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Inspired by empirical studies of networked systems such as the Internet, social networks, and bio-
logical networks, researchers have in recent years developed a variety of techniques and models to
help us understand or predict the behavior of these systems. Here we review developments in this
field, including such concepts as the small-world effect, degree distributions, clustering, network
correlations, random graph models, models of network growth and preferential attachment, and
dynamical processes taking place on networks.
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I. INTRODUCTION

A network is a set of items, which we will call vertices
or sometimes nodes, with connections between them,
called edges (Fig. 1). Systems taking the form of net-
works (also called “graphs” in much of the mathematical
literature) abound in the world. Examples include the In-
ternet, the World Wide Web, social networks of acquain-
tance or other connections between individuals, organi-
zational networks and networks of business relations be-
tween companies, neural networks, metabolic networks,
food webs, distribution networks such as blood vessels
or postal delivery routes, networks of citations between
papers, and many others (Fig. 2). This paper reviews re-
cent (and some not-so-recent) work on the structure and
function of networked systems such as these.

The study of networks, in the form of mathematical
graph theory, is one of the fundamental pillars of dis-
crete mathematics. Euler’s celebrated 1735 solution of
the Königsberg bridge problem is often cited as the first
true proof in the theory of networks, and during the twen-
tieth century graph theory has developed into a substan-
tial body of knowledge.

Networks have also been studied extensively in the so-
cial sciences. Typical network studies in sociology involve
the circulation of questionnaires, asking respondents to
detail their interactions with others. One can then use
the responses to reconstruct a network in which vertices
represent individuals and edges the interactions between
them. Typical social network studies address issues of
centrality (which individuals are best connected to others
or have most influence) and connectivity (whether and
how individuals are connected to one another through
the network).

Recent years however have witnessed a substantial new
movement in network research, with the focus shifting
away from the analysis of single small graphs and the
properties of individual vertices or edges within such
graphs to consideration of large-scale statistical proper-
ties of graphs. This new approach has been driven largely
by the availability of computers and communication net-
works that allow us to gather and analyze data on a
scale far larger than previously possible. Where stud-
ies used to look at networks of maybe tens or in extreme
cases hundreds of vertices, it is not uncommon now to see
networks with millions or even billions of vertices. This
change of scale forces upon us a corresponding change in
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FIG. 1 A small example network with eight vertices and ten
edges.

our analytic approach. Many of the questions that might
previously have been asked in studies of small networks
are simply not useful in much larger networks. A social
network analyst might have asked, “Which vertex in this
network would prove most crucial to the network’s con-
nectivity if it were removed?” But such a question has
little meaning in most networks of a million vertices—no
single vertex in such a network will have much effect at all
when removed. On the other hand, one could reasonably
ask a question like, “What percentage of vertices need to
be removed to substantially affect network connectivity
in some given way?” and this type of statistical question
has real meaning even in a very large network.

However, there is another reason why our approach
to the study of networks has changed in recent years, a
reason whose importance should not be underestimated,
although it often is. For networks of tens or hundreds
of vertices, it is a relatively straightforward matter to
draw a picture of the network with actual points and lines
(Fig. 2) and to answer specific questions about network
structure by examining this picture. This has been one of
the primary methods of network analysts since the field
began. The human eye is an analytic tool of remarkable
power, and eyeballing pictures of networks is an excellent
way to gain an understanding of their structure. With
a network of a million or a billion vertices however, this
approach is useless. One simply cannot draw a mean-
ingful picture of a million vertices, even with modern 3D
computer rendering tools, and therefore direct analysis
by eye is hopeless. The recent development of statistical
methods for quantifying large networks is to a large ex-
tent an attempt to find something to play the part played
by the eye in the network analysis of the twentieth cen-
tury. Statistical methods answer the question, “How can
I tell what this network looks like, when I can’t actually
look at it?”

The body of theory that is the primary focus of this
review aims to do three things. First, it aims to find sta-
tistical properties, such as path lengths and degree distri-
butions, that characterize the structure and behavior of
networked systems, and to suggest appropriate ways to
measure these properties. Second, it aims to create mod-
els of networks that can help us to understand the mean-
ing of these properties—how they came to be as they are,
and how they interact with one another. Third, it aims
to predict what the behavior of networked systems will
be on the basis of measured structural properties and the
local rules governing individual vertices. How for exam-
ple will network structure affect traffic on the Internet, or
the performance of a Web search engine, or the dynamics
of social or biological systems? As we will see, the scien-
tific community has, by drawing on ideas from a broad
variety of disciplines, made an excellent start on the first
two of these aims, the characterization and modeling of
network structure. Studies of the effects of structure on
system behavior on the other hand are still in their in-
fancy. It remains to be seen what the crucial theoretical
developments will be in this area.
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FIG. 2 Three examples of the kinds of networks that are the topic of this review. (a) A food web of predator-prey interactions
between species in a freshwater lake [272]. Picture courtesy of Neo Martinez and Richard Williams. (b) The network of
collaborations between scientists at a private research institution [171]. (c) A network of sexual contacts between individuals
in the study by Potterat et al. [342].

A. Types of networks

A set of vertices joined by edges is only the simplest
type of network; there are many ways in which networks
may be more complex than this (Fig. 3). For instance,
there may be more than one different type of vertex in a
network, or more than one different type of edge. And
vertices or edges may have a variety of properties, nu-
merical or otherwise, associated with them. Taking the
example of a social network of people, the vertices may
represent men or women, people of different nationalities,
locations, ages, incomes, or many other things. Edges
may represent friendship, but they could also represent
animosity, or professional acquaintance, or geographical
proximity. They can carry weights, representing, say,
how well two people know each other. They can also be
directed, pointing in only one direction. Graphs com-
posed of directed edges are themselves called directed

graphs or sometimes digraphs, for short. A graph rep-
resenting telephone calls or email messages between in-
dividuals would be directed, since each message goes in
only one direction. Directed graphs can be either cyclic,
meaning they contain closed loops of edges, or acyclic
meaning they do not. Some networks, such as food webs,
are approximately but not perfectly acyclic.

One can also have hyperedges—edges that join more
than two vertices together. Graphs containing such edges
are called hypergraphs. Hyperedges could be used to in-
dicate family ties in a social network for example—n in-
dividuals connected to each other by virtue of belonging
to the same immediate family could be represented by
an n-edge joining them. Graphs may also be naturally
partitioned in various ways. We will see a number of
examples in this review of bipartite graphs: graphs that
contain vertices of two distinct types, with edges running
only between unlike types. So-called affiliation networks
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FIG. 3 Examples of various types of networks: (a) an undi-
rected network with only a single type of vertex and a single
type of edge; (b) a network with a number of discrete ver-
tex and edge types; (c) a network with varying vertex and
edge weights; (d) a directed network in which each edge has
a direction.

in which people are joined together by common member-
ship of groups take this form, the two types of vertices
representing the people and the groups. Graphs may also
evolve over time, with vertices or edges appearing or dis-
appearing, or values defined on those vertices and edges
changing. And there are many other levels of sophistica-
tion one can add. The study of networks is by no means
a complete science yet, and many of the possibilities have
yet to be explored in depth, but we will see examples of
at least some of the variations described here in the work
reviewed in this paper.

The jargon of the study of networks is unfortunately
confused by differing usages among investigators from
different fields. To avoid (or at least reduce) confusion,
we give in Table I a short glossary of terms as they are
used in this paper.

B. Other resources

A number of other reviews of this area have appeared
recently, which the reader may wish to consult. Albert
and Barabási [13] and Dorogovtsev and Mendes [120]
have given extensive pedagogical reviews focusing on the
physics literature. Both devote the larger part of their at-
tention to the models of growing graphs that we describe
in Sec. VII. Shorter reviews taking other viewpoints have
been given by Newman [309] and Hayes [189, 190], who
both concentrate on the so-called “small-world” models
(see Sec. VI), and by Strogatz [387], who includes an in-
teresting discussion of the behavior of dynamical systems
on networks.

A number of books also make worthwhile reading.
Dorogovtsev and Mendes [122] have expanded their
above-mentioned review into a book, which again fo-
cuses on models of growing graphs. The edited volumes
by Bornholdt and Schuster [70] and by Pastor-Satorras

and Rubi [330] both contain contributed essays on var-
ious topics by leading researchers. Detailed treatments
of many of the topics covered in the present work can be
found there. The book by Newman et al. [320] is a col-
lection of previously published papers, and also contains
some review material by the editors.

Three popular books on the subject of networks merit
a mention. Albert-László Barabási’s Linked [31] gives
a personal account of recent developments in the study
of networks, focusing particularly on Barabási’s work on
scale-free networks. Duncan Watts’s Six Degrees [414]
gives a sociologist’s view, partly historical, of discoveries
old and new. Mark Buchanan’s Nexus [76] gives an en-
tertaining portrait of the field from the point of view of
a science journalist.

Farther afield, there are a variety of books on the study
of networks in particular fields. Within graph theory the
books by Harary [188] and by Bollobás [62] are widely
cited and among social network theorists the books by
Wasserman and Faust [409] and by Scott [363]. The book
by Ahuja et al. [7] is a useful source for information on
network algorithms.

C. Outline of the review

The outline of this paper is as follows. In Sec. II we de-
scribe empirical studies of the structure of networks, in-
cluding social networks, information networks, technolog-
ical networks and biological networks. In Sec. III we de-
scribe some of the common properties that are observed
in many of these networks, how they are measured, and
why they are believed to be important for the functioning
of networked systems. Sections IV to VII form the heart
of the review. They describe work on the mathematical
modeling of networks, including random graph models
and their generalizations, exponential random graphs,
p∗ models and Markov graphs, the small-world model
and its variations, and models of growing graphs includ-
ing preferential attachment models and their many vari-
ations. In Sec. VIII we discuss the progress, such as it
is, that has been made on the study of processes taking
place on networks, including epidemic processes, network
failure, models displaying phase transitions, and dynam-
ical systems like random Boolean networks and cellular
automata. In Sec. IX we give our conclusions and point
to directions for future research.

II. NETWORKS IN THE REAL WORLD

In this section we look at what is known about the
structure of networks of different types. Recent work
on the mathematics of networks has been driven largely
by observations of the properties of actual networks and
attempts to model them, so network data are the ob-
vious starting point for a review such as this. It also
makes sense to examine simultaneously data from dif-
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Vertex (pl. vertices): The fundamental unit of a network, also called a site
(physics), a node (computer science), or an actor (sociology).

Edge: The line connecting two vertices. Also called a bond (physics), a link
(computer science), or a tie (sociology).

Directed/undirected: An edge is directed if it runs in only one direction (such
as a one-way road between two points), and undirected if it runs in both directions.
Directed edges, which are sometimes called arcs, can be thought of as sporting arrows
indicating their orientation. A graph is directed if all of its edges are directed. An
undirected graph can be represented by a directed one having two edges between each
pair of connected vertices, one in each direction.

Degree: The number of edges connected to a vertex. Note that the degree is not
necessarily equal to the number of vertices adjacent to a vertex, since there may be
more than one edge between any two vertices. In a few recent articles, the degree
is referred to as the “connectivity” of a vertex, but we avoid this usage because the
word connectivity already has another meaning in graph theory. A directed graph
has both an in-degree and an out-degree for each vertex, which are the numbers of
in-coming and out-going edges respectively.

Component: The component to which a vertex belongs is that set of vertices
that can be reached from it by paths running along edges of the graph. In a directed
graph a vertex has both an in-component and an out-component, which are the sets
of vertices from which the vertex can be reached and which can be reached from it.

Geodesic path: A geodesic path is the shortest path through the network from
one vertex to another. Note that there may be and often is more than one geodesic
path between two vertices.

Diameter: The diameter of a network is the length (in number of edges) of the
longest geodesic path between any two vertices. A few authors have also used this
term to mean the average geodesic distance in a graph, although strictly the two
quantities are quite distinct.

TABLE I A short glossary of terms.

ferent kinds of networks. One of the principal thrusts
of recent work in this area, inspired particularly by a
groundbreaking 1998 paper by Watts and Strogatz [416],
has been the comparative study of networks from dif-
ferent branches of science, with emphasis on properties
that are common to many of them and the mathematical
developments that mirror those properties. We here di-
vide our summary into four loose categories of networks:
social networks, information networks, technological net-
works and biological networks.

A. Social networks

A social network is a set of people or groups of peo-
ple with some pattern of contacts or interactions be-
tween them [363, 409]. The patterns of friendships be-
tween individuals [296, 348], business relationships be-
tween companies [269, 286], and intermarriages between
families [327] are all examples of networks that have been
studied in the past.1 Of the academic disciplines the so-

1 Occasionally social networks of animals have been investigated
also, such as dolphins [96], not to mention networks of fictional

cial sciences have the longest history of the substantial
quantitative study of real-world networks [162, 363]. Of
particular note among the early works on the subject are:
Jacob Moreno’s work in the 1920s and 30s on friend-
ship patterns within small groups [296]; the so-called
“southern women study” of Davis et al. [103], which
focused on the social circles of women in an unnamed
city in the American south in 1936; the study by El-
ton Mayo and colleagues of social networks of factory
workers in the late 1930s in Chicago [357]; the mathe-
matical models of Anatol Rapoport [346], who was one
of the first theorists, perhaps the first, to stress the im-
portance of the degree distribution in networks of all
kinds, not just social networks; and the studies of friend-
ship networks of school children by Rapoport and oth-
ers [149, 348]. In more recent years, studies of business
communities [167, 168, 269] and of patterns of sexual
contacts [45, 218, 243, 266, 303, 342] have attracted par-
ticular attention.

Another important set of experiments are the famous

characters, such as the protagonists of Tolstoy’s Anna Karen-
ina [244] or Marvel Comics superheroes [10].
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“small-world” experiments of Milgram [283, 393]. No ac-
tual networks were reconstructed in these experiments,
but nonetheless they tell us about network structure.
The experiments probed the distribution of path lengths
in an acquaintance network by asking participants to pass
a letter2 to one of their first-name acquaintances in an at-
tempt to get it to an assigned target individual. Most of
the letters in the experiment were lost, but about a quar-
ter reached the target and passed on average through the
hands of only about six people in doing so. This exper-
iment was the origin of the popular concept of the “six
degrees of separation,” although that phrase did not ap-
pear in Milgram’s writing, being coined some decades
later by Guare [183]. A brief but useful early review of
Milgram’s work and work stemming from it was given by
Garfield [169].

Traditional social network studies often suffer from
problems of inaccuracy, subjectivity, and small sample
size. With the exception of a few ingenious indirect
studies such as Milgram’s, data collection is usually car-
ried out by querying participants directly using question-
naires or interviews. Such methods are labor-intensive
and therefore limit the size of the network that can be
observed. Survey data are, moreover, influenced by sub-
jective biases on the part of respondents; how one re-
spondent defines a friend for example could be quite dif-
ferent from how another does. Although much effort is
put into eliminating possible sources of inconsistency, it
is generally accepted that there are large and essentially
uncontrolled errors in most of these studies. A review of
the issues has been given by Marsden [271].

Because of these problems many researchers have
turned to other methods for probing social networks.
One source of copious and relatively reliable data is col-
laboration networks. These are typically affiliation net-
works in which participants collaborate in groups of one
kind or another, and links between pairs of individuals
are established by common group membership. A classic,
though rather frivolous, example of such a network is the
collaboration network of film actors, which is thoroughly
documented in the online Internet Movie Database.3 In
this network actors collaborate in films and two actors
are considered connected if they have appeared in a film
together. Statistical properties of this network have been
analyzed by a number of authors [4, 20, 323, 416]. Other
examples of networks of this type are networks of com-
pany directors, in which two directors are linked if they
belong to the same board of directors [104, 105, 269],
networks of coauthorship among academics, in which in-
dividuals are linked if they have coauthored one or more
papers [36, 43, 68, 107, 182, 279, 292, 311–313], and
coappearance networks in which individuals are linked
by mention in the same context, particularly on Web

2 Actually a folder containing several documents.
3 http://www.imdb.com/

pages [3, 227] or in newspaper articles [99] (see Fig. 2b).
Another source of reliable data about personal connec-

tions between people is communication records of cer-
tain kinds. For example, one could construct a network
in which each (directed) edge between two people rep-
resented a letter or package sent by mail from one to
the other. No study of such a network has been pub-
lished as far as we are aware, but some similar things
have. Aiello et al. [8, 9] have analyzed a network of
telephone calls made over the AT&T long-distance net-
work on a single day. The vertices of this network repre-
sent telephone numbers and the directed edges calls from
one number to another. Even for just a single day this
graph is enormous, having about 50 million vertices, one
of the largest graphs yet studied after the graph of the
World Wide Web. Ebel et al. [136] have reconstructed
the pattern of email communications between five thou-
sand students at Kiel University from logs maintained
by email servers. In this network the vertices repre-
sent email addresses and directed edges represent a mes-
sage passing from one address to another. Email net-
works have also been studied by Newman et al. [321]
and by Guimerà et al. [185], and similar networks have
been constructed for an “instant messaging” system by
Smith [371], and for an Internet community Web site by
Holme et al. [196]. Dodds et al. [110] have carried out
an email version of Milgram’s small-world experiment in
which participants were asked to forward an email mes-
sage to one of their friends in an effort to get the message
ultimately to some chosen target individual. Response
rates for the experiment were quite low, but a few hun-
dred completed chains of messages were recorded, enough
to allow various statistical analyses.

B. Information networks

Our second network category is what we will call in-
formation networks (also sometimes called “knowledge
networks”). The classic example of an information net-
work is the network of citations between academic pa-
pers [138]. Most learned articles cite previous work by
others on related topics. These citations form a network
in which the vertices are articles and a directed edge from
article A to article B indicates that A cites B. The struc-
ture of the citation network then reflects the structure of
the information stored at its vertices, hence the term “in-
formation network,” although certainly there are social
aspects to the citation patterns of papers too [420].

Citation networks are acyclic (see Sec. I.A) because
papers can only cite other papers that have already been
written, not those that have yet to be written. Thus all
edges in the network point backwards in time, making
closed loops impossible, or at least extremely rare (see
Fig. 4).

As an object of scientific study, citation networks have
a great advantage in the copious and accurate data avail-
able for them. Quantitative study of publication patterns



II Networks in the real world 7

World−Wide Webcitation network

FIG. 4 The two best studied information networks. Left: the
citation network of academic papers in which the vertices are
papers and the directed edges are citations of one paper by
another. Since papers can only cite those that came before
them (lower down in the figure) the graph is acyclic—it has
no closed loops. Right: the World Wide Web, a network of
text pages accessible over the Internet, in which the vertices
are pages and the directed edges are hyperlinks. There are
no constraints on the Web that forbid cycles and hence it is
in general cyclic.

stretches back at least as far as Alfred Lotka’s ground-
breaking 1926 discovery of the so-called Law of Scien-
tific Productivity, which states that the distribution of
the numbers of papers written by individual scientists
follows a power law. That is, the number of scientists
who have written k papers falls off as k−α for some con-
stant α. (In fact, this result extends to the arts and
humanities as well.) The first serious work on citation
patterns was conducted in the 1960s as large citation
databases became available through the work of Eugene
Garfield and other pioneers in the field of bibliometrics.
The network formed by citations was discussed in an
early paper by Price [343], in which among other things,
the author points out for the first time that both the in-
and out-degree distributions of the network follow power
laws, a far-reaching discovery which we discuss further
in Sec. III.C. Many other studies of citation networks
have been performed since then, using the ever better
resources available in citation databases. Of particular
note are the studies by Seglen [364] and Redner [351].4

Another very important example of an information
network is the World Wide Web, which is a network of
Web pages containing information, linked together by hy-
perlinks from one page to another [203]. The Web should
not be confused with the Internet, which is a physical net-
work of computers linked together by optical fibre and

4 An interesting development in the study of citation pat-
terns has been the arrival of automatic citation “crawlers”
that construct citation networks from online papers. Exam-
ples include Citeseer (http://citeseer.nj.nec.com/), SPIRES
(http://www.slac.stanford.edu/spires/hep/) and Citebase
(http://citebase.eprints.org/).

other data connections.5 Unlike a citation network, the
World Wide Web is cyclic; there is no natural ordering
of sites and no constraints that prevent the appearance
of closed loops (Fig. 4). The Web has been very heavily
studied since its first appearance in the early 1990s, with
the studies by Albert et al. [14, 34], Kleinberg et al. [241],
and Broder et al. [74] being particularly influential. The
Web also appears to have power-law in- and out-degree
distributions (Sec. III.C), as well as a variety of other
interesting properties [2, 14, 74, 158, 241, 254].

One important point to notice about the Web is that
our data about it come from “crawls” of the network, in
which Web pages are found by following hyperlinks from
other pages [74]. Our picture of the network structure
of the World Wide Web is therefore necessarily biased.
A page will only be found if another page points to it,6
and in a crawl that covers only a part of the Web (as all
crawls do at present) pages are more likely to be found
the more other pages point to them [263]. This sug-
gests for instance that our measurements of the fraction
of pages with low in-degree might be an underestimate.7
This behavior contrasts with that of a citation network.
A paper can appear in the citation indices even if it has
never been cited (and in fact a plurality of papers in the
indices are never cited).

A few other examples of information networks have
been studied to a lesser extent. Jaffe and Trajten-
berg [207], for instance, have studied the network of ci-
tations between US patents, which is similar in some re-
spects to citations between academic papers. A number
of authors have looked at peer-to-peer networks [5, 6,
205], which are virtual networks of computers that al-
low sharing of files between computer users over local-
or wide-area networks. The network of relations be-
tween word classes in a thesaurus has been studied by
Knuth [244] and more recently by various other au-
thors [234, 304, 384]. This network can be looked upon as
an information network—users of a thesaurus “surf” the
network from one word to another looking for the par-
ticular word that perfectly captures the idea they have
in mind. However, it can also be looked at as a concep-
tual network representing the structure of the language,
or possibly even the mental constructs used to represent
the language. A number of other semantic word networks
have also been investigated [119, 157, 369, 384].

Preference networks provide an example of a bipartite

5 While the Web is primarily an information network, it, like cita-
tion networks, has social aspects to its structure also [3].

6 This is not always strictly true. Some Web search engines allow
the submission of pages by members of the public for inclusion in
databases, and such pages need not be the target of links from
any other pages. However, such pages also form a very small
fraction of all Web pages, and certainly the biases discussed here
remain very much present.

7 The degree distribution for the Web shown in Fig. 6 falls off
slightly at low values of the in-degree, which may perhaps reflect
this bias.
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information network. A preference network is a network
with two kinds of vertices representing individuals and
the objects of their preference, such as books or films,
with an edge connecting each individual to the books or
films they like. (Preference networks can also be weighted
to indicate strength of likes or dislikes.) A widely stud-
ied example of a preference network is the EachMovie
database of film preferences.8 Networks of this kind form
the basis for collaborative filtering algorithms and recom-
mender systems, which are techniques for predicting new
likes or dislikes based on comparison of individuals’ pref-
erences with those of others [176, 352, 367]. Collaborative
filtering has found considerable commercial success for
product recommendation and targeted advertising, par-
ticularly with online retailers. Preference networks can
also be thought of as social networks, linking not only
people to objects, but also people to other people with
similar preferences. This approach has been adopted oc-
casionally in the literature [227].

C. Technological networks

Our third class of networks is technological networks,
man-made networks designed typically for distribution
of some commodity or resource, such as electricity or in-
formation. The electric power grid is a good example.
This is a network of high-voltage three-phase transmis-
sion lines that spans a country or a portion of a coun-
try (as opposed to the local low-voltage a.c. power deliv-
ery lines that span individual neighborhoods). Statistical
studies of power grids have been made by, for example,
Watts and Strogatz [412, 416] and Amaral et al. [20].
Other distribution networks that have been studied in-
clude the network of airline routes [20], and networks
of roads [221], railways [262, 366] and pedestrian traf-
fic [87]. River networks could be regarded as a naturally
occurring form of distribution network (actually a collec-
tion network) [111, 270, 353, 356], as could the vascu-
lar networks discussed in Sec. II.D. The telephone net-
work and delivery networks such as those used by the
post-office or parcel delivery companies also fall into this
general category and are presumably studied within the
relevant corporations, if not yet by academic researchers.
(We distinguish here between the physical telephone net-
work of wires and cables and the network of who calls
whom, discussed in Sec. II.A.) Electronic circuits [155]
fall somewhere between distribution and communication
networks.

Another very widely studied technological network is
the Internet, i.e., the network of physical connections
between computers. Since there is a large and ever-
changing number of computers on the Internet, the struc-
ture of the network is usually examined at a coarse-

8 http://research.compaq.com/SRC/eachmovie/

grained level, either the level of routers, special-purpose
computers on the network that control the movement
of data, or “autonomous systems,” which are groups of
computers within which networking is handled locally,
but between which data flows over the public Internet.
The computers at a single company or university would
probably form a single autonomous system—autonomous
systems often correspond roughly with domain names.

In fact, the network of physical connections on the In-
ternet is not easy to discover since the infrastructure is
maintained by many separate organizations. Typically
therefore, researchers reconstruct the network by reason-
ing from large samples of point-to-point data routes. So-
called “traceroute” programs can report the sequence of
network nodes that a data packet passes through when
traveling between two points and if we assume an edge
in the network between any two consecutive nodes along
such a path then a sufficiently large sample of paths will
give us a fairly complete picture of the entire network.
There may however be some edges that never get sam-
pled, so the reconstruction is typically a good, but not
perfect, representation of the true physical structure of
the Internet. Studies of Internet structure have been car-
ried out by, among others, Faloutsos et al. [148], Broida
and Claffy [75] and Chen et al. [86].

D. Biological networks

A number of biological systems can be usefully rep-
resented as networks. Perhaps the classic example of
a biological network is the network of metabolic path-
ways, which is a representation of metabolic substrates
and products with directed edges joining them if a
known metabolic reaction exists that acts on a given
substrate and produces a given product. Most of us
will probably have seen at some point the giant maps of
metabolic pathways that many molecular biologists pin
to their walls.9 Studies of the statistical properties of
metabolic networks have been performed by, for example,
Jeong et al. [214, 340], Fell and Wagner [153, 405], and
Stelling et al. [383]. A separate network is the network
of mechanistic physical interactions between proteins (as
opposed to chemical reactions among metabolites), which
is usually referred to as a protein interaction network.
Interaction networks have been studied by a number of
authors [206, 212, 274, 376, 394].

Another important class of biological network is the
genetic regulatory network. The expression of a gene,
i.e., the production by transcription and translation of
the protein for which the gene codes, can be controlled

9 The standard chart of the metabolic network is somewhat mis-
leading. For reasons of clarity and aesthetics, many metabolites
appear in more than one place on the chart, so that some pairs
of vertices are actually the same vertex.
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by the presence of other proteins, both activators and in-
hibitors, so that the genome itself forms a switching net-
work with vertices representing the proteins and directed
edges representing dependence of protein production on
the proteins at other vertices. The statistical structure
of regulatory networks has been studied recently by vari-
ous authors [152, 184, 368]. Genetic regulatory networks
were in fact one of the first networked dynamical systems
for which large-scale modeling attempts were made. The
early work on random Boolean nets by Kauffman [224–
226] is a classic in this field, and anticipated recent de-
velopments by several decades.

Another much studied example of a biological network
is the food web, in which the vertices represent species
in an ecosystem and a directed edge from species A to
species B indicates that A preys on B [91, 339]—see
Fig. 2a. (Sometimes the relationship is drawn the other
way around, because ecologists tend to think in terms of
energy or carbon flows through food webs; a predator-
prey interaction is thus drawn as an arrow pointing from
prey to predator, indicating energy flow from prey to
predator when the prey is eaten.) Construction of com-
plete food webs is a laborious business, but a number
of quite extensive data sets have become available in
recent years [27, 177, 204, 272]. Statistical studies of
the topologies of food webs have been carried out by
Solé and Montoya [290, 375], Camacho et al. [82] and
Dunne et al. [132, 133, 423], among others. A particu-
larly thorough study of webs of plants and herbivores has
been conducted by Jordano et al. [219], which includes
statistics for no less than 53 different networks.

Neural networks are another class of biological net-
works of considerable importance. Measuring the topol-
ogy of real neural networks is extremely difficult, but has
been done successfully in a few cases. The best known
example is the reconstruction of the 282-neuron neural
network of the nematode C. Elegans by White et al. [421].
The network structure of the brain at larger scales than
individual neurons—functional areas and pathways—has
been investigated by Sporns et al. [379, 380].

Blood vessels and the equivalent vascular networks in
plants form the foundation for one of the most successful
theoretical models of the effects of network structure on
the behavior of a networked system, the theory of biolog-
ical allometry [29, 417, 418], although we are not aware
of any quantitative studies of their statistical structure.

Finally we mention two examples of networks from
the physical sciences, the network of free energy min-
ima and saddle points in glasses [130] and the network of
conformations of polymers and the transitions between
them [361], both of which appear to have some interest-
ing structural properties.

III. PROPERTIES OF NETWORKS

Perhaps the simplest useful model of a network is the
random graph, first studied by Rapoport [346, 347, 378]

and by Erdős and Rényi [141–143], which we describe in
Sec. IV.A. In this model, undirected edges are placed at
random between a fixed number n of vertices to create a
network in which each of the 1

2n(n− 1) possible edges is
independently present with some probability p, and the
number of edges connected to each vertex—the degree of
the vertex—is distributed according to a binomial distri-
bution, or a Poisson distribution in the limit of large n.
The random graph has been well studied by mathemati-
cians [63, 211, 223] and many results, both approximate
and exact, have been proved rigorously. Most of the inter-
esting features of real-world networks that have attracted
the attention of researchers in the last few years however
concern the ways in which networks are not like ran-
dom graphs. Real networks are non-random in some re-
vealing ways that suggest both possible mechanisms that
could be guiding network formation, and possible ways
in which we could exploit network structure to achieve
certain aims. In this section we describe some features
that appear to be common to networks of many different
types.

A. The small-world effect

In Sec. II.A we described the famous experiments car-
ried out by Stanley Milgram in the 1960s, in which let-
ters passed from person to person were able to reach a
designated target individual in only a small number of
steps—around six in the published cases. This result is
one of the first direct demonstrations of the small-world
effect, the fact that most pairs of vertices in most net-
works seem to be connected by a short path through the
network.

The existence of the small-world effect had been specu-
lated upon before Milgram’s work, notably in a remark-
able 1929 short story by the Hungarian writer Frigyes
Karinthy [222], and more rigorously in the mathematical
work of Pool and Kochen [341] which, although published
after Milgram’s studies, was in circulation in preprint
form for a decade before Milgram took up the problem.
Nowadays, the small-world effect has been studied and
verified directly in a large number of different networks.

Consider an undirected network, and let us define "
to be the mean geodesic (i.e., shortest) distance between
vertex pairs in a network:

" =
1

1
2n(n + 1)

∑

i≥j

dij , (1)

where dij is the geodesic distance from vertex i to ver-
tex j. Notice that we have included the distance from
each vertex to itself (which is zero) in this average. This
is mathematically convenient for a number of reasons,
but not all authors do it. In any case, its inclusion simply
multiplies " by (n− 1)/(n + 1) and hence gives a correc-
tion of order n−1, which is often negligible for practical
purposes.
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network type n m z ! α C(1) C(2) r Ref(s).
so

ci
al

film actors undirected 449 913 25 516 482 113.43 3.48 2.3 0.20 0.78 0.208 20, 416

company directors undirected 7 673 55 392 14.44 4.60 – 0.59 0.88 0.276 105, 323

math coauthorship undirected 253 339 496 489 3.92 7.57 – 0.15 0.34 0.120 107, 182

physics coauthorship undirected 52 909 245 300 9.27 6.19 – 0.45 0.56 0.363 311, 313

biology coauthorship undirected 1 520 251 11 803 064 15.53 4.92 – 0.088 0.60 0.127 311, 313

telephone call graph undirected 47 000 000 80 000 000 3.16 2.1 8, 9

email messages directed 59 912 86 300 1.44 4.95 1.5/2.0 0.16 136

email address books directed 16 881 57 029 3.38 5.22 – 0.17 0.13 0.092 321

student relationships undirected 573 477 1.66 16.01 – 0.005 0.001 −0.029 45

sexual contacts undirected 2 810 3.2 265, 266

in
fo

rm
at

io
n WWW nd.edu directed 269 504 1 497 135 5.55 11.27 2.1/2.4 0.11 0.29 −0.067 14, 34

WWW Altavista directed 203 549 046 2 130 000 000 10.46 16.18 2.1/2.7 74

citation network directed 783 339 6 716 198 8.57 3.0/– 351

Roget’s Thesaurus directed 1 022 5 103 4.99 4.87 – 0.13 0.15 0.157 244

word co-occurrence undirected 460 902 17 000 000 70.13 2.7 0.44 119, 157

te
ch

n
ol

og
ic

al

Internet undirected 10 697 31 992 5.98 3.31 2.5 0.035 0.39 −0.189 86, 148

power grid undirected 4 941 6 594 2.67 18.99 – 0.10 0.080 −0.003 416

train routes undirected 587 19 603 66.79 2.16 – 0.69 −0.033 366

software packages directed 1 439 1 723 1.20 2.42 1.6/1.4 0.070 0.082 −0.016 318

software classes directed 1 377 2 213 1.61 1.51 – 0.033 0.012 −0.119 395

electronic circuits undirected 24 097 53 248 4.34 11.05 3.0 0.010 0.030 −0.154 155

peer-to-peer network undirected 880 1 296 1.47 4.28 2.1 0.012 0.011 −0.366 6, 354

b
io

lo
gi

ca
l

metabolic network undirected 765 3 686 9.64 2.56 2.2 0.090 0.67 −0.240 214

protein interactions undirected 2 115 2 240 2.12 6.80 2.4 0.072 0.071 −0.156 212

marine food web directed 135 598 4.43 2.05 – 0.16 0.23 −0.263 204

freshwater food web directed 92 997 10.84 1.90 – 0.20 0.087 −0.326 272

neural network directed 307 2 359 7.68 3.97 – 0.18 0.28 −0.226 416, 421

TABLE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices n; total
number of edges m; mean degree z; mean vertex–vertex distance !; exponent α of degree distribution if the distribution follows a power law (or “–” if not; in/out-degree
exponents are given for directed graphs); clustering coefficient C (1) from Eq. (3); clustering coefficient C(2) from Eq. (6); and degree correlation coefficient r, Sec. III.F.
The last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.
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The quantity ! can be measured for a network of n ver-
tices and m edges in time O(mn) using simple breadth-
first search [7], also called a “burning algorithm” in the
physics literature. In Table II, we show values of ! taken
from the literature for a variety of different networks. As
the table shows, the values are in all cases quite small—
much smaller than the number n of vertices, for instance.

The definition (1) of ! is problematic in networks that
have more than one component. In such cases, there
exist vertex pairs that have no connecting path. Con-
ventionally one assigns infinite geodesic distance to such
pairs, but then the value of ! also becomes infinite. To
avoid this problem one usually defines ! on such networks
to be the mean geodesic distance between all pairs that
have a connecting path. Pairs that fall in two different
components are excluded from the average. The figures
in Table II were all calculated in this way. An alterna-
tive and perhaps more satisfactory approach is to define !
to be the “harmonic mean” geodesic distance between all
pairs, i.e., the reciprocal of the average of the reciprocals:

!−1 =
1

1
2n(n + 1)

∑

i≥j

d−1
ij . (2)

Infinite values of dij then contribute nothing to the sum.
This approach has been adopted only occasionally in net-
work calculations [260], but perhaps should be used more
often.

The small-world effect has obvious implications for the
dynamics of processes taking place on networks. For
example, if one considers the spread of information, or
indeed anything else, across a network, the small-world
effect implies that that spread will be fast on most real-
world networks. If it takes only six steps for a rumor
to spread from any person to any other, for instance,
then the rumor will spread much faster than if it takes
a hundred steps, or a million. This affects the number
of “hops” a packet must make to get from one computer
to another on the Internet, the number of legs of a jour-
ney for an air or train traveler, the time it takes for a
disease to spread throughout a population, and so forth.
The small-world effect also underlies some well-known
parlor games, particularly the calculation of Erdős num-
bers [107] and Bacon numbers.10

On the other hand, the small-world effect is also math-
ematically obvious. If the number of vertices within a
distance r of a typical central vertex grows exponentially
with r—and this is true of many networks, including the
random graph (Sec. IV.A)—then the value of ! will in-
crease as log n. In recent years the term “small-world
effect” has thus taken on a more precise meaning: net-
works are said to show the small-world effect if the value
of ! scales logarithmically or slower with network size for
fixed mean degree. Logarithmic scaling can be proved

10 http://www.cs.virginia.edu/oracle/

FIG. 5 Illustration of the definition of the clustering coeffi-
cient C, Eq. (3). This network has one triangle and eight
connected triples, and therefore has a clustering coefficient of
3 × 1/8 = 3

8 . The individual vertices have local clustering
coefficients, Eq. (5), of 1, 1, 1

6 , 0 and 0, for a mean value,
Eq. (6), of C = 13

30 .

for a variety of network models [61, 63, 88, 127, 164]
and has also been observed in various real-world net-
works [13, 312, 313]. Some networks have mean vertex–
vertex distances that increase slower than log n. Bollobás
and Riordan [64] have shown that networks with power-
law degree distributions (Sec. III.C) have values of ! that
increase no faster than log n/ log log n (see also Ref. 164),
and Cohen and Havlin [95] have given arguments that
suggest that the actual variation may be slower even than
this.

B. Transitivity or clustering

A clear deviation from the behavior of the random
graph can be seen in the property of network transitivity,
sometimes also called clustering, although the latter term
also has another meaning in the study of networks (see
Sec. III.G) and so can be confusing. In many networks
it is found that if vertex A is connected to vertex B and
vertex B to vertex C, then there is a heightened proba-
bility that vertex A will also be connected to vertex C.
In the language of social networks, the friend of your
friend is likely also to be your friend. In terms of network
topology, transitivity means the presence of a heightened
number of triangles in the network—sets of three vertices
each of which is connected to each of the others. It can
be quantified by defining a clustering coefficient C thus:

C =
3× number of triangles in the network
number of connected triples of vertices

, (3)

where a “connected triple” means a single vertex with
edges running to an unordered pair of others (see Fig. 5).

In effect, C measures the fraction of triples that have
their third edge filled in to complete the triangle. The
factor of three in the numerator accounts for the fact that
each triangle contributes to three triples and ensures that
C lies in the range 0 ≤ C ≤ 1. In simple terms, C is
the mean probability that two vertices that are network
neighbors of the same other vertex will themselves be
neighbors. It can also be written in the form

C =
6× number of triangles in the network

number of paths of length two
, (4)
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where a path of length two refers to a directed path start-
ing from a specified vertex. This definition shows that C
is also the mean probability that the friend of your friend
is also your friend.

The definition of C given here has been widely used
in the sociology literature, where it is referred to as the
“fraction of transitive triples.”11 In the mathematical
and physical literature it seems to have been first dis-
cussed by Barrat and Weigt [40].

An alternative definition of the clustering coefficient,
also widely used, has been given by Watts and Stro-
gatz [416], who proposed defining a local value

Ci =
number of triangles connected to vertex i

number of triples centered on vertex i
. (5)

For vertices with degree 0 or 1, for which both numerator
and denominator are zero, we put Ci = 0. Then the
clustering coefficient for the whole network is the average

C =
1
n

∑

i

Ci. (6)

This definition effectively reverses the order of the oper-
ations of taking the ratio of triangles to triples and of
averaging over vertices—one here calculates the mean of
the ratio, rather than the ratio of the means. It tends
to weight the contributions of low-degree vertices more
heavily, because such vertices have a small denominator
in Eq. (5) and hence can give quite different results from
Eq. (3). In Table II we give both measures for a number
of networks (denoted C(1) and C(2) in the table). Nor-
mally our first definition (3) is easier to calculate analyt-
ically, but (6) is easily calculated on a computer and has
found wide use in numerical studies and data analysis. It
is important when reading (or writing) literature in this
area to be clear about which definition of the clustering
coefficient is in use. The difference between the two is
illustrated in Fig. 5.

The local clustering Ci above has been used quite
widely in its own right in the sociological literature,
where it is referred to as the “network density” [363].
Its dependence on the degree ki of the central ver-
tex i has been studied by Dorogovtsev et al. [113] and
Szabó et al. [389]; both groups found that Ci falls
off with ki approximately as k−1

i for certain models
of scale-free networks (Sec. III.C.1). Similar behavior
has also been observed empirically in real-world net-
works [349, 350, 397].

In general, regardless of which definition of the clus-
tering coefficient is used, the values tend to be consid-
erably higher than for a random graph with a similar
number of vertices and edges. Indeed, it is suspected
that for many types of networks the probability that the

11 For example, the standard network analysis program UCInet in-
cludes a function to calculate this quantity for any network.

friend of your friend is also your friend should tend to
a non-zero limit as the network becomes large, so that
C = O(1) as n → ∞.12 On the random graph, by con-
trast, C = O(n−1) for large n (either definition of C)
and hence the real-world and random graph values can
be expected to differ by a factor of order n. This point
is discussed further in Sec. IV.A.

The clustering coefficient measures the density of tri-
angles in a network. An obvious generalization is to ask
about the density of longer loops also: loops of length
four and above. A number of authors have looked at such
higher order clustering coefficients [54, 79, 165, 172, 317],
although there is so far no clean theory, similar to a cu-
mulant expansion, that separates the independent contri-
butions of the various orders from one another. If more
than one edge is permitted between a pair of vertices,
then there is also a lower order clustering coefficient that
describes the density of loops of length two. This coeffi-
cient is particularly important in directed graphs where
the two edges in question can point in opposite directions.
The probability that two vertices in a directed network
point to each other is called the reciprocity and is often
measured in directed social networks [363, 409]. It has
been examined occasionally in other contexts too, such as
the World Wide Web [3, 137] and email networks [321].

C. Degree distributions

Recall that the degree of a vertex in a network is the
number of edges incident on (i.e., connected to) that
vertex. We define pk to be the fraction of vertices in
the network that have degree k. Equivalently, pk is the
probability that a vertex chosen uniformly at random
has degree k. A plot of pk for any given network can
be formed by making a histogram of the degrees of ver-
tices. This histogram is the degree distribution for the
network. In a random graph of the type studied by Erdős
and Rényi [141–143], each edge is present or absent with
equal probability, and hence the degree distribution is,
as mentioned earlier, binomial, or Poisson in the limit of
large graph size. Real-world networks are mostly found
to be very unlike the random graph in their degree dis-
tributions. Far from having a Poisson distribution, the
degrees of the vertices in most networks are highly right-
skewed, meaning that their distribution has a long right
tail of values that are far above the mean.

Measuring this tail is somewhat tricky. Although in
theory one just has to construct a histogram of the de-
grees, in practice one rarely has enough measurements to
get good statistics in the tail, and direct histograms are
thus usually rather noisy (see the histograms in Refs. 74,

12 An exception is scale-free networks with Ci ∼ k−1
i , as described

above. For such networks Eq. (3) tends to zero as n → ∞,
although Eq. (6) is still finite.
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148 and 343 for example). There are two accepted ways
to get around this problem. One is to constructed a his-
togram in which the bin sizes increase exponentially with
degree. For example the first few bins might cover de-
gree ranges 1, 2–3, 4–7, 8–15, and so on. The number of
samples in each bin is then divided by the width of the
bin to normalize the measurement. This method of con-
structing a histogram is often used when the histogram
is to be plotted with a logarithmic degree scale, so that
the widths of the bins will appear even. Because the bins
get wider as we get out into the tail, the problems with
statistics are reduced, although they are still present to
some extent as long as pk falls off faster than k−1, which
it must if the distribution is to be integrable.

An alternative way of presenting degree data is to make
a plot of the cumulative distribution function

Pk =
∞∑

k′=k

pk′ , (7)

which is the probability that the degree is greater than
or equal to k. Such a plot has the advantage that all the
original data are represented. When we make a conven-
tional histogram by binning, any differences between the
values of data points that fall in the same bin are lost.
The cumulative distribution function does not suffer from
this problem. The cumulative distribution also reduces
the noise in the tail. On the downside, the plot doesn’t
give a direct visualization of the degree distribution it-
self, and adjacent points on the plot are not statistically
independent, making correct fits to the data tricky.

In Fig. 6 we show cumulative distributions of degree
for a number of the networks described in Sec. II. As
the figure shows, the distributions are indeed all right-
skewed. Many of them follow power laws in their tails:
pk ∼ k−α for some constant exponent α. Note that such
power-law distributions show up as power laws in the
cumulative distributions also, but with exponent α − 1
rather than α:

Pk ∼
∞∑

k′=k

k′−α ∼ k−(α−1). (8)

Some of the other distributions have exponential tails:
pk ∼ e−k/κ. These also give exponentials in the cumula-
tive distribution, but with the same exponent:

Pk =
∞∑

k′=k

pk ∼
∞∑

k′=k

e−k′/κ ∼ e−k/κ. (9)

This makes power-law and exponential distributions par-
ticularly easy to spot experimentally, by plotting the cor-
responding cumulative distributions on logarithmic scales
(for power laws) or semi-logarithmic scales (for exponen-
tials).

For other types of networks degree distributions can
be more complicated. For bipartite graphs, for instance
(Sec. I.A), there are two degree distributions, one for each

type of vertex. For directed graphs each vertex has both
an in-degree and an out-degree, and the degree distribu-
tion therefore becomes a function pjk of two variables,
representing the fraction of vertices that simultaneously
have in-degree j and out-degree k. In empirical studies
of directed graphs like the Web, researchers have usually
given only the individual distributions of in- and out-
degree [14, 34, 74], i.e., the distributions derived by sum-
ming pjk over one or other of its indices. This however
discards much of the information present in the joint dis-
tribution. It has been found that in- and out-degrees are
quite strongly correlated in some networks [321], which
suggests that there is more to be gleaned from the joint
distribution than is normally appreciated.

1. Scale-free networks

Networks with power-law degree distributions have
been the focus of a great deal of attention in the lit-
erature [13, 120, 387]. They are sometimes referred to
as scale-free networks [32], although it is only their de-
gree distributions that are scale-free;13 one can and usu-
ally does have scales present in other network properties.
The earliest published example of a scale-free network is
probably Price’s network of citations between scientific
papers [343] (see Sec. II.B). He quoted a value of α = 2.5
to 3 for the exponent of his network. In a later paper he
quoted a more accurate figure of α = 3.04 [344]. He also
found a power-law distribution for the out-degree of the
network (number of bibliography entries in each paper),
although later work has called this into question [396].
More recently, power-law degree distributions have been
observed in a host of other networks, including no-
tably other citation networks [351, 364], the World Wide
Web [14, 34, 74], the Internet [86, 148, 401], metabolic
networks [212, 214], telephone call graphs [8, 9], and the
network of human sexual contacts [218, 266]. The de-
gree distributions of some of these networks are shown in
Fig. 6.

Other common functional forms for the degree distri-
bution are exponentials, such as those seen in the power
grid [20] and railway networks [366], and power laws with
exponential cutoffs, such as those seen in the network of
movie actors [20] and some collaboration networks [313].
Note also that while a particular form may be seen in the
degree distribution for the network as a whole, specific
subnetworks within the network can have other forms.
The World Wide Web, for instance, shows a power-law
degree distribution overall but unimodal distributions

13 The term “scale-free” refers to any functional form f(x) that re-
mains unchanged to within a multiplicative factor under a rescal-
ing of the independent variable x. In effect this means power-law
forms, since these are the only solutions to f(ax) = bf(x), and
hence “power-law” and “scale-free” are, for our purposes, syn-
onymous.
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FIG. 6 Cumulative degree distributions for six different networks. The horizontal axis for each panel is vertex degree k (or in-
degree for the citation and Web networks, which are directed) and the vertical axis is the cumulative probability distribution of
degrees, i.e., the fraction of vertices that have degree greater than or equal to k. The networks shown are: (a) the collaboration
network of mathematicians [182]; (b) citations between 1981 and 1997 to all papers cataloged by the Institute for Scientific
Information [351]; (c) a 300 million vertex subset of the World Wide Web, circa 1999 [74]; (d) the Internet at the level of
autonomous systems, April 1999 [86]; (e) the power grid of the western United States [416]; (f) the interaction network of
proteins in the metabolism of the yeast S. Cerevisiae [212]. Of these networks, three of them, (c), (d) and (f), appear to have
power-law degree distributions, as indicated by their approximately straight-line forms on the doubly logarithmic scales, and
one (b) has a power-law tail but deviates markedly from power-law behavior for small degree. Network (e) has an exponential
degree distribution (note the log-linear scales used in this panel) and network (a) appears to have a truncated power-law degree
distribution of some type, or possibly two separate power-law regimes with different exponents.

within domains [338].

2. Maximum degree

The maximum degree kmax of a vertex in a network
will in general depend on the size of the network. For
some calculations on networks the value of this maxi-
mum degree matters (see, for example, Sec. VIII.C.2).
In work on scale-free networks, Aiello et al. [8] assumed
that the maximum degree was approximately the value
above which there is less than one vertex of that degree in
the graph on average, i.e., the point where npk = 1. This
means, for instance, that kmax ∼ n1/α for the power-law
degree distribution pk ∼ k−α. This assumption however
can give misleading results; in many cases there will be
vertices in the network with significantly higher degree
than this, as discussed by Adamic et al. [6].

Given a particular degree distribution (and assuming
all degrees to be sampled independently from it, which
may not be true for networks in the real world), the prob-
ability of there being exactly m vertices of degree k and
no vertices of higher degree is

(n
m

)
pm

k (1−Pk)n−m, where

Pk is the cumulative probability distribution, Eq. (7).
Hence the probability hk that the highest degree on the
graph is k is

hk =
n∑

m=1

(
n

m

)
pm

k (1 − Pk)n−m

= (pk + 1 − Pk)n − (1 − Pk)n, (10)

and the expected value of the highest degree is kmax =∑
k khk.
For both small and large values of k, hk tends to zero,

and the sum over k is dominated by the terms close to the
maximum. Thus, in most cases, a good approximation
to the expected value of the maximum degree is given
by the modal value. Differentiating and observing that
dPk/dk = pk, we find that the maximum of hk occurs
when
(

dpk

dk
− pk

)
(pk +1−Pk)n−1 + pk(1−Pk)n−1 = 0, (11)

or kmax is a solution of

dpk

dk
# −np2

k, (12)


