
Declarative Data Processing With Java
in Apache Flink

Vasia Kalavri- kalavri@kth.se
PhD student @KTH
Apache Flink PMC

mailto:kalavri@kth.se


Overview

● Introduction to Apache Flink
● The DataSet API
● Runtime Execution
● Data Exchange
● Memory Management

2



Apache Flink
introduction



What is Apache Flink?

● Distributed data processing on a dataflow streaming 
processing engine

● Java, Scala & Python APIs, SQL-like DSL (Table API)
● Batch and Streaming Analytics
● Runs locally, on your cluster, on YARN
● Performs well even when memory runs out

4



What can you do with Flink?

● Text processing
● Information retrieval
● Web search
● Graph processing
● Machine learning
● Social network analysis
● Large-scale relational queries
● Business intelligence
● ...

5



Flink in the Analytics Ecosystem

66

MapReduce

Hive

Flink

Spark Storm

Yarn Mesos

HDFS

Mahout

Cascading

Tez

Pig

Data processing 
engines

App and resource 
management

Applications

Storage, streams KafkaHBase

Crunch

…

Giraph



P
yt

ho
n

G
el

ly

Ta
bl

e

Fl
in

k 
M

L

S
A

M
O

A

Batch Optimizer

DataSet (Java/Scala) DataStream (Java/Scala)Hadoop 
M/R

Flink Runtime

Local Remote Yarn Tez Embedded
D

at
af

lo
w

Streaming Optimizer

7

The Flink Stack



● map, flatMap
● filter
● reduce, reduceGroup
● join
● coGroup
● aggregate

Available Transformations

● cross
● project
● distinct
● union
● iterate
● iterateDelta
● ...

8



The DataSet API
declarative data processing with Java



Declarative Programming

Express the logic of computation, without describing the control flow.

● Describe what we want the result to be and let the system decide how to 
produce it

● SQL, functional programming languages, logic programming languages, 
HTML

● Shorter programs, easier to follow program logic, let the system deal with 
optimization

10



Declarative Data Processing

● Users of data processing tools are not necessarily programmers
● Focus on what you compute, not how you compute it

Foreach Person p in A
  if p.age > 18
  add p to B
return B

B = A.filter(“age” > 18)

vs.

11



Operators and Data Flows
● Operators represent common 

data analysis tasks
● They can form advanced 

data-flow graphs, including 
loops

● A Flink program is translated 
into a data-flow graph

● API constructs are mapped to 
runtime operators

12



The Map Operator

● Transforms each record 
individually. 

● The operation may return 
zero, one, or many records.

13



The Reduce Operator

● Groups the records on one 
or more fields and 
transforms each group. 

● Aggregations that combine 
the records in the group 
into a single record.

14



The CoGroup Operator

● Two-dimensional variant of 
the reduce operation. 
Groups each input on one 
or more fields and then 
joins the groups. 

● The transformation 
function is called per pair of 
groups.

15



The Join Operator

● Joins two data sets on one 
or more fields. 

● The transformation 
function gets each pair of 
joining records.

16



The Cross Operator

● Builds the cartesian 
product (cross product) of 
two inputs. 

● The transformation 
function gets all pairs of 
records in the product.

17



Construct the dataflow graph in a Flink program

● Each program has an input operator (source) and an 
output operator (sink)

● Each operator has 
○ one (map, reduce) or two input operators (join, cogroup, cross)
○ one output operator

● Connect the operators and return the resulting plan

18



public Plan getPlan(String... args) {
String dataInput = args[1];

String output    = args[2];

FileDataSource source = new FileDataSource(new TextInputFormat(), dataInput);

MapOperator mapper = MapOperator.builder(new TokenizeLine())
.input(source)
.build();

ReduceOperator reducer = ReduceOperator.builder(Words.class, String.class, 0)
.input(mapper)
.build();

FileDataSink out = new FileDataSink(new CsvOutputFormat(), output, reducer);
CsvOutputFormat.configureRecordFormat(out);

Plan plan = new Plan(out, "WordCount Example");
plan.setDefaultParallelism(numSubTasks);
return plan;

}

19



public Plan getPlan(String... args) {
String dataInput = args[1];

String output    = args[2];

FileDataSource source = new FileDataSource(new TextInputFormat(), dataInput);

MapOperator mapper = MapOperator.builder(new TokenizeLine())
.input(source)
.build();

ReduceOperator reducer = ReduceOperator.builder(Words.class, String.class, 0)
.input(mapper)
.build();

FileDataSink out = new FileDataSink(new CsvOutputFormat(), output, reducer);
CsvOutputFormat.configureRecordFormat(out);

Plan plan = new Plan(out, "WordCount Example");
plan.setDefaultParallelism(numSubTasks);
return plan;

}

20



Operator Abstraction

● Not the right one for a declarative API
● Focuses on how the dataflow graph is constructed
● Distracts the user from the program logic
● Hard to follow, long programs

Instead, we need an abstraction that describes the results

21



Think of it as a collection of data elements that can be 
produced/recovered in several ways:

… like a Java collection
… like an RDD 
… perhaps it is never fully materialized (because the program does not 
need it to)
… implicitly updated in an iteration

→ this should be transparent to the user
22

DataSet Abstraction



Input First SecondX Y

Operator X Operator Y

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<String> input = env.readTextFile(input);

DataSet<String> first = input.filter (str -> str.contains(“Apache Flink“));
DataSet<String> second = first.filter (str -> str.length() > 40);

second.print()
env.execute();

23

Series of Transformations



DataSet<String> text = env.readTextFile(input);
DataSet<Tuple2<String, Integer>> result = text
         .flatMap(new Tokenizer())
         .groupBy(0)
         .sum(1);

Declarative Word Count

val input = env.readTextFile(input);
val words = input flatMap { line => line.split("\\W+")}
                  map { word => (word, 1)}
val counts = words groupBy(0) sum(1)

Java

Scala

24



Runtime Execution
What happens when you submit a Flink program?

25



DataSet<String> text = env.readTextFile(input);

DataSet<Tuple2<String, Integer>> result = text
         .flatMap((str, out) -> {
              for (String token : value.split("\\W")) {
                   out.collect(new Tuple2(token, 1));
              })

.groupBy(0).aggregate(SUM, 1);

1

3
2

4

26

Program Life-Cycle



Task 
Manager

Job 
Manager

Task 
Manager

Flink Client &
Optimizer

DataSet<String> text = env.readTextFile(input);

DataSet<Tuple2<String, Integer>> result = text
         .flatMap((str, out) -> {
              for (String token : value.split("\\W")) {
                   out.collect(new Tuple2(token, 1));
              })

.groupBy(0).aggregate(SUM, 1);

O Romeo, 
Romeo, 
wherefore art 
thou Romeo?

O, 1
Romeo, 3
wherefore, 1
art, 1
thou, 1 

27

Nor arm, nor 
face, nor any 
other part

nor, 3
arm, 1
face, 1,
any, 1,
other, 1
part, 1

creates and submits 
the job graph

creates the execution graph 
and deploys tasks

execute tasks and send 
status updates



Romeo, 
Romeo, 
where art 
thou Romeo?

Load Log

Search 
for str1

Search 
for str2

Search 
for str3

Grep 1

Grep 2

Grep 3

28

Example: grep



Romeo, 
Romeo, 
where art 
thou Romeo?

Load Log

Search 
for str1

Search 
for str2

Search 
for str3

Grep 1

Grep 2

Grep 3

Stage 1:
Create/cache Log

Subsequent stages:
Grep log for matches

Caching in-memory 
and disk if needed

29

Staged (batch) execution



Romeo, 
Romeo, 
where art 
thou Romeo?

Load Log

Search 
for str1

Search 
for str2

Search 
for str3

Grep 1

Grep 2

Grep 3

00110011

Stage 1:
Deploy and start operators

Data transfer in-memory 
and disk if needed

Note: Log 
DataSet is 
never 
“created”!

30

Pipelined execution



31



32

Flink Local Runtime

▪ Local runtime, not the 
distributed execution 
engine

▪ Aka: what happens 
inside every parallel 
task



33

Runtime Operators

▪ Sorting and hashing data
• Necessary for grouping, aggregation, reduce, join, cogroup, delta 

iterations

▪ Flink contains tailored implementations of hybrid 
hashing and external sorting in Java 

• Scale well with both abundant and restricted memory sizes



34

JVM Heap

map

JVM Heap

reduce
O Romeo, Romeo, 
wherefore art 
thou Romeo?

00110011

00110011
00010111
01110001
01111010
00010111

art, 1
O, 1
Romeo, 1
Romeo, 1

00110011

Network transfer

Local sort

Internal Data Representation



Java objects
▪ Easier to program
▪ Can suffer from GC overhead
▪ Hard to de-stage data to disk, 

may suffer from “out of memory 
exceptions”

35

Internal Data Representation

Raw bytes
▪ Harder to program (customer 

serialization stack, more 
involved runtime operators)

▪ Solves most of memory and GC 
problems

▪ Overhead from object (de)
serialization

Flink follows the raw byte approach



36

Distributed Execution

▪ Pipelined
• Same engine for Flink and Flink streaming

▪ Pluggable
• Local runtime can be executed on other engines
• E.g., Java collections and Apache Tez

▪ Coordination built in Akka



37

Data 
Stream

Operation
Data 

Stream
Source Sink

Data 
Set

Operation
Data 
Set

Source Sink

Basic API Concept

How do I write a Flink program?

1. Bootstrap sources
2. Apply operations
3. Output to sink



38

Job Manager

Client

case class Path (from: Long, to: 
Long)
val tc = edges.iterate(10) { 
  paths: DataSet[Path] =>
    val next = paths
      .join(edges)
      .where("to")
      .equalTo("from") {
        (path, edge) => 
          Path(path.from, edge.to)
      }
      .union(paths)
      .distinct()
    next
  }

Optimizer

Type 
extraction

Data 
Source
orders.tbl

Filter

Map DataSource
lineitem.tbl

Join
Hybrid Hash

buildH
T probe

hash-part [0] hash-part [0]

GroupRed
sort

forward

Client
▪ Optimize
▪ Construct job graph
▪ Pass job graph to job manager
▪ Retrieve job results



39

Job Manager
▪ Parallelization: Create Execution Graph
▪ Scheduling: Assign tasks to task managers
▪ State tracking: Supervise the execution

Job Manager

Data 
Source
orders.tbl

Filter
Map

DataSourc
e

lineitem.tbl

Join
Hybrid Hash

build
HT probe

hash-part [0] hash-part [0]

GroupRed
sort

forward Task 
Manager

Task 
Manager

Task 
Manager

Task 
Manager

Data 
Source
orders.tbl

Filter
Map

DataSourc
e

lineitem.tbl

Join
Hybrid Hash

build
HT probe

hash-part [0] hash-part [0]

GroupRed
sort

forward

Data 
Source
orders.tbl

Filter
Map

DataSourc
e

lineitem.tbl

Join
Hybrid Hash

build
HT probe

hash-part [0] hash-part [0]

GroupRed
sort

forward

Data 
Source
orders.tbl

Filter
Map

DataSourc
e

lineitem.tbl

Join
Hybrid Hash

build
HT probe

hash-part [0] hash-part [0]

GroupRed
sort

forward

Data 
Source
orders.tbl

Filter
Map

DataSourc
e

lineitem.tbl

Join
Hybrid Hash

build
HT probe

hash-part [0] hash-part [0]

GroupRed
sort

forward



40

Task Manager
▪ Operations are split up into tasks depending on the specified parallelism
▪ Each parallel instance of an operation runs in a separate task slot
▪ The scheduler may run several tasks from different operators in one task 

slot

Task Manager

Sl
o
t

Task ManagerTask Manager

Sl
o
t

Sl
o
t



41

map

join sum

ID
1

ID
2

ID
3

Execution Model

● A program is a graph (DAG) of operators
● Operators = computation + state
● Operators produce intermediate results = logical 

streams of records
● Other operators can consume those



42

Client Job Manager

Cluster

Task 
Manager

Task 
Manager

Task 
Manager

Task 
Manager

Submit 
job

Remote Execution

● The cluster mode
● Submit a Job remotely
● Monitors the status of the job



Data Exchange
Flink’s Network Stack



Data Exchange

Design principles:
1. The control flow for data exchange (i.e., the message passing in order to 

initiate the exchange) is receiver-initiated, much like the original 
MapReduce.

2. The data flow for data exchange, i.e., the actual transfer of data over the 
wire is abstracted by the notion of an IntermediateResult, and is 
pluggable. This means that the system can support both streaming data 
transfer and batch data transfer with the same implementation.

44



Data Exchange Components

JobManager: responsible for scheduling tasks, recovery, and coordination, 
and holds the big picture of a job via the ExecutionGraph data structure.

TaskManagers: executes many tasks concurrently in threads. Each TM also 
contains one CommunicationManager (CM - shared between tasks), and one 
MemoryManager (MM - also shared between tasks). TMs can exchange data 
with each other via standing TCP connections, which are created when 
needed.

Note that in Flink, it is TaskManagers, not tasks, that exchange data over the 
network, i.e., data exchange between tasks that live in the same TM is multiplexed 
over one network connection.

45



46



Execution Graph

● The execution graph is a data structure that contains the “ground truth” 
about the job computation.

● It consists of vertices (ExecutionVertex) that represent computation 
tasks, and intermediate results (IntermediateResultPartition), that 
represent data produced by tasks.

● Vertices are linked to the intermediate results they consume via 
ExecutionEdges (EE).

47



48



Runtime Data Structures (1)

● ResultPartition (RP): a chunk of data that a BufferWriter writes to, i.e., a 
chunk of data produced by a single task. A RP is a collection of Result 
Subpartitions (RSs). This is to distinguish between data that is destined to 
different receivers.

● ResultSubpartition (RS): one partition of the data that is created by an 
operator, together with the logic for forwarding this data to the receiving 
operator. 
○ The implementation of a RS determines the actual data transfer logic
○ Pluggable mechanism that allows the system to support a variety of data transfers.
○ e.g. the PipelinedSubpartition supports streaming data exchange. The 

SpillableSubpartition is blocking and supports batch data exchange.

49



Runtime Data Structures (2)

● InputGate: The logical equivalent of the RP at the receiving side. It is 
responsible for collecting buffers of data and handing them upstream.

● InputChannel: The logical equivalent of the RS at the receiving side. It is 
responsible for collecting buffers of data for a specific partition.

● Buffer: Used by the network stack to buffer records for network transfer.
● (De)/Serializers: reliably convert typed records into raw byte buffers and 

vice versa, handling records that span multiple buffers, etc.

50



Control Flow (1)

1. Operators produce a ResultPartitions (RP)
2. When a RP becomes available for consumption, it informs the 

JobManager.
3. The JobManager notifies the intended receivers of this partition that the 

partition is ready.
4. If the receivers have not been scheduled yet, this will actually trigger the 

deployment of the tasks. 
5. The receivers request data from the RPs. This initiates the data transfer 

between the tasks, either locally, or passing through the network stack of 
the TaskManagers.

51



Control Flow (2)

● If a RP fully produces itself (and is perhaps written to a file) before 
informing the JM, the data exchange corresponds to a batch exchange.

● If the RP1 informs the JM as soon as its first record is produced, we have a 
streaming data exchange.

52



53



Buffer Transfer (1)

● Records produced by an Operator are passed to a RecordWriter object. 
● RecordWriters contain serializers (RecordSerializer objects), one per 

consumer task that will possibly consume these records. 
○ For example, in a shuffle or broadcast, there will be as many serializers as the number of 

consumer tasks. 
● A ChannelSelector selects one or more serializers to place the record to. 

○ For example, if records are broadcast, they will be placed in every serializer. If records are 
hash-partitioned, the ChannelSelector will evaluate the hash value on the record and 
select the appropriate serializer.

54



Buffer Transfer (2)

● The serializers serialize the records into their binary representation, and 
place them in fixed-size buffers (records can span multiple buffers). 

● These buffers and handed over to a BufferWriter and written out to an 
ResultPartition (RP). The RP consists of several subpartitions 
(ResultSubpartitions - RSs) that collect buffers for specific consumers.

55



● The JobManager looks up the consumers of ResultPartitions and notifies 
the TaskManagers that a chunk of data is available. 

● Messages to TMs are propagated down to the InputChannel that is 
supposed to receive this buffer, which in turn notifies ResultPartitions 
that a network transfer can be initiated.

● ResultPartitions hand over the buffer to the network stack of  TMs, which 
in turn hand it over to netty for shipping.

● Network connections are long-running and exist between TaskManagers, 
not individual tasks.

Buffer Transfer (3)

56



● Once a buffer is received by a TM, it passes through a 
similar object hierarchy and finally ends up in a 
RecordDeserializer that produces typed records from 
buffers and hands them over to the receiving task.

Buffer Transfer (4)

57



58



Memory Management



Performance in the Java world

Big data processing systems which use the JVM have to deal with several 
challenges:

- object storage overhead
- garbage collection
- outOfMemoryErrors

60



● Allocate large memory chunks and manage them 
manually
○ avoid heap fragmentation

○ better memory usage

Solution: Take control of memory!

61



Memory management in Flink

Divide the Java heap into 3 regions:

1. Network Buffers: 32KB buffers for buffering 
records at startup

2. Memory Manager Pool: 32KB managed buffers 
offered as a pool to internal algorithms (Sort, 
Shuffle, Join)

3. Memory for User Code: for short-lived instances 
of user code

~70%

62



Both Network buffers 
and the Memory 
Manager segments live 
throughout the entire life 
of a TaskManager

- Buffer sizes are 
configurable

63



Benefits of Memory Management

● Short-lived user code instances are quickly collected
● Internal algorithms allocate and release blocks of 32KB 

of memory, but the MemorySegment’s that these 
represent are never are never garbage-collected

● Algorithms persist to disk if their allocated segments 
are exceeded

64


