
An Overview of the Android Programming

Hooman Peiro Sajjad

KTH/ICT/SCS
HT 2015

ID2212 Network Programming with Java
Lecture 14

References

•  http://developer.android.com/training/index.html

•  Course ID2216 Developing Mobile Applications

–  Offered by the Communication Systems department

–  Course responsible: Associate Professor Konrad Tollmar

2 Lecture 14: An overview of the Android Programming

Outline

•  Mobile Web Apps vs. Native Apps

•  Android Platform

•  Android Programming

•  User Experience

3 Lecture 14: An overview of the Android Programming

Mobile Web App / Native App

4 Lecture 14: An overview of the Android Programming

Mobile Web Apps (1/2)

•  Accessing browser-based internet services from a

handheld mobile device

•  Core technologies: HTML, CSS and JavaScript

5 5 Lecture 14: An overview of the Android Programming

Mobile Web Apps (2/2)
•  Advantages*:

–  Cross-platform compatibility
–  Cheaper and easier to maintain
–  Simple and ubiquitous access

•  Disadvantages:
–  Requires customization across different browser versions
–  Limited access to mobile’s hardware and software
–  Generally requires internet connection

* www.lionbridge.com: Mobile Web Apps vs. Native Apps: How to Make the Right Choice

6 6 Lecture 14: An overview of the Android Programming

Mobile Native Apps
•  Built specifically for a particular device and operating

system

•  Advantages:
–  Leverage the device specific hardware and software
–  Work offline
–  Better visibility in app stores, making money immediately

•  Disadvantages:
–  Different versions of the app for different platforms
–  Keeping apps up to date is costly
–  Content publishers have to share information about their

subscribers with the app store

7 7 Lecture 14: An overview of the Android Programming

A Sample Architecture of a Mobile Application

8 8 Lecture 14: An overview of the Android Programming

Overview of Android Platform

•  Android Operating System

•  Dalvik Process Virtual Machine

•  Application Lifecycle

9 9 Lecture 14: An overview of the Android Programming

Android Operating System (1/2)
•  Google’s Linux based open-source OS that includes:

–  Linux kernel optimized for mobile and embedded devices
–  Open-source application development libraries such as SQLite,

OpenGL, and a media manager
–  A runtime to host and execute Android applications, including Dalvik

virtual machine
–  An application framework to expose system services to the application

layer, including the window manager and location manager, databases,
telephony and sensors

–  A user interface framework used to host and launch applications
–  A set of core pre-installed applications

10 10 Lecture 14: An overview of the Android Programming

Android Operating System (2/2)

11 11 Lecture 14: An overview of the Android Programming

Dalvik Virtual Machine (1/2)

•  The process virtual machine (VM) in Google's Android

operating system

•  Runs the apps on Android devices.

•  Programs are commonly written in Java and compiled to

bytecode.

12 12 Lecture 14: An overview of the Android Programming

Dalvik Virtual Machine (2/2)

•  Then converted from Java Virtual Machine-

compatible .class files to Dalvik-compatible .dex (Dalvik

Executable) files before installation on a device.

•  In Android 5, a new virtual machine – Android Runtime

(ART) – replaced Dalvik as the platform default.

13 13 Lecture 14: An overview of the Android Programming

Application Lifecycle (1/2)
•  Android applications have limited control over their own

lifecycle.

•  Each application runs in its own process, each running in
a separate instance of Dalvik.

•  Applications have different priorities.

14 14 Lecture 14: An overview of the Android Programming

Application Lifecycle (2/2)
•  Android can kill applications without warning, to free

resources for higher-priority applications.

•  An application’s priority is equal to that of its highest-
priority component.

•  It’s important to structure the application to ensure that it
has the right priority for the work it’s doing.

15 15 Lecture 14: An overview of the Android Programming

Application Lifecycle: Application States (1/3)

16 16 Lecture 14: An overview of the Android Programming

Figure taken from “Professional Android 4 Application Development (3rd Edition)”.

Application Lifecycle: Application States (2/3)

•  Active: includes application components the user is interacting

with.

•  Visible: those activities which aren’t in the foreground but still

can affect what the user sees on screen.

•  Started service: processes hosting services.

•  Background: processes hosting Activities which aren’t visible

and don’t have any running services.

•  Empty: a process having no active application component

17 17 Lecture 14: An overview of the Android Programming

Application Lifecycle: Application States (3/3)

And now let’s watch an example!

18 18 Lecture 14: An overview of the Android Programming

Android Programming

•  Android SDK

•  Application Model and Components

•  Processes and Threads

•  Permissions

•  Networking

•  Location

19 19 Lecture 14: An overview of the Android Programming

Development Environment

•  First, download Android Developer Tool (ADT). It includes:

–  Eclipse + ADT plugin

–  Android SDK Tools

–  Android Platform-tools

–  The latest Android platform

–  The latest Android system image for the emulator

•  Notice that, you need to have JDK installed beforehand.

20 Lecture 14: An overview of the Android Programming

Android SDK (1/3)

•  Provides the API libraries and developer tools necessary

to build, test, and debug apps for Android.

•  Includes:
–  Build Tools: all the tools required to compile and build the app.

–  SDK Tools: Contains main tools for debugging and testing, plus other

utilities that are required to develop an app.

21 Lecture 14: An overview of the Android Programming

Android SDK (2/3)

–  SDK Platform-tools: Contains platform-dependent tools for developing

and debugging your application.

–  Documentation: the latest documentation for the Android platform APIs.

–  SDK Platform: It includes an android.jar file with a fully compliant

Android library.

–  System Images: Required system images for the Android emulator.

–  Google APIs: APIs which adds special Google features to your apps.

22 Lecture 14: An overview of the Android Programming

Android SDK (3/3)

–  Android support: a set of code libraries that provide backward-

compatible versions of Android framework APIs as well as features that

are only available through the library APIs

–  Google Play Billing: Provides the static libraries and samples that allow

you to integrate billing services in your app with Google Play.

–  Google Play Licensing: Provides the static libraries and samples that

allow you to perform license verification for your app when distributing

with Google Play.
23 Lecture 14: An overview of the Android Programming

Application Model and Components

•  Every Android application consists of some loosely

coupled components and the application manifest.

•  The manifest defines application’s metadata and the

components bindings.

24 Lecture 14: An overview of the Android Programming

Application Components

•  Activities & UI design elements: The application’s presentation

layer.

•  Services: components that run in the background to perform long-

running operations.

•  Intents: a powerful inter-application message passing framework.

•  Broadcast Receivers: Intent listeners (not covered in this lecture)

•  Content Provider: manages a shared set of application data (not

covered in this lecture)

25 Lecture 14: An overview of the Android Programming

Application Manifest

•  Every Android project includes a manifest file.

•  Defines the structure and metadata of the application, its

components and requirements.

•  AndroidManifest.xml

26 Lecture 14: An overview of the Android Programming

Manifest Example (2/2)

27 Lecture 14: An overview of the Android Programming

<application	
	 	 	 	 	 	 	 	 android:allowBackup="true"	
	 	 	 	 	 	 	 	 android:icon="@drawable/ic_launcher"	
	 	 	 	 	 	 	 	 android:label="@string/app_name"	
	 	 	 	 	 	 	 	 android:theme="@style/AppTheme"	 >	
	 	 	 	 	 	 	 	 <activity	
	 	 	 	 	 	 	 	 	 	 	 	 android:name=".MainActivity"	
	 	 	 	 	 	 	 	 	 	 	 	 android:label="@string/app_name"	 >	
	 	 	 	 	 	 	 	 	 	 	 	 <intent-‐filter>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <action	 android:name="android.intent.action.MAIN"	 />	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <category	 android:name="android.intent.category.LAUNCHER"	 />	
	 	 	 	 	 	 	 	 	 	 	 	 </intent-‐filter>	
	 	 	 	 	 	 	 	 </activity>	
	 	 	 	 </application>	
</manifest>	

Activities

•  Each activity represents a screen that an application can
present to its users.

•  To create an activity, you must create a subclass of
Activity.

•  Implement callback methods inherited from Activity
class.

•  Two important callback methods:
–  onCreate(): called when creating the activity.
–  onPause(): indicates that the user might be leaving.

28 Lecture 14: An overview of the Android Programming

Activities: Example
public	 class	 MainActivity	 extends	 Activity	 {	
	

@Override	
protected	 void	 onCreate(Bundle	 savedInstanceState)	 {	

super.onCreate(savedInstanceState);	
setContentView(R.layout.activity_main);	

}	
}	

Lecture 14: An overview of the Android Programming 29

Activity Lifecycle

30 30 Lecture 14: An overview of the Android Programming

Figure taken from “http://developer.android.com/reference/android/app/Activity.html”.

User Interface Design

Some UI terminologies in Android:
•  Views: the base class for all visual interface elements.

•  View Groups: extensions of the View class that can contain multiple

child Views.

•  Fragments: A Fragment represents a behavior or a portion of user

interface in an Activity. Fragments have their own lifecycle, state, and

back stack.

•  Activities: represents the window or screen being displayed. To

display a UI, you assign a View to an Activity.

Lecture 14: An overview of the Android Programming 31

User Interface: Example (1/2)
<RelativeLayout	 xmlns:android="http://schemas.android.com/apk/res/android"	
	 	 	 	 xmlns:tools="http://schemas.android.com/tools"	
	 	 	 	 android:layout_width="match_parent"	
	 	 	 	 android:layout_height="match_parent"	
	 	 	 	 android:gravity="top"	
	 	 	 	 android:orientation="vertical"	
	 	 	 	 android:paddingBottom="@dimen/activity_vertical_margin"	
	 	 	 	 android:paddingLeft="@dimen/activity_horizontal_margin"	
	 	 	 	 android:paddingRight="@dimen/activity_horizontal_margin"	
	 	 	 	 android:paddingTop="@dimen/activity_vertical_margin"	
	 	 	 	 tools:context=".MainActivity"	 >	
	
	 	 	 	 <TextView	
	 	 	 	 	 	 	 	 android:id="@+id/chatTextView"	
	 	 	 	 	 	 	 	 android:layout_width="match_parent"	
	 	 	 	 	 	 	 	 android:layout_height="match_parent"	
	 	 	 	 	 	 	 	 android:layout_above="@+id/sendButton"	
	 	 	 	 	 	 	 	 android:layout_alignParentTop="true"	
	 	 	 	 	 	 	 	 android:layout_gravity="top"	 	
	 	 	 	 	 	 	 	 android:background="@android:color/holo_green_light"	 />	

32 Lecture 14: An overview of the Android Programming

User Interface: Example (2/2)
	 <Button	
	 	 	 	 	 	 	 	 android:id="@+id/sendButton"	
	 	 	 	 	 	 	 	 android:layout_width="wrap_content"	
	 	 	 	 	 	 	 	 android:layout_height="wrap_content"	
	 	 	 	 	 	 	 	 android:layout_alignBottom="@+id/chatTextInput"	
	 	 	 	 	 	 	 	 android:layout_alignRight="@+id/chatTextView"	
	 	 	 	 	 	 	 	 android:layout_alignTop="@+id/chatTextInput"	
	 	 	 	 	 	 	 	 android:layout_toRightOf="@+id/chatTextInput"	
	 	 	 	 	 	 	 	 android:text="@string/send"	 />	
	
	 	 	 	 <EditText	
	 	 	 	 	 	 	 	 android:id="@+id/chatTextInput"	
	 	 	 	 	 	 	 	 android:layout_width="wrap_content"	
	 	 	 	 	 	 	 	 android:layout_height="wrap_content"	
	 	 	 	 	 	 	 	 android:layout_alignLeft="@+id/chatTextView"	
	 	 	 	 	 	 	 	 android:layout_alignParentBottom="true"	
	 	 	 	 	 	 	 	 android:layout_marginBottom="16dp"	
	 	 	 	 	 	 	 	 android:ems="10"	
	 	 	 	 	 	 	 	 android:inputType="textMultiLine"	 >	
	
	 	 	 	 	 	 	 	 <requestFocus	 />	
	 	 	 	 </EditText>	
	
</RelativeLayout>	

33 Lecture 14: An overview of the Android Programming

Intent

Intents work as a message-passing mechanism both within
and between applications.

Using Intents you can:
•  Explicitly, start a particular Service or Activity using its

class name
•  Implicitly, start an Activity or Service by requesting an

action on a piece of data
•  Broadcast the occurrence of an event

34 Lecture 14: An overview of the Android Programming

Explicit Start of a New Activity
Intent	 intent	 =	 new	 Intent(MainActivity.this,	 	 	 	

	 	 	 	 	 MyContactsActivity.class);	
	
startActivityForResult(intent,	 PICK_CONTACT);

35 Lecture 14: An overview of the Android Programming

Implicit Start of a New Activity
Intent	 intent	 =	 new	 Intent(Intent.ACTION_PICK,	 	 	 	

	 	 	 	 	 	 Contacts.CONTENT_URI);	
	
startActivityForResult(intent,	 PICK_CONTACT);

36 Lecture 14: An overview of the Android Programming

Service (1/3)

•  A Service is an application component that can perform long-running

operations in the background and does not provide a user interface.

•  A service can run in the background to perform work even while the

user is in a different application.

•  A component can bind to a service to interact with it and even

perform inter-process communication (IPC).

•  A service might handle network transactions, play music, perform

file I/O

37 Lecture 14: An overview of the Android Programming

Service (2/3)
•  To create a service, you must create a subclass of Service.

•  You need to override the callback methods to control the behavior
of the service:

–  onStartCommand(): when another component requests the

service to start.

–  onBind(): when another component wants to bind with the service

–  onCreate(): when the service is first created.

–  onDestroy(): when the service is no longer used and is being

destroyed.

38 Lecture 14: An overview of the Android Programming

Service (3/3)

Declare the service in the manifest

<manifest ... >
 ...
 <application ... >
 <service android:name=".ExampleService" />
 ...
 </application>
</manifest>

39 Lecture 14: An overview of the Android Programming

Processes

40 Lecture 14: An overview of the Android Programming

•  By default, all components of the same application run in

the same process.

•  You can define in the manifest, that different

components of the same application are to be run in

different processes.

 android:process="string"

Threads (1/2)

41 Lecture 14: An overview of the Android Programming

•  When an application is launched, the system creates a

thread of execution for the application, called "main.“

•  The main thread is called UI thread because: it interacts

the Android UI components.

•  Performing long operations such as network access or

database queries will block the whole UI.

Threads (2/2)

42 Lecture 14: An overview of the Android Programming

•  The Andoid UI toolkit is not thread-safe, so do not

manipulate your UI from a worker thread.

•  Remember these two rules:

1.  Do not block the UI thread

2.  Do not access the Android UI toolkit from outside the

UI thread

Threads: Example (1/3)

43 Lecture 14: An overview of the Android Programming

An example of wrong implementation:

public void onClick(View v) {

 new Thread(new Runnable() {
 public void run() {
 Bitmap b = loadImageFromNetwork("http://example.com/image.png");
 mImageView.setImageBitmap(b);
 }
 }).start();
}

Worker thread is updating ImageView which is not thread-
safe.

Threads : Example (2/3)

44 Lecture 14: An overview of the Android Programming

•  C o r r e c t i m p l e m e n t a t i o n u s i n g A s y n c Ta s k

•  AsyncTask performs the blocking operations in a worker

thread and then publishes the results on the UI thread.

•  you must subclass AsyncTask and implement the

d o I n B a c k g r o u n d () c a l l b a c k m e t h o d .

•  To update the UI , you should implement

o n P o s t E x e c u t e ()

Threads : Example (3/3)

45 Lecture 14: An overview of the Android Programming

public void onClick(View v) {

 new DownloadImageTask().execute("http://example.com/image.png");

}

private class DownloadImageTask extends AsyncTask<String, Void, Bitmap> {

 protected Bitmap doInBackground(String... urls) {
 return loadImageFromNetwork(urls[0]);
 }

 protected void onPostExecute(Bitmap result) {
 mImageView.setImageBitmap(result);
 }
}

Permissions

46 Lecture 14: An overview of the Android Programming

•  A basic Android application has no permission associated

with it by default, so it cannot access data on the device.

•  To make use of protected features of the device, you must

give the related to permissions to your application.

•  Permissions must be added to AndroidManifest.xml.

Example:
<uses-‐permission	 android:name="android.permission.READ_CONTACTS"	 />

Network and Internet Connectivity (1/4)

47 Lecture 14: An overview of the Android Programming

•  There are different network technologies with different
speed, reliability and cost:
–  Wi-Fi, GPRS, 3G, LTE and so on

•  Application can manage these connections to ensure the
efficiency and responsiveness

•  N e t w o r k i n g i n A n d r o i d i s h a n d l e d v i a
ConnectivityManager.

•  Changes in network connectivity are broadcasted by
Android to Intents.

Network and Internet Connectivity (2/4)

48 Lecture 14: An overview of the Android Programming

To utilize the network connectivity, following user

permissions are required:

• INTERNET: Allows applications to open network sockets.

• ACCESS_NETWORK_STATE: Allows applications to

access information about networks.

Network and Internet Connectivity (3/4)

49 Lecture 14: An overview of the Android Programming

To check if the network is connected:

ConnectivityManager connMgr = (ConnectivityManager)

 getSystemService(Context.CONNECTIVITY_SERVICE);

 NetworkInfo networkInfo = connMgr.getActiveNetworkInfo();

 if (networkInfo != null && networkInfo.isConnected()) {

 // do network operations

 } else {

 // display error

 }

Network and Internet Connectivity (4/4)

50 Lecture 14: An overview of the Android Programming

•  The NetworkInfo object includes the type of the network
connection which is available.

•  getType() returns the network connection type:

•  TYPE_MOBILE
•  TYPE_WIFI
•  TYPE_WIMAX
•  TYPE_ETHERNET
•  TYPE_BLUETOOTH

Location (1/4)

51 Lecture 14: An overview of the Android Programming

•  The central component of the location framework is the

LocationManager system service.

•  Using Google Maps Android API, you can add maps to

your app based on Google Maps data.

•  The application can acquire the user location utilizing GPS

and Android’s Network Location Provider.

Location (2/4)

52 Lecture 14: An overview of the Android Programming

•  Network Location Provider:
–  Determines location through cell tower and Wi-Fi signals
–  Works indoors and outdoors
–  Responds faster
–  Less battery power

•  GPS:

–  Most accurate
–  Only works outdoor
–  Consumes battery quickly
–  Slow

Location (3/4)

53 Lecture 14: An overview of the Android Programming

You need to request user permission for either:

• ACCESS_FINE_LOCATION: Allows an app to access precise location
from location sources such as GPS, cell towers, and Wi-Fi.

• ACCESS_COARSE_LOCATION: Allows an app to access
approximate location derived from network location sources such as cell
towers and Wi-Fi.

Location (4/4)

54 Lecture 14: An overview of the Android Programming

•  Getting user location in Android works by means of
callback.

•  First, acquire a reference to the system Location Manager

LocationManager locationManager =
 (LocationManager)this.getSystemService(
 Context.LOCATION_SERVICE);

Location: Define a Listener

55 Lecture 14: An overview of the Android Programming

•  Define a listener that responds to location updates

LocationListener locationListener = new LocationListener() {

 public void onLocationChanged(Location location) {
 makeUseOfNewLocation(location);
 }

 public void onStatusChanged(String provider, int status,

 Bundle extras) {}

 public void onProviderEnabled(String provider) {}

 public void onProviderDisabled(String provider) {}
 };

Location : Register the Listener

56 Lecture 14: An overview of the Android Programming

•  Register the listener with the Location Manager to receive

location updates

locationManager.requestLocationUpdates(
 LocationManager.NETWORK_PROVIDER, 0,

 0, locationListener);

Location: Last Known Location

57 Lecture 14: An overview of the Android Programming

•  If you need to Get the last known location for the quick

location information:

String locationProvider =

LocationManager.NETWORK_PROVIDER;

// Or use LocationManager.GPS_PROVIDER

Location lastKnownLocation =

locationManager.getLastKnownLocation(locationProvide

r);

User Experience

58 Lecture 14: An overview of the Android Programming

•  A high quality app is more probable to have higher user

ratings, better rankings, more downloads.

•  Improve stability and eliminate bugs

•  Improve UI responsiveness, a slow and unresponsive UI

will disappoint the users.

•  Improve the ease of use

User Experience

59 Lecture 14: An overview of the Android Programming

•  High quality User Interface

•  Having the right set of features

•  You can find many good suggestions and best practices to

improve your application following the link:
http://developer.android.com/training/index.html

