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CHAPTER 8
PREFERENTIAL ATTACHMENT MODELS

Abstract

In preferential attachment models, vertices having a fixed
number of edges are sequentially added to the network.
Given the graph at time ¢, the edges incident to the vertex
with label t+1 are attached to older vertices that are chosen
according to a probability distribution that is an affine func-
tion of the degree of the older vertices. This way, vertices
that already have a high degree are more likely to attract
edges of later vertices, which explains why such models are
called ‘rich-get-richer’ models. In this chapter, we intro-
duce and investigate such models, focusing on the degree
structure of preferential attachment models. We show how
the degrees of the old vertices grow with time, and how the
proportion of vertices with a fixed degree converges as time
grows. Since the vertices with the largest degrees tend to be
the earliest vertices in the network, preferential attachment
models could also be called ‘old-get-rich’ models.

8.1 MOTIVATION FOR THE PREFERENTIAL ATTACHMENT MODEL

The generalized random graph model and the configuration model described in
Chapters 6 and 7, respectively, are static models, i.e., the size of the graph is fized,
and we have not modeled the growth of the graph. There is a large body of work
" investigating dynamic models for complex networks, often in the context of the World-
Wide Web, but also for citation networks or biological networks. In various forms,
such models have been shown to lead to power-law degree sequences, and, thus, they
offer a possible explanation for the occurrence of power-law degree sequences in real-
world networks. The existence of power-law degree sequences in various real networks
is quite striking, and models offering a convincing explanation can teach us about the
mechanisms that give rise to their scale-free nature.

A possible explanation for the occurrence of power-law degree sequences is offered
by the preferential attachment paradigm. In preferential attachment models, vertices
are added sequentially with a number of edges connected to them. These edges are
attached to a receiving vertex with a probability proportional to the degree of the
receiving vertex at that time, thus favoring vertices with large degrees. For this
model, it is shown that the number of vertices with degree k decays proportionally
to k3 [58], and this result is a special case of the more general result that we prove
in this chapter.
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254 Preferential attachment models

'The idea behind preferential attachment is simple. Tn a graph that evolves in
time, the newly added vertices are connected to the already existing vertices. In an
Lirdés-Rényi random graph, which can also be formulated as an evolving graph where
edges are added and removed, these edges would be connected to each individual with
equal probability (see Exercise 8.1).

Now think of the newly added vertex as a new individual in a social population,
which we model as a graph by letting the individuals be the vertices and the edges
be the acquaintance relations. Is it then realistic that the edges connect to each
already present individual with equal probability, or is the newcomer more likely to
get to know socially active individuals, who already know many people? If the latter
is true, then we should forget about equal probabilities for the receiving ends of the
edges of the newcomer, and introduce a bias in his/her connections towards more
social individuals. Phrased in a mathematical way, it should be more likely that the
edges are connected to vertices that already have a high degree. A possible model for
such a growing graph was proposed by Barabdsi and Albert [26], and has incited an
enormous research effort since.

Strictly speaking, Barabdsi and Albert in [26] were not the first to propose such a
model, and we start by referring to the old literature on the subject. Yule [259] was
the first to propose a growing model where preferential attachment is present, in the
context of the evolution of species. He derives the power-law distribution that we also
find in this chapter. Simon [234] provides a more modern version of the preferential
attachment model, as he puts it

“Because Yule’s paper predates the modern theory of stochastic Processes,
his derivation was necessarily more involved than the one we shall employ
here.”

The stochastic model of Simon is formulated in the context of the occurrence of words
in large pieces of text (as in [260]), and is based on two assumptions, namely (i) that
the probability that the (k4 1)st word is a word that has already appeared exactly
¢ times is proportional to the number of occurrences of words that have occurred
exactly 7 times, and (ii) that there is a constant probability that the (k+ 1)st word is
a new word. Together, these two assumptions give rise to frequency distributions of
words that obey a power law, with a power-law exponent that is a simple function of
the probability of adding a new word. We shall see a similar effect occurring in this
chapter. A second place where the model studied by Simon and Yule can be found is
in work by Champernowne [72], in the context of income distributions in populations.

In [26], Barabési and Albert describe the preferential attachment graph informally
as follows:

“To incorporate the growing character of the network, starting with a small
number (mg) of vertices, at every time step we add a new vertex with
m(< mo) edges that link the new vertex to m different vertices already
present in the system. To incorporate preferential attachment, we assume
that the probability 11 that a new vertex will be connected to a vertex i
depends on the connectivity k; of that vertez, so that II(k;) = k;/ >k
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Aftert time steps, the model leads to a random network with t+mq vertices
and mt edges.”

This description of the model is informal, but it must have been given precise meaning
in [26] (since, in particular, Barabdsi and Albert present simulations of the model
predicting a power-law degree sequence with exponent close to 7 = 3). The model
description does not explain how the first edge is connected (note that at time £ = 1,
there are no edges, so the first edge can not be attached according to the degrees of
the existing vertices), and does not give the dependencies between the m edges added
at time t. We are left wondering whether these edges are independent, whether we
allow for self-loops, whether we should update the degrees after each attachment of
a single edge, etc. In fact, each of these choices has, by now, been considered in
the literature, and the results, in particular the occurrence of power laws and the
power-law exponent, do not depend sensitively on the respective choices. See Section
8.9 for an extensive overview of the literature on preferential attachment models.

The first to investigate the model rigorously, were Bollobés, Riordan, Spencer and
Tusnady [58]. They complain heavily about the lack of a formal definition in [26],
arguing that

“The description of the random graph process quoted above (i.e, in [26],
edt.) 1is rather imprecise. First, as the degrees are initially zero, it is
not clear how the process is started. More seriously, the expected number
of edges linking a new vertez v to earlier vertices is »_, Il(k;) = 1, rather
than m. Also, when choosing in one go a set S of m earlier vertices as the
neighbors of v, the distribution of S is not specified by giving the marginal
probability that each vertez lies in S.”

One could say that these differences in formulations form the heart of much con-
fusion between mathematicians and theoretical physicists. To resolve these problems,
choices had to be made, and these choices were, according to [58], made first in [57],
by specifying the initial graph to consist of a vertex with m self-loops, and that the
degrees will be updated in the process of attaching the m edges. This model will be
described in full detail in Section 8.2 below. '

This chapter is organized as follows. In Section 8.2, we introduce the model. In
Section 8.3, we investigate how the degrees of fixed vertices evolve as the graph grows.
In Section 8.4, we investigate the degree sequences in preferential attachment models.
The main result is Theorem 8.2, which states that the preferential attachment model
has a power-law degree sequence. The proof of Theorem 8.2 consists of two key steps,
which are formulated and proved in Sections 8.5 and 8.6, respectively. In Section 8.7,
we investigate the maximal degree in a preferential attachment model. In Section
8.8 we discuss some further results on preferential attachment models proved in the
literature, and in Section 8.9 we discuss many related preferential attachment models.
We close this chapter with notes and discussion in Section 8.10.



256 Preferential attachment models

8.2 INTRODUCTION OF THE MODEL

We start by introducing the model. The model we investigate produces a graph
sequence which we denote by (PA(m,d))s>1, which for every ¢ yields a graph of ¢
vertices and mt edges for some m = 1,2,... We start by defining the model for

= 1. In this case, PA;(1,) consists of a single vertex with a single self-loop. We
denoto the vertices of PAy(1,6) by {v{",...,v"}. We denote the degree of vertex v"
in PA4(1,6) by D;(t), where a self-loop increases the degree by 2.

Then, conditionally on PAt(l, d), the growth rule to obtain PAs(1,4) is as fol-
lows. We add a single vertex v;}, having a single edge. This edge is connected to a
second end point, which is equal to v{}; with probability (14 6)/(¢(246) + (14 6)),
and to a vertex vf” € PA4(1, ) with probability (D;(t) +8)/(t(2+6) + (1+46)), where
d > —1 is a parameter of the model. Thus,

1+6 .
fori=1t+1,
P(u, — v |PAL(L, 6)) = (2+525rf§+ ) 3 (8.2.1)
250+ (110) for i € [t].

The above preferential attachment mechanism is called affine, since the attachment
probabilities in (8.2.1) depend in an affine way on the degrees of the random graph
PAy(1,0). Exercises 8.2 and 8.3 show that (8.2.1) is a probability distribution.

The model with m > 1 is defined in terms of the model for m = 1 as follows.
Fix 6 > —m. We start with PA,,;(1,d/m), and denote the vertices in PA,;(1,d5/m)

by v{",...,v%. Then we 1de11t1fy or collpase v{”,..., v in PA.:(1,6/m) to the
vertex U(’“) in PA,(m,4), and vm+], oy Vg i PAmt(l §/m) to be v§™ in PAy(m, 6),
and, more generally, v 8')71)m+1= ey Jm in PA,,:(1,6/m) to be v(m) in PAt(m ). This

defines the model for general m > 1. We note that the 1esultmg graph PA,(m, d) is
a multigraph with precisely t vertices and mt edges, so that the total degree is equal
to 2mt (see Exercise 8.4).

To explain the description of PA;(m,d) in terms of PA,(1,6 /m) by collapsing
vertices, we note that an edge in PA,,:(1,¢ / m) is attached to veltox U ) with proba-
bility propor tlonal to the weight of vertex v{”. Here the weight of vy is equal to the
degree of vertex v’ plus §/m. Now, the vertices 'UE ) L P 159 ¢ 4 ;3 in PA,:(L,6/m)
are collapsed to form vertex v;.m) in PA;(m,d). Thus, an edge in PA;(m,d) is at-
™ with probability proportional to the total weight of the vertices

7 v Since the sum of the degrees of the vertices v(" v

Vi—ymt1r -+ Yy (G—1)m+10" 0 Yim
is equal to the degree of vertex v}m), this probability is proportional to the degree
of vertex U;m) in PA¢(m,d) plus §. We note that in the above construction and for
m > 2, the degrees are updated after each edge is attached. This is what we refer to
as wntermediate updating of the degrees.

The important feature of the model is that edges are more likely to be connected to
vertices with large degrees, thus making the degrees even larger. This effect is called

preferential attachment. Preferential attachment may explain why there are quite

tached to vertex (>
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large degrees. Therefore, the preferential attachment model is sometimes called the
Rich-get-Richer model. The preferential attachment mechanism is quite reasonable
in many real networks. For example, one is more likely to get to know a person who
already knows many people, making preferential attachment not unlikely in social
networks. However, the precise form of preferential attachment in (8.2.1) is only
one possible example. Similarly, a paper is more likely to be cited by other papers
when it has already received many citations. Having this said, it is not obvious why
the preferential attachment rule should be affine. This turns out to be related to
the degree-structure of the resulting random graphs PA:(m, d) that we investigate in
detail in this chapter.

The above model is a slight variation of models that have appeared in the lit-
erature. The model with 6 = 0 is the Barabdsi-Albert model, which has received
substantial attention in the literature and which was first formally defined in [57].
We have added the extra parameter ¢ to make the model more general.

The definition of (PA;(m,d))e1 in terms of (PA4(1,6/m))i>1 is quite convenient.
However, we can also equivalently define the model for m > 2 directly. We start with
PA;(m, d) consisting of a single vertex with m self-loops. To construct PA,1(m, )
from PA;(m,d), we add a single vertex with m edges attached to it. These edges
are attached sequentially with intermediate updating of the degrees as follows. The
eth edge is connected to vertex v{™, for ¢ € [t] with probability proportional to
D;(e — 1,t) + 6, where, for e = 1,...,m, Di(e,t) is the degree of vertex 7 after the
eth edge is attached, and to vertex 'Uéjf)l with probability proportional to Diyq1(e —
1,t) + 1+ ed/m. Here we make the convention that Dy (0,%) = 0. This alternative
definition makes it perfectly clear how the choices by Bardbasi and Albert missing
in [26] are made. Indeed, the degrees are updated during the process of attaching
the edges, and the initial graph at time 1 consists of a single vertex with m self-
loops. Naturally, the edges could also be attached sequentially by a different rule, for
example by attaching the edges independently according to the distribution for the
first edge. Also, one has the choice to allow for self-loops or not. See Figure 8.1 for
a realization of (PA¢(m,d))e1 for m = 2 and 6 = 0, and Figure 8.2 for a realization
of (PAy(m,6))s1 for m = 2 and § = —1. Exercises 8.5 investigates related growth
rules.

In the literature, slight variations on the above model have been considered. We
will discuss two of those. In the first, and for m = 1 and § > —1, self-loops do not

occur. We denote this variation by (PA{”(m, d)),., and sometimes refer to this model

by model (b). To define PA®(1,6), we let PAY(1,6) consist of two vertices v{" and
v$? with two edges between them, and we replace the growth rule in (8.2.1) by the
rule that, for all 7 € [¢],

Di(t)+ 0

P2, - 5 PAP(L,0) = AL

(8.2.2)

The advantage of this model is that it leads to a connected graph. We again define the
model with m > 2 and § > —m in terms of (PA{”(1,d/m)) ., as below (8.2.1). We

also note that the differences between (PAt(m, 5)) and (P}Eff’} (m, 5)) are minor,

t>1 t>2
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Figure 8.1: Preferential attachment random graph with m = 2 and § = 0 of sizes 10,
30 and 100.

Figure 8.2: Preferential attachment random graph with m = 2 and § = —1 of sizes
10, 30 and 100.

since the probability of a self-loop in PA;(m, d) is quite small when ¢ is large. Thus,
most of the results we shall prove in this chapter for (PA;(m, 6)),., shall also apply

to (PA{”(m, 6))

t>1
— but we do not state these extensions explicitly.

Interestingly, the above model with § > 0 can be viewed as an interpolation
between the models with § = 0 and § = co. We show this for m = 1, the statement
for m > 2 can again be seen by collapsing the vertices. We again let the graph at
time 2 consist of two vertices with two edges between them. We fix o € [0, 1]. Then,
we first draw a Bernoulli random variable I;,; with success probability 1 — a. The
random variables (I;);2; are independent. When I;; = 0, then we attach the (t+1)st
edge to a uniform vertex in [t]. When Iy, = 1, then we attach the (¢ + 1)st edge to
vertex ¢ € [t] with probability D;(t)/(2t). We denote this model by (PA{”(1,a)) o
When o > 0 is chosen appropriately, then this is precisely the above preferential
attachment model (see Exercise 8.7).
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8.3 DEGREES OF FIXED VERTICES

We start by investigating the degrees of given vertices. To formulate our results,
we define the Gamma-function t — T'(t) for t > 0 by

I(t) = /O " gty (8.3.1)

We also make use of the recursion formula (see e.g. Exercise 8.10)

D(t+1) = tT(t). (8.3.2)

The main result in this section is the following:

Theorem 8.1 (Degrecs of fixed vertices). Fizm = 1 and§ > —1. Then, D;(t)/t/ 19
converges almost surely to a random variable & as t — oo, and

re+0riE—1/2+ 5))

It + 22T (5)

E[D;(t) + 6] = (14 6) (8.3.3)

In Section 8.7, we considerably extend the result in Theorem 8.1. For example,
we also prove the almost sure convergence of mazimal degree.

Proof. Fix m =1 and let t > 7. We compute that

E[D;(t 4+ 1)+ 6 | D;(t)] = D;(t) + 6 + E[D;(t + 1) — Dy(t) | Di(t)]

D;(t)+ ¢

= Di(t) +9+ 2+0)t+1+6

(248t +2+6

2+8)t+149
(24+06)(t+1)

(248)t+1+6

= (Di(t) +6)

= (Di(t) + ) (8.3.4)

(In fact, here we rely on Exercise 8.9.) Using also that

144
(24+8)E—1)+14+4
2+0)@E—-1)+2+¢
2+6)(E—-1)+1+6

(24 6)i
24+8)(E—1)+1+06"

E[D;(i) + 6] =146+

= (1+490)

= (1+96) (8.3.5)

we obtain (8.3.3). In turn, again using (8.3.4), the sequence (M;(t))> given by

t—1

D;(t) + 4 1 (2+0)s+1+0
I+6 21 (2+6)(s+1)

M;(t) = (8.3.6)
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is a non-negative martingale with mean 1. As a consequence of the martingale con-
vergence theorem (Theorem 2.24), as t — oo, M;(t) converges almost surely to a
limiting random variable M;.

We next extend this result to almost sure convergence of D;(t)/tY/2+9). For this,
we compute that

ﬁ 2+8)s+1+5 ﬁ s+a _ TE+EDTE) (8.3.7)
o @+0)s+2+6 21 s+l TE+1)0E—-1/(2490))
Using Stirling’s formula, it is not hard to see that (see Exercise 8.11)
I'(t+a)
—— =t*(1 4+ O(1/t)). 8.3.8
() — (1400 /1) (5.3.5)

Therefore, D;(t)/t*/(3+9) converges in distribution to a random variable &;. In partic-
ular, the degrees of the first ¢ vertices at time ¢ is at most of order ¢'/(2%9). Note,
however, that we do not yet know whether P(¢; = 0) = 0 or not! O

We can extend the above result to the case where m > 1 by using the relation
between PA(m, §) and PA,,,(1,5/m). This implies in particular that

L [Di(8)] = ) B [Dnga-1ya(mt)], (8.3.9)

where we have added a subscript m and a superscript § to the expectation to denote
the values of m and § involved. Exercises 8.12 and 8.13 investigate m > 2 in more
detail, Exercise 8.14 studies extensions to model (b).

We close this section by giving a heuristic explanation for the occurrence of a
power-law degree sequence in preferential attachment models. Theorem 8.1 in con-
junction with Exercise 8.13 implies that there exists an a,, 5 such that, for 4,¢ large,
and any m > 1,

B2, [Di(1)] ~ s (t/3)" 1™, (8.3.10)

When the graph indeed has a power-law degree sequence, then the number of vertices
with degrees at least k will be close to ctk—(™Y for some 7 > 1 and some ¢ >
0. ‘The number of vertices with degree at least k at time ¢ is equal to N, (t) =
21 1 Lpy(ty>ky- Now, assume that in the above formula, we are allowed to replace
1(p,ty=k} bY Ligs p,)=k) (there is a big leap of faith hele). Then we would obtain
that

N>,k Z H{]Fﬁ D;(t)) =k} ™ Z :ﬂ.{am ,5(15/’.',)1/(2 -5/m) > k)

i=1 i=1
249, —(248/m 3
N Z]l i<taZl /™ (4o myy T =ta m,afmff (2+0/m), (8.3.11)
i=1

so that we obtain a power-law with exponent 7 — 1 = 2 + §/m. This suggests that
the preferential attachment model has a power-law degree sequence with exponent 7
satisfying 7 = 3 4+ 6 /m. The above heuristic is made precise in the following section,
but the proof is quite a bit more subtle than the above heuristic!
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8.11 EXERCISES FOR CHAPTER. &

Exercise 8.1 (A dynamic formulation of ER,(A/n)). Give a dynamical model for the Erdds-
Rényi rendom graph, where at each time n we add o single individual, and where at time
n the graph is equal to ERn(N/n). See also the dynamic description of the Norros-Reittu
model on page 2019,

Exercise 8.2 (Non-negativity of D;(t) +8). Fizm = 1. Verify that Di(t) = 1 for all i and
t witht >4, so that D;({)+ 8 =0 for alld > —1.

Exercise 8.3 (Attachment probabilities sum up to one). Verify that the probabilities in
(8.2.1) sum up to one.

Exercise 8.4 (Total degree). Prove that the total degree of PA(m,8) equals 2mt.

Exercise 8.5 (Collapsing vs. growth of the PA model). Prove that the alternative definition
of (PAs(m,8))i>1 is indeed equal to the one obtained by collapsing m consecutive vertices in

(PAt(l, 6/?’?1))521 .

Exercise 8.6 (Graph topology for § = —1). Show that when § = —1, the graph PA(1,6)

consists of a self-loop at vertex 'ugl) , and each other vertes is connected fo ’u%l) with precisely

one edge. What is the implication of this result for m > 1%

Exercise 8.7 (Alternative formulation of PA(1,4)). For o = ~2%, show that the law
of (IPAffc)(l,a))t>2 is equal to the one of (PAftb)(l,é))DQ. For the original PA model
(PAt(l,cS)) v 0 Similar identity holds, with the only difference that the coin probability

o = ay = 6(t+ 1)/[(2t + 1) + 6(t + 1)] depends slightly on t. Note that, for large t, o 1s
asymptotic to §/(2 + delta), as for (PAft")(l, 5))t>2.

Exercise 8.8 (Degrees grow to infinity a.s.). Fixm =1 andi = L. Prove that D; (t) %3 o0.
Hint: use that, with (I)§2; a sequence of independent Bernoulli random variables with
P(I; = 1) = (14 8)/(¢(2 + 8) + 1 + §), we have that qu I, < Dy(t). What does this imply
form > 17¢

Fxercise 8.9 (Degree Markov chain). Prove that the degree (Di(t))i>i forms a (time-
inhomogeneous) Markouv chain. Compule its transition probabilities form =1,

Exercise 8.10 (Recursion formula for the Gamma, function}. Prove (8.3.2} using partial
integration, and also prove that T(n) = (n—1)! forn=1,2,....

Exercise 8.11 (Asymptotics for ratio I'(¢-+a)/T'(£)). Prove (8.3.8), using Stirling’s formula
(see e.g. [129, 8.327))

et < T(E 4+ 1) < e M I V2reta, (8.11.1)

Exercise 8.12 (Mean degree for m > 2}. Prove (8.3.9) and use i fo compute ES. [D;(1)].

Exercise 8.13 (A.s. limit of degrees for m > 2). Prove that, for m = 2 and any 1 > 1,
Di(#)(mt) Y F/m) 225 ¢ phere

g= > &, (8.11.2)




