and Bs/4(y) ⊂ D then

|D2u(x)| ≤ Cn for every x ∈ Bs/8(y) ∩ {u > 0}.

Furthermore, u(x) is analytic in Ω = {u(x) > 0}.

Proof: Let y ∈ D be any point such that u(y) = 0. Also let s = dist(y, ∂D)
so that Bs(y) ⊂ D and z ∈ Bs/8(y) ∩ {u > 0}.

Next we consider the largest ball Br(z) ⊂ {u > 0} and pick any point
q ∈ ∂Br(z) ∩ ∂{u > 0}. Notice that since z ∈ Bs/8(y) and u(y) = 0 it follows
that r ≤ s/8.

We also claim that B4r(q) ⊂ D. By the triangle inequality |y − q| ≤ |y −
z|+ |z − q| < s/8 + r < s/2 which implies that B4r(q) ⊂ Bs/2(q) ⊂ Bs(y) ⊂ D.

y y

y y

B(y) B(y)

B(y)
B(y)

s s

s
s

z z

z z

q q

B(z)

B(z) B(z)

r

r r

B(q)
4r

Figure 10: The above figure (not drawn to scale) tries to indicate how
Br(z) and B4r(q) is choosen. We have the point y such that Bs(y) ⊂ D shown
in the first figure. The ball Br(z) (in red) is then choosen to be the largest ball
contained in Ω = {u > 0}. That means that ∂Br(z) touches the free boundary
(the green curve) in some point q as shown in the third picture. We then choose
the ball B4r(q) (in blue) as in the last picture. The purpose of this construction
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is that since B4r(q) ⊂ D we know, Theorem 5.1, that u(x) is uniformly bounded
in Br(z) ⊂ B4r(q).

By Theorem 5.1 it follows that

sup
x∈B2r(q)

u(x) ≤ 4Cr2.

This in particular implies that

sup
x∈Br(z)

u(x) ≤ sup
x∈B2r(q)

u(x) ≤ 4Cr2

since Br(z) ⊂ B2r(q).
This implies that

∆u(x) = 1 in Br(z)
u(x) ≤ 4Cr2 in Br(z)

}
⇒
{

∆
(
u(x)− 1

2n |x− z|
2
)

= 0 in Br(z)∣∣u(x)− 1
2n |x− z|

2
∣∣ ≤ (4C + 1

2n

)
r2 in Br(z).

Using standard estimates on derivatives for harmonic functions32 we can con-
clude that, at the point x = z,∣∣∣∣D2u(x)− 1

2n
|x− z|2

∣∣∣∣ ≤ C2

(
4C +

1

2n

)
.

But this clearly implies that

|D2u(z)| ≤ Cn,

where Cn is a constant that only depend on the dimension.
That u follows from the fact that u − 1

2n |x − z|2 is harmonic in a small
neighborhood around z and that harmonic functions are analytic.

Exercises:

1. * Let u(x) be a minimizer of the normalized obstacle problem in B1(0) ⊂
R3 with constant boundary values u(x) = t on ∂B1(0). Calculate u(x) and
show that the free boundary Γ is given by a sphere of radius s. Determine
the relation between t and s.

Hint: If we write u(x) = u(r) where r = |x| then we get a one dimensional
problem with the following conditions u(1) = t, u(s) = |∇u(s)| = 0.
Since u(r) − 1

6r
2 is harmonic in {u(r) > 0} we should be able to write

u(r)− 1
6r

2 = c
r + d for two constants c and d. Since also s is unknown we

have three unknown and three boundary conditions to satisfy.

2. Verify all the calculations in the proof of Lemma 5.1.

32|D2h(z)| ≤ C2
rn+2 ‖h‖L1(Br(z))

≤ C2
r2
‖h‖L∞(Br(z)) see Evans Theorem 7 chapter 2.2.
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3. ** Let u(x) be a solution to the normalized obstacle problem in a con-
nected domain D. Show that for any set C such that dist(C, ∂D) ≥ δ > 0
there exists a constant C such that if u(x) ≥ C for any point x ∈ C then
Γ ∩ C = ∅.

4. ** Let u(x) be a solution to the normalized obstacle problem in D. Show

that if x0 ∈ Γ then supx∈Br(x0) u(x) ≥ r2

2n .

Hint: Let y be a point arbitrarily close to x0 such that u(y) > 0. Argue
by contradiction and assume that u(y)− 1

2n |x− y|
2 is strictly negative on

∂Br(y). What equation does u(y)− 1
2n |x− y|

2 solve in Ω ∩Br(y)? What
are the boundary values of u(y)− 1

2n |x− y|
2 on ∂(Ω ∩Br(y))?


