Department of Mathematics

SF1626 Several Variable Calculus Academic year 2015/2016, Period 2

Seminar 6

See www.kth.se/social/course/SF1626 for information about how the seminars work and what you are expected to do before and during the seminars.

This seminar will start with a quiz on a variant of one of the recommended exercises from the text book Calculus by Adams and Essex (8th edition) which are marked by boldface in the following list:

	Recommended exercises
16.1	3, 7, 11
16.2	9, 15, 17
16.3	3, 5, 9
16.4	3, 7, 11 9, 15, 17 3, 5, 9 5, 11, 15
16.5	1, 3, 5

In the seminar the following problems will be discussed.

PROBLEMS

Problem 1. Let F be the vector field given by

$$\mathbf{F}(x, y, z) = (x^2 - yz, y^2 - xz, z^2 - xy).$$

for all (x, y, z) in \mathbb{R}^3 .

- (a) Determine rot $\mathbf{F} = \nabla \times \mathbf{F}$ and div $\mathbf{F} = \nabla \cdot \mathbf{F}$.
- (b) Determine whether there is a potential, i.e., a function g such that $\mathbf{F} = \operatorname{grad} g$.
- (c) Compute the flux of F out from the sphere given by

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2.$$

Problem 2. Let $\mathbf{F} = \mathrm{rot}\,\mathbf{G} = \nabla \times \mathbf{G}$ where

$$G(x, y, z) = (z^2 - y^2, x^2 - z^2, y^2 - x^2)$$

- (a) Compute the flux of \mathbf{F} through the triangle with verices in (1,0,0), (0,1,0) and (0,0,1). (The normal direction is chosen so that it points away from the origin.)
- (b) Use Stoke'e Theorem in order to relate the flux from part (a) to a line integral and compute this line integral by means of a parametrization.