Mid-term exam 2 for HF1013, Discrete Mathematics:TEN1, 5 CREDits, fall 2015

Solutions

1. If p and q are two different prime numbers, prove that there are always integers s, t such that

$$
\begin{equation*}
s p^{n}+t q^{n}=n \tag{1}
\end{equation*}
$$

for every integer n.
Solution: As p, q are different prime numbers they must be relatively prime, but the same must also apply to p^{n} and q^{n}, hence there exists integers, s^{\prime}, t^{\prime} such that

$$
s^{\prime} \cdot p^{n}+t^{\prime} \cdot q^{n}=1
$$

. But then, by simply putting $s=n \cdot s^{\prime}$ and $t=n \cdot t^{\prime}$ we obtain (1).
2. Use mathematical induction to show that 5 divides $n^{5}-n$ whenever n is a nonnegative integer.

Solution: Introduce the predicate $A(n)$ for the statement that 5 divides $n^{5}-n$. Now take the three steps in a proof by mathematical induction.

1. Check that $A(0)$ holds, that is check that $5 \mid 0^{5}-0$. But this clearly holds since it is the same thing as $5 \mid 0$ which is certainly true since 0 is divisible by any number.
2. Show that the implication $A(p) \Rightarrow A(p+1)$ is true for all $p \geq 0$. Assume that $A(p)$ holds, that is assume that there is a k such that $p^{5}-p=5 \cdot k$. We must now show that $A(p+1)$ that is there is a k^{\prime} such that $(p+1)^{5}-(p+1)=5 \cdot k^{\prime}$ for some k^{\prime}. Now
$(p+1)^{5}-(p+1)=p^{5}+5 p^{4}+10 p^{3}+10 p^{2}+5 p+1-p-1=p^{5}-p+5 \cdot\left(p^{4}+2 p^{3}+2 p^{2}+p\right)$.
We have yet not used the induction assumption, but we do that by replacing $p^{5}-p$ with $5 \cdot k$ in the expression above. This leads to
$(p+1)^{5}-(p+1)=5 \cdot k+5 \cdot\left(p^{4}+2 p^{3}+2 p^{2}+p\right)=5 \cdot\left(k+p^{4}+2 p^{3}+2 p^{2}+p\right)=5 \cdot k^{\prime}$
where $k^{\prime}=k+p^{4}+2 p^{3}+2 p^{2}+p$. This is just another way of saying that $5 \mid(p+1)^{5}-(p+1)$ which is precisely the statement $A(p+1)$. This means that we have shown that the implication $A(p) \Rightarrow A(p+1)$ is true for each $p \geq 1$.
3. Step 1 gives that $A(0)$ is true, by step 2 this implies that $A(1)$ is true which by step 2 again gives that $A(2)$ is true and so on showing, by the principle of mathematical induction (relying on step 1 and 2), that for each $n \geq 0$ the statement $A(n)$ is true which completes the proof.
