SF1625 Envariabelanalys Lösningsförslag till tentamen 2016-01-11

Del A

1. We study the function f given by $f(x)=x-2 \arctan x$.
A. Determine the domain of definition of f.
B. Find the intervals where f is increasing and decreasing, respectively.
C. Find all local extreme values of f.
D. Find all asymptotes to the graph $y=f(x)$.
E. Sketch using the above the graph $y=f(x)$.

Lösning. A. We see that $f(x)$ is defined for all real x, and so the domain of definition is R.

B, C. We get $f^{\prime}(x)=1-\frac{2}{1+x^{2}}=\frac{x^{2}-1}{1+x^{2}}$ that exists for all x and is 0 iff $x= \pm 1$ Hence the critical points are $x= \pm 1$.
C. TWe study the sign of the derivative:

If $x<-1$ then $f^{\prime}(x)$ is positive. It follows that f is increasing.
If $-1<x<1$ then $f^{\prime}(x)$ is negative. It follows that f is decreasing.
If $x>1$ then $f^{\prime}(x)$ is positive. It follows that f is increasing.
We conclude that f has a local max at $x=-1$ and a local minimum at $x=1$ and no other local extreme values. The function values at these points are $f(-1)=-1+\pi / 2$ and $f(1)=1-\pi / 2$.
D. Since $\lim _{x \rightarrow \pm \infty} \arctan x= \pm \pi / 2$ we see that f has an asymptote $y=x-\pi$ at infinity and an asymptote $y=x+\pi$ at minus infinity.
E. We sketch the curve:

Svar: A. All x. B. Increasing on $x \leq-1$. Decreasing on $-1 \leq x \leq 1$. Increasing on $x \geq 1$. C. Local max at $x=-1$ and local min at $x=1$. D. $y=x-\pi$ at infinity and $y=x+\pi$ at minus infinity. E. Se above.
2. Compute the integrals:
A. $\int_{0}^{\ln 3} \frac{e^{x}}{1+e^{x}} d x \quad$ (you may want to use the substitution $u=1+e^{x}$)
B. $\int_{1}^{2} \frac{d x}{x^{2}-3 x-4} \quad$ (you may want to use partial fractions)

Lösning. A. Using $u=1+e^{x}$, with $e^{x} d x=d u$ and new interval of integration between 2 and 4, we get

$$
\int_{0}^{\ln 3} \frac{e^{x}}{1+e^{x}} d x=\int_{2}^{4} \frac{1}{u} d u=[\ln u]_{2}^{4}=\ln 2
$$

B. Since $x^{2}-3 x-4=(x+1)(x-4)$ we get the partial fraction expansion

$$
\frac{1}{x^{2}-3 x-4}=\frac{A}{x-4}+\frac{B}{x+1}
$$

where $A=1 / 5$ and $B=-1 / 5$. We compute the integral:

$$
\int_{1}^{2} \frac{d x}{x^{2}-3 x-4}=\int_{1}^{2}\left(\frac{1 / 5}{x-4}-\frac{1 / 5}{x+1}\right) d x=\frac{1}{5}[\ln |x-4|-\ln |x+1|]_{1}^{2}=\frac{2}{5} \ln \frac{2}{3}
$$

Svar: A. $\ln 2$
B. $\frac{2}{5} \ln \frac{2}{3}$
3. Find the solution to the differential equation

$$
2 y^{\prime \prime}(t)-20 y^{\prime}(t)+50 y(t)=t
$$

satisfying the initial conditions $y(0)=1 / 125$ och $y^{\prime}(0)=1$.
Lösning. The solution y has the structure $y=y_{h}+y_{p}$ where y_{h} is the complete solution to the corresponding homogeneous equation and y_{p} is some particular solution.

First we find y_{h}. The characteristic equation $2 r^{2}-20 r+50=0$ has the solution $r=5$, and so we get

$$
y_{h}(t)=(A+B t) e^{5 t} .
$$

Since the right hand side is a first degree polynomial we guess $y_{p}(t)=c t+d$. The derivative of this is c and the second derivative is zero and when we plug that into the differential equation we obtain $-20 c+50(c t+d)=t$, hence $c=1 / 50$ and $d=1 / 125$.

The solution to the differential equation is therefore

$$
y(t)=(A+B t) e^{5 t}+\frac{t}{50}+\frac{1}{125}
$$

The condition $y(0)=1 / 125$ yields $A=0$. The condition $y^{\prime}(0)=1$ then yields $B=$ 49/50.

The solution to differential equation satisfying the conditions is therefore

$$
y(t)=\frac{49 t}{50} e^{5 t}+\frac{t}{50}+\frac{1}{125} .
$$

Svar: $y(t)=\frac{49 t}{50} e^{5 t}+\frac{t}{50}+\frac{1}{125}$.

Del B

4. Compute the integral $\int_{0}^{1 / 2} \frac{1}{2+8 x^{2}} d x$.
(For a maximum score the integral should be computed exactly, but an approximation may be given a partial score. Simplify answer.)

Lösning. We observe that:

$$
\frac{1}{2+8 x^{2}}=\frac{1}{2} \cdot \frac{1}{1+(2 x)^{2}} .
$$

Now we can compute the integral:

$$
\int_{0}^{1 / 2} \frac{1}{2+8 x^{2}} d x=\frac{1}{2} \int_{0}^{1 / 2} \frac{1}{1+(2 x)^{2}} d x=\frac{1}{4}[\arctan (2 x)]_{0}^{1 / 2}=\frac{\pi}{16}
$$

Svar: $\pi / 16$
5. We study the equation $e^{x}+\arcsin x=0$.
A. For which real numbers x is the expression $e^{x}+\arcsin x$ defined?
B. Show that the equation $e^{x}+\arcsin x=0$ has exactly one solution.
C. Find an approximate value of the solution with an error less than 0.5 .

Lösning. The expression is defined for $-1 \leq x \leq 1$. Put $f(x)=e^{x}+\arcsin x$. The equation can then be written $f(x)=0$. The domain of definition of f is $-1 \leq x \leq 1$ and f is continuous on the closed and bounded interval. Since $f(-1)=e^{-1}-\pi / 2<0$ and $f(1)=e^{1}+\pi / 2>0$ the intermediate value theorem gurarantees a point x^{*} between -1 and 1 such that $f\left(x^{*}\right)=0$. In fact x^{*} must lie between -1 and 0 since $f(0)=1>0$. An approximation of x^{*} with an error less than 0.5 is therefore -0.5 .

Since $f^{\prime}(x)=e^{x}+\frac{1}{\sqrt{1-x^{2}}}$ is positive on the open interval, f is increasing. Therefore there cannot be more than one solution to the equation.

Svar: See the solution. Approximate value -0.5
6. A part of a sphere cut off by a plane is called a spherical cap.
A. Compute the volume of the spherical cap obtained by letting the area between the curve $y=\sqrt{100-x^{2}}$ and the x-axis, on the interval $10-h \leq x \leq 10$, rotate around the x-axis (we assume $0<h<10$).
B. A sphere with radius 10 meters is filled with water at the rate $0.2 \mathrm{~m}^{3}$ per minute.

At what speed is the surface rising at the time when the water depth h (at the deepest spot) is 2 meters? (Hint: from the solution of problem A you get that the volume V and the depth h satisfy $V=10 h^{2} \pi-h^{3} \pi / 3$.)
Lösning. A. According to the formula for volumes of revolution the volume V is given by

$$
V=\pi \int_{10-h}^{10}\left(100-x^{2}\right) d x=10 h^{2} \pi-\frac{h^{3} \pi}{3}
$$

B. We use the answer to A and get that the volume V when the depth is h is given by

$$
V=10 h^{2} \pi-\frac{h^{3} \pi}{3}
$$

where both V and h depend on t. We differentiate with respect to t and get

$$
\frac{d V}{d t}=20 h \pi \frac{d h}{d t}-h^{2} \pi \frac{d h}{d t}
$$

We know the the volume changes by 0.2 m 3 per minute, and so $d V / d t=0.2$. We need to find $d h / d t$ when $h=2$. When $h=2$ we see that

$$
0.2=40 \pi \frac{d h}{d t}-4 \pi \frac{d h}{d t}
$$

and so

$$
\frac{d h}{d t}=\frac{1}{180 \pi} \text { meters per minute. }
$$

Svar: A. $10 h^{2} \pi-\frac{h^{3} \pi}{3}$
B. $1 / 180 \pi$ meters per minute

Del C

7. This problem is about the theory of the concepts continuity and differentiability.
A. Define what it means for a function to be continuous at a point a.
B. Define what it means for a function to be differentiable at a point a.
C. Prove that a function differentiable at a must be continuous at a.
D. Give an example showing that a continuous function does not have to be differentiable.

Lösning. See the text book.

Svar: See the text book.
8. We study the function f given by $f(x)=x^{2}+\int_{0}^{x} \sin ^{2} t d t$.
A. Compute the Taylor polynomial of degree 2 of f around the point $x=0$.
B. State the error term and show that it is bounded for $|x| \leq 1$.
C. Compute the limit $\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}$.

Lösning. Using the fundamental theorem and the chain rule we get
$f^{\prime}(x)=2 x+\sin ^{2} x$ and $f^{\prime}(0)=0$,
$f^{\prime \prime}(x)=2+2 \sin x \cos x$ and $f^{\prime \prime}(0)=2$,
$f^{\prime \prime \prime}(x)=2 \cos 2 x$.
It is clear that $f(0)=0$ and so the Taylor polynomial is $p(x)=x^{2}$.
The error term is $\frac{2 \cos 2 c}{3!} x^{3}$ for some c between 0 and x. Since $|\cos 2 c| \leq 1$ the absolute value of the error is $\leq 2 / 3!=1 / 3$ when $|x| \leq 1$. The error term is therefore bounded.

Using the above we get

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}+\frac{2 \cos 2 c}{3!} x^{3}}{x^{2}}=1 .
$$

Svar: A. $p(x)=x^{2}$. B. See the solution. C. 1
9. Find real numbers a and b such that $a \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}} \leq b$. For a maximum score your numbers should satisfy $b-a \leq 0.2$ (and you need to provied a correct argument for this).
Lösning. Clearly $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\sum_{n=3}^{\infty} \frac{1}{n^{2}}$.
Using estimates like those in the proof of the integral criterion it is easy to see that

$$
\int_{3}^{\infty} \frac{1}{x^{2}} d x<\sum_{n=3}^{\infty} \frac{1}{n^{2}}<\frac{1}{9}+\int_{3}^{\infty} \frac{1}{x^{2}} d x
$$

Putting this together and computint the integral (its value is $1 / 3$), we get

$$
1+\frac{1}{4}+\frac{1}{3}<\sum_{n=1}^{\infty} \frac{1}{n^{2}}<1+\frac{1}{4}+\frac{4}{9}
$$

Since $1+1 / 4+1 / 3=19 / 12=1.58 \ldots$ and $1+1 / 4+4 / 9=61 / 36=1.69 \ldots$ we can choose $a=1.58$ and $b=1.7$. Hence

$$
1.58 \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}} \leq 1.7
$$

Svar: Se lösningen.

