Solutions to Exam IK2514 - December 13, 2012

Problem 1 - Value of spectrum

This question deals with the value of spectrum assets and can be considered from a cost saving perspective and a revenue perspective. Since it is about auctions prices it is also related the market situation and competition.
Q1.1)
Lower frequencies ($700-900 \mathrm{MHz}$) provide better coverage, i.e. less number of sites are need to cover an area which makes these bands very attractive from a cost perspective. In addition "less" bandwidth is available below 1 GHz than above

Q1.2)

The EUR/MHz/pop normalizes the value with respect on potential revenues. More MHz means higher capacity and more users that can be served. Higher population means a larger market and potential revenues.
In the same way the revenues for operators depend on the time period (the license period) and the willingness (ability) to pay by end-users (how wealthy the country or users are). Hence, two aspects could be the GDP per capita and the length of the license period.

Problem 2 - Spectrum and spectrum efficiency

Demand per user $21,6 \mathrm{~GB} /$ month $=0,4 \mathrm{Mbps}$
Q2.1)
The femtocells support max 20 users, 20 * 0,4 $=8 \mathrm{Mbps}$ need to be supported With a spectral efficiency of $4 \mathrm{bps} / \mathrm{Hz}$ this means that 2 MHz is needed. Q2.2)
The macro sites can support 300 users => site capacity 300 * 0,4 = 120 Mbps Spectral efficiency $=$ Site capacity $/($ Bandwidth*No sectors) $=120 /(20 * 3)=2 \mathrm{bps} / \mathrm{Hz}$

Problem 3 -Termination charges, traffic balance, profitability and CAPEX

 Q3.1)In order to calculate the relation between termination revenues and voice revenues a number of calculations have to be made as the table shows. The termination balance is calculated by taking termination revenues minus termination cost. The numbers are a result of a series of calculations on total minutes as the table exhibits.

Q 3.2)

EBITDA is calculated by taking the average number of customers for each year multiplied with EUR 80, adding Opex, which is calculated by taking the Opex ratio multiplied with total revenues. EBITDA is then the resulted of revenues minus total cost, and the EBITDA margin is the ratio between EBITDA and total revenues.

Capex is a combination of maintenance capex and capex for new installations. The accumulated capex is developed as the table shows and the annual maintenance is the ratio of 5% which should be multiplied with the accumulated capex. Capex for new installations is the relation between the capex ratio and total revenues for each year. Finally, the free cash flow is the sum of EBITDA minus total capex for each year.

The table below shows all the necessary calculations to answer the three questions.

	2007	2008	2009	2010	2011
Subscribers	3900000	4000000	4200000	4410000	4630500
Change y-o-y			5\%	5\%	5\%
ARPU EUR		20	19	17	16
Change y-o-y			-7\%	-7\%	-7\%
Non-voice services as a share of revenues		15\%	17\%	19\%	21\%
Minutes of Use (incoming and outgoing)		200	210	221	232
Change y-o-y			5\%	5\%	5\%
Traffic balance voice calls					
Outgoing from mobile to fixed networks		15\%	15\%	13\%	10\%
Outgoing from mobile to mobile networks		15\%	17\%	20\%	23\%
On-net-traffic		30\%	33\%	37\%	40\%
Incoming from fixed networks		30\%	25\%	20\%	15\%
Incoming from mobile networks		10\%	10\%	10\%	12\%
Termination rates per minute					
Mobile termination rates EUR		0,030	0,020	0,015	0,010
Fixed termination rates EUR		0,009	0,007	0,006	0,005

Problem 4-Operator strategies

Q 4.1)
The main challenge for DTAC is to decide if the 3G deployment should be made in the own and new 2.1 GHz network to be built - with no revenue sharing, or in the existing 850 MHz network with existing sites and better coverage - but with the revenue sharing

Q 4.2)
Any well motivated strategy that applies to the DTAC situation provides some points. Examples are: to focus on deployment of 2.1 GHz or 850 MHz depending on demand, Key issue is that customers have to be moved to the new 2.1 GHz network

Q 4.3)

Any well motivated strategy that applies to TOTA and CAT provides some points. If the state owned operators TAT and CAT do not get new spectrum they can:

- Use existing spectrum and offer capacity on a whole sale basis to other MNOs and/or offer end-user services, marketing needed since low market share
- Start network sharing business for wholesale or consumer business
- Start tower companies and offer services to other MNOs
- Sell everything and withdraw from the market

Problem 5 - Dimensioning of data and voice capacity

Data services
Site capacity for data: 3 sectors*3 MHz*1,67 bps/Hz = 15 Mbps per site
Consumers 16 hours per day => ~ $25 \mathrm{kbps}(23 \mathrm{kbps})=>\sim 600$ users (653)
Business users 8 hours per day => ~100 kbps (92 kbps) => ~150 users (163)

Voice services

$1,8 \mathrm{MHz}=>9$ carriers, with re-use factor $3=>3$ carriers per sector
=> 24 voice channels (3 carriers*8 time slots) per sector (blocking occurs in sectors)
Consumers: 25 mE with 5\% blocking => ~19 Erlang
19Erl/25mErl => 760 users per sector => 2280 users per site
Business: 100 mE with 1% blocking $=>15,3$ Erlang
$15,3 \mathrm{Erl} / 1000 \mathrm{mErl}=>153$ users per sector $=>459$ users per site

Answer Q5.1)
Number of consumers per site $=\min (653,2280)=653$
Number of business users per site $=\min (163,459)=163$

Answer Q 5.2) Choose consumer service
Revenues from consumers $=653 * 30 €=19590 €$
Revenues from business users $=163 * 80 €=13040 €$

Answer Q5.3)
The dimensioning based on the assumptions indicates more voice users than data users. It implies un-used voice capacity. Hence allocate more spectrum to data services, then more data users (and total number of users) can be served meaning larger revenues.

