DD2459: Software Reliability, sofRel15

Lab 1: White-box Testing
Answer all 4 questions.

Introduction:

The triangle program is a famous testing problem that originated in Myers classical 1979
textbook on testing. It has appeared in many books and papers since, as it is often a good
benchmark for new ideas about testing. The program requirement is defined as follows:

“The program reads three integer values. The three values are interpreted as representing the
lengths of the sides of a triangle. The program prints a message that states whether the triangle
is scalene, isosceles, or equilateral” (Myers, page 1)

We need to recall some facts from elementary geometry:

1. Atriangle is a polygon with three sides.

2. The vertices of a triangle must not be in a straight line.

w

An equilateral triangle has three sides of equal length.
4. Anisosceles triangle has two sides of equal length.
5. Ascalene triangle has three sides of different lengths.
The Triangle Test algorithm below (hopefully) implements the requirement defined above.

enumeration Kind = { scalene, isosceles, equilateral, notriangle,
badside } // a data type definition

Kind triangleTest(sl, s2, s3 : int) {
if s1 <= 0 or s2 <= 0 or s3 <=0
then return badside
else
if sl+s2 <= s3 or s2+s3 <= sl or sl+s3 <= s2
then return notriangle

else

if sl==s2 & s2== s3

then
return equilateral

else
if sl==s2 or s2==s3 or sl==s3
then

return isosceles

else

return scalene

Question 1. Draw a condensation graph for the Triangle Test algorithm.

In this exercise, you will write out test requirements as paths through this condensation
graph to achieve different levels of control flow coverage.

Example: NCTR1: ny, ny, n3, Ny

is a test requirement that attempts to cover 4 nodes (which four?) in a condensation
graph for Algorithm 1, attempting to achieve node coverage.

1.1 (a) Write a set of test requirements that achieve node coverage (NC) for the Triangle
Test algorithm.
(b) Write out a minimized set of test cases satisfying the requirements of (a).

1.2. (a) Write out a set of test requirements that achieve edge coverage (EC) for the
Triangle Test algorithm.

(b) Write out a minimized corresponding set of test cases.

(c) Why are node coverage and edge coverage the same in this example?

Question 2. In this exercise, you will write out test requirements as logical constraints
on the input variable values s1, s2 and s3 to achieve different levels of logic coverage.

Example: PCTR1:s1<=0|s2<=0|s3<=0

is a test requirement that makes a predicate (which?) in a condensation graph for
Question 1, true, attempting to achieve predicate coverage.

Then you must write out a test case that satisfies each requirement. If you can minimize
the set of test cases by eliminating redundant test cases that is a (locally) optimal
solution. A test case satisfying requirement PC TR1 might be:

PCTC1:51=0,s2=0, s3=0

which satisfies this test requirement at a boundary.

2.1. (a) Write out a set of test requirements that achieve predicate coverage (PC) for
the Triangle test algorithm 1. (Recall that non-distributive predicate coverage is
sufficient here.)

(b) Can you modify the condensation graph in some simple way so that predicate
coverage and edge coverage (or node coverage) are not the same?
(c) Write out a corresponding set of test cases.

2.2. (a) Write out a set of test requirements that achieve clause coverage (CC) for the
Triangle Test Algorithm.
(b) Write out a corresponding set of test cases.

2.3. (a) Write out a set of test requirements that restricted active clause coverage
(RACC) (also known as MCDC) for the Triangle Test Algorithm.
(b) Write out a corresponding set of test cases.

Question 3. Consider the following piece of code:
X = x+1;
while(x<-100 |]||]| x>100) {

if(x<-100)then {x=x+1; }else

if (x>100)then {x=x-1; }

}
return Xx;
You can assume that x:int is the single input variable to the above program.

(a) Draw a condensation graph for this code.

(b) Define a minimal set TR of test requirements on the input variable x that would
achieve full (100%) node coverage for this program. Carefully explain why your
test requirement set is actually minimal.

(c) Produce a set TC of test cases that satisfy your test requirements for TR in Part
3.(b).

(d) Would predicate coverage yield a better test suite than your answer to 3.(c)?
Motivate your answer.

PTO.

Question 4. Self-Assessment

For each of the five sets of test cases you have produced in Questions 1 and 2 (i.e.
for each of the five coverage models NC, EC, PC, CC, RACC), answer the following 14
self assessment questions. For each coverage model, score 1 point for a requirement
that is satisfied (maximum 14 points). Which coverage model achieves the highest
score?

1. Do you have a test case that represents a valid scalene triangle?

2. Do you have a test case that represents a valid equilateral triangle?

3. Do you have a test case that represents a valid isosceles triangle?

4. Do you have at least three test cases that represent valid isosceles triangles such
that you have tried all three permutations of two equal sides?

5. Do you have a test case in which one side has a zero value?
6. Do you have a test case in which one side has a negative value?

7. Do you have a test case with three integers such that the sum of two is equal to
the third?

8. Do you have at least three test cases in category 7 such that you have tried all
three permutations where the length of one side is equal to the sum of the lengths of

the other two sides?

9. Do you have a test case with three integers greater than zero such that the sum of
two numbers is less than the third?

10. Do you have at least three test cases in category 9 such that you have tried all
three permutations

11. Do you have a test case in which all sides are zero?
12. Do you have at least one test case specifying non-integer values? *

13. Do you have at least one test case specifying the wrong number of values (2 or
less, four or more) **

14. For each test case, did you specify the expected output from the program in
addition to the input values?

Reference: G.J. Myers, The Art of Software Testing, John Wiley and Sons, 1979.

