
Summary notes for
EQ2300 Digital Signal Processing

allowed aid for final exams during 2016

Joakim Jaldén, 2016-01-12



1 Prerequisites

2 The DFT and the FFT

2.1 The discrete Fourier transform

• The discrete Fourier transform (DTFT) is given by

X(ν) = F{x[n]} ,
∞∑

n=−∞
x[n]e−j2πνn , ν ∈ R ,

assuming that the integral converges, and it’s inverse is given by

x[n] = F−1{X(ν)} ,
∫ 1

0

X(ν)ej2πνndν , n ∈ Z .

• In the above, ν ∈ R is commonly referred to as the normalized frequency.

• Some properties of the DTFT are

– Linearity: x[n]
F→ X(ν), y[n]

F→ Y (ν) ⇒ cx[n] + dy[n]
F→ cX(ν) + dY (ν)

– Time shift: x[n− k]
F→ e−j2πkνX(ν)

– Conjugate symmetry for real valued signals: x[n] ∈ R ⇒ X(ν) = X∗(−ν)

– Parseval’s relation:
∞∑

n=−∞

∣∣x[n]
∣∣2 =

∫ 1

0

∣∣X(ν)
∣∣2dν

• The DTFT X(ν) of a discrete time sequence x[n] is always periodic with period 1, i.e., X(ν+k) = X(ν)
for all integers k.

• Examples of the DTFT and more properties are found in the pink collection of formulas.

• One of the key uses of the DTFT is that it allows us to study linear and time invariant (LTI) systems
in the frequency domain according to

LTI system
x[n]

X(ν)

y[n] = h[n] ∗ x[n]

Y (ν) = H(ν)X(ν)

where h[n] is the system’s impulse response, where H(ν) = F{h[n]} is the system’s frequency responce,
and where

h[n] ∗ x[n] ,
∞∑

m=−∞
h[m]x[n−m] =

∞∑
m=−∞

x[m]h[n−m]

is the linear convolution operation.

2



2.2 The discrete Fourier transform

• The N -point discrete Fourier transform (DFT) is given by

X[k] = FN{x[n]} ,
N−1∑
n=0

x[n]e−j2πkn/N , k = 0, . . . , N − 1 ,

and it’s inverse is given by

x[n] = F−1
N {X[k]} , 1

N

N−1∑
k=0

X[k]ej2πkn/N , n = 0, . . . , N − 1 .

• A common alternative notations is

X[k] =

N−1∑
n=0

x[n]W kn
N , where WN , e−j2π/N (the Nth root of unity)

• Some properties of the DFT are

– Linearity: x[n]
FN→ X[k], y[n]

FN→ Y [k] ⇒ cx[n] + dy[n]
FN→ cX[k] + dY [k]

– Parseval’s relation:
∞∑

n=−∞

∣∣x[n]
∣∣2 =

1

N

N−1∑
k=0

∣∣X[k]
∣∣2

– Time shift: x[(n−m) mod N ]
FN→ e−j2πkm/NX[k] = W km

N X[k]

– Convolution in time: x[n] N y[n]
FN→ X[k]Y [k]

– Multiplication in time: x[n]y[n]
FN→ N−1X[k] N Y [k]

where n mod N denotes the modulo N operation (i.e., n mod N is for any n ∈ Z the unique integer
in the range 0, . . . , N − 1 of the from n − Nk where k ∈ Z), and N denotes the N -point circular
convolution defined by

x[n] N y[n] ,
N−1∑
m=0

x[m]y[(n−m) mod N ] =

N−1∑
m=0

y[m]x[(n−m) mod N ] .

• The DFT can be used to numerically evaluate the DTFT for normalized frequencies νk when x[n] = 0
for all n < 0 and n ≥ N according to

X[k] = X(ν)
∣∣∣
ν=k/N

where X[k] = FN{x[n]} and X(ν) = F{x[n]}. Note that this is not the case when x[n] 6= 0 for some
n < 0 or n ≥ N . The concept is illustrated by the figure below
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for the case where N = 4. Zero padding the DFT (increasing N beyond the minimum) can be used
to increase the number of normalized frequencies νk = k/N for k = 0, . . . , N − 1 where the DTFT is
evaluated.

2.3 The fast Fourier transform

• The fast Fourier transform (FFT) is an algorithm (or collection of algorithms) for efficiently computing
the DFT for some N .

• The radix-2 FFT ( a specific FFT algorithm) assumes N = 2p for some integer p, and can be illustrated
using a graph as shown below for the case where N = 8 = 23.
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• The radix-2 FFT builds on a divide and conquer strategy where an N -point DFT is computed from 2
N/2-point DFTs, and so on. . .

• The numer of complex valued multiplications required for computing the N -point DFT using the
radix-2 FFT algorithm is (or more accurately, is well approximated by)

CN =
N

2
log2N .

• The numer of complex valued multiplications required for diectly computing the N -point DFT is N2.
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3 Filtering with the FFT

3.1 Linear and circular convolution

• The DFT can be used to filter finite length signals in the frequency domain by recognizing when the
cyclic convolution computed the values of the linear convolution.

• Assume that x[n] has length L (x[n] = 0 if n < 0 or n ≥ L) and h[n] has length M (h[n] = 0 if n < 0
or n ≥M). Let y[n] = h[n] ∗ x[n] and yN [n] = h[n] N x[n]. Then

y[n] = yN [n] for n = 0, . . . , N − 1

if N ≥ L+M −1. If N = L > M , then y[n] = yN [n] can only be guaranteed for n = M −1, . . . , N −1.

• The above results can be used to compute y[n] = h[n] ∗x[n] in the frequency domain from some values
of n as yN [n] = F−1

N {FN{x[n]}×FN{h[n]}}. By using the FFT this can lead to fewer complex valued
multiplications than the direct computation of y[n] via the convolution sum.

• The overall complexity in terms of complex valued multiplications can be broken down according to

– H[k] = FN{h[n]} : N/2 log2N multiplications

– X[k] = FN{x[n]} : N/2 log2N multiplications

– Y [k] = H[k]X[k] : N multiplications

– y[n] = F−1
N {Y [k]} : N/2 log2N multiplications

which leads to a total complexity of

CN =
3N log2N

2
+N .

3.2 Overlap save and overlap add

• When L�M (where L and M are given as above) it is more computationally efficient to divide x[n]
into (overlapping) blocks, filter each block in the frequency domain, and then reconstruct the result in
the time domain. This is the basis for the overlap-save and overlap-add methods.

• Overlap-save’s block structure can be illustrated as

L

N −M + 1

x[n]

L+M − 1

N

M − 1

y[n]
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• Overlap-add’s block structure can be illustrated as

L

N −M + 1

M − 1

x[n]

L+M − 1

N

y[n]

+

+

+

• The complexity per block of either overlap-save or overlap-add can be broken down as

– Get N -point sequence xB[n] from x[n]

– Compute XB[k] = FN{xB[n]} : N/2 log2N multiplications

– Compute YB[k] = H[k]XB [k] : N multiplications

– Compute yB[n] = F−1
N {YB[k]} : N/2 log2N multiplications

which yields a total of N log2N+N complex valued multiplications per block. Singe the same H[k]can
be used for every block, we do not count the complexity of obtainingH[k]. SinceN−M+1 valid samples
of y[n] are computed through each block, the complexity in terms of complex valued multiplications per
output sample becomes

CN ,
N +N log2N

N −M + 1
=

N log2 2N

N −M + 1
.

• The complexity as a function of the block length N is illustrated below

N

100 833 2000

12.15

40

CN

for the case where M = 100. The optimal N , on the form N = 2p for an integer p and as a function
of M , is tabulated below for some different M .
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M N CN
5 16 6.67
10 64 8.15
15 64 8.96
20 128 9.39
50 512 11.06
100 1024 12.18
1000 8192 15.94

4 FIR filters and FIR approximations

4.1 Overview

• The filter design problem is to create a filter structure with some filter coefficients that satisfies a set
of given design criteria, as illustrated for the case of a low pass filter below.

1 + δp

1− δp

δs

νp νs

Pass band Stop band

1/20
0

1

ν

|H(ν)|

• Implementable filters can generally have an infinite impulse response (IIR) with a transfer function of
the form

H(z) =
b0 + b1z

−1 + · · ·+ bMz
−M

1 + a1z−1 + · · ·+ aMz−M
,

of have an finite impulse response (FIR) with transfer function

H(z) = b0 + b1z
−1 + · · ·+ bMz

−M ,

in which case h[n] = bn for n = 0, . . . ,M and h[n] = 0 for n < 0 or n > M .

• M is referred to as the order of the filter, and for FIR filters the length of the impulse responce is
N = M + 1.

• The canonic direct form realization of an IIR filter is
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z−1

z−1

z−1

b0

−a1 b1

−a2 b2

−aM bM

x[n] y[n]

...
...

...

H(z) =
b0 + b1z

−1 + · · ·+ bMz
−M

1 + a1z−1 + · · ·+ aMz−M

• The direct form realization of an FIR filter (also referred to as a tapped delay line) is

+ + +

z−1 z−1 z−1

b0 b1 b2 bM

x[n]

y[n]

H(z) = b0+b1z
−1+b2z

−n+· · ·+bMz−M

• An Mth order real valued FIR filter h[n] have a constant group delay τ , or linear phase, where

H(ν) = B(ν)e−j
π
2 ke−j2πτν with B(ν) ∈ R ,

if and only if it satisfies the symmetry (anti-symmetry) property

h[n] = (−1)kh[M − n] with k ∈ {0, 1} and τ =
M

2

which leads to four types of possible filters as shown below.

h[n]

n

τ

Type I: M even, k = 0

h[n]

n

τ

Type II: M odd, k = 0

h[n]

n

τ

Type III: M even, k = 1

h[n]

n

τ

Type IV: M odd, k = 1
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4.2 Frequency sampling

• The basic idea of frequency sampling can be described as follows.

1. Let D(ν) ∈ C be a desired frequency response, and select the filter length N

2. Let H[k] = D(k/N) for k = 0, . . . , N − 1

3. Obtain h[n] for k = 0, . . . , N − 1 by computing the N -point inverse DFT of H[k]

The resulting filter will always be FIR, but special care must be taken in the selection of D(ν) if one
wish to to ensure that h[n] is real valued and has the linear phase property. Special design cases for
the different types of linear phase FIR filters are are given next.

• Type I linear phase Mth order FIR design (M even, symmetric filter): Let D(k/N) = A[k]e2πθ[k] with
N = M + 1 and

θ[k] = − kM

2(M + 1)
for k = 0, . . . ,M

A[k] = A[M − k + 1] for k = 1, . . . ,M/2

Then

h[n] =
1

M + 1

A[0] + 2

M/2∑
k=1

(−1)kA[k] cos
πk(1 + 2n)

M + 1

 , n = 0, . . . ,M

• Type II linear phase Mth order FIR design (M odd, symmetric filter): Let D(k/N) = A[k]e2πθ[k] with
N = M + 1 and

θ[k] =

{
− kM

2(M+1) for k = 0, . . . , (M − 1)/2
1
2 −

kM
2(M+1) for k = (M + 3)/2, . . . ,M

A[k] = A[M − k + 1] for k = 1, . . . , (M + 1)/2

A[(M + 1)/2] = H(1/2) = 0

Then

h[n] =
1

M + 1

A[0] + 2

(M−1)/2∑
k=1

(−1)kA[k] cos
πk(1 + 2n)

M + 1

 , n = 0, . . . ,M

• Type III linear phase Mth order FIR design (M even, anti-symmetric filter): Let D(k/N) = A[k]e2πθ[k]

with N = M + 1 and

θ[k] =

{
1
4 −

kM
2(M+1) for k = 1, . . . ,M/2

− 1
4 −

kM
2(M+1) for k = M/2 + 1, . . . ,M

A[k] = A[M − k + 1] for k = 1, . . . ,M/2

A[0] = H(0) = 0 , H(1/2) = 0

Then

h[n] =
2

M + 1

M/2∑
k=0

(−1)k+1A[k] sin
πk(1 + 2n)

M + 1
, n = 0, . . . ,M
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• Type IV linear phase Mth order FIR design (M odd, anti-symmetric filter): Let D(k/N) = A[k]e2πθ[k]

with N = M + 1 and

θ[k] = −1

4
− kM

2(M + 1)
for k = 1, . . . ,M

A[k] = A[M − k + 1] for k = 1, . . . , (M + 1)/2

A[0] = H(0) = 0

Then

h[n] =
1

M + 1

(−1)nA[(M + 1)/2] + 2

(M−1)/2∑
k=0

(−1)kA[k] sin
πk(1 + 2n)

M + 1


• An example of a Type I band stop filter of order M = 20 is given by

1/22/10 3/100
0

1

1
M+1

ν

|H(ν)|

4.3 Windowing

• The creation of an order M FIR filter using the window method is given by

h[n] = hI[n]w[n]

where

– hI[n] is the ideal (desired) filter impulse response (typically infinite length)

– w[n] is the FIR window function, w[n] = 0 for n < 0 and n > M

• The resulting frequency response is given by

H(ν) = HI(ν) ~W (ν) =

∫ 1/2

−1/2

HI(ν − τ)W (τ)dτ ,

so the characteristics of the design are dictated by the window function (length and type)

• If the ideal response has linear phase, and the window function is real valued and symmetric, the
resulting filter design will also have linear phase. Some example windows, and their DTFT (in dB
scale) are given next.

• Rectangular window of length N = 21
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• Triangular window of length N = 21
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• Hamming window of length N = 21
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• Chebyshev window of length N = 21
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• Generally speaking, smoother window functions yield lower sildelobes, and longer windows (longer
filters) yield more narrow main lobes (sharper transitions) in the frequency domain.

5 Nonparametric spectral estimation I

5.1 Periodogram

• The peridogram spectrum estimate is given by

P̂x(ν) =
1

N

∣∣F{x[n]wR[n]}
∣∣2

where x[n] for n = 0, . . . , N − 1 is the given data (realization) and where

wR[n] =

{
1 0 ≤ n < N

0 otherwise

is the rectangular window function of length N .

• The periodogram can also be obtained though the following procedure.

– Estimate of ACF of x[n] from N samples

r̂[k] =


1
N

∑N−k−1
n=0 x[n]x[n+ k] k = 0, . . . , N − 1

r̂∗[−k] k = −1, . . . ,−(N − 1)

0 |k| > 0

– Obtain the power spectral density (PSD) estimate by

P̂x(ν) = F{r̂x[k]} =

∞∑
k=−∞

r̂x[k]e−j2πνk

• Both methods are equivalent in terms of the estimate obtained, but the first one is more straightforward
to implement and require less computations.

• An example of a periodogram estimate obtained from N = 64 samples from an AR4 process is
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and the ensemble average (over all possible realizations of the samples) is for the same case given by
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• Defining properties of the periodogram are

– Bias

E{P̂x(ν)} = Px(ν) ~
1

N
|WR(ν)|2 =

1

N

∫ 1/2

−1/2

Px(τ)|WR(ν − τ)|2dτ

where WR(ν) = F{wR[n]},

wR[n] =

{
1 n = 0, . . . , N − 1

0 otherwise
, |WR(ν)|2 =

[
sin(πNν)

sin(πν)

]2

– Variance
Var{P̂x(ν)} ≈ P 2

x (ν)

where the approximation is good for “noisy” AR type processes and large N

• The properties of the rectangular window determine the resolution and spectral leakage though the bias
expression above. These can be altered by choosing another window in the modified periodogram. The
variance can be adressed by using methods such as Bartlett’s, Welch’s, or Blackman-Tukey’s methods.
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5.2 Modified periodogram

• The modified periodogram is given by

P̂x(ν) =
1

NU

∣∣F{x[n]w[n]}
∣∣2 =

1

NU

∣∣∣∣∣
N−1∑
n=0

x[n]w[n]e−j2πνn

∣∣∣∣∣
2

where

U =
1

N

N−1∑
n=0

∣∣w[n]
∣∣2

and where w[n] is a suitably chosen window function.

• Defining properties of the modified periodogram are

– Bias

E{P̂x(ν)} = Px(ν) ~
1

NU
|W (ν)|2

where W (ν) = F{w[n]}.
– Variance

Var{P̂x(ν)} ≈ P 2
x (ν)

where the approximation is good for “noisy” AR type processes and large N

• The chosen window function ultimately determines the modified periodogram spectrum estimate’s
properties in the frequency domain though the bias formula. Some examples of common window
functions (in the frequency domain) are shown next.

• Rectangular window of length N = 32
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13.2 dB

0.0138 = ∆ν
2

• Triangular window of length N = 32
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• Hamming window of length N = 32
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• Blackman window of length N = 32
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• Blackman window of length N = 64
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• Blackman window of length N = 256
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• Key properties of some common windows are

Window Sidelobe level (dB) 3 dB BW ∆ν
Rectangular -13 0.89/N
Bartlett -27 1.28/N
Hamming -43 1.30/N
Blackman -58 1.68/N

6 Nonparametric spectral estimation II

6.1 Bartlett’s method

• Bartlett’s method divides the data into blocks of equal length, and averages the periodograms computed
for each individual block. The method can be described as follows

N

x[n]

L

x0[n] x1[n] · · · xK−1[n]

– Choose K and L such that KL = N
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– Create K length L blocks xk[n] = x[kL+ n], n = 0, . . . , L− 1, k = 0, . . . ,K − 1

– Average length L periodograms to get

P̂B
x (ν) =

1

K

K−1∑
k=0

1

L

∣∣F{xk[n]
}∣∣2

• Defining properties of Bartlett’s method are

– Bias

E{P̂B
x (ν)} = Px(ν) ~

1

L
|W (L)

R (ν)|2 where W
(L)
R (ν) =

sin(πLν)

sin(πν)

– Variance

Var{P̂B
x (ν)} ≈ 1

K
P 2
x (ν)

where the approximation is good for “noisy” AR type processes and sufficiently large L

– The resolution is the same as for the length L periodogram

• An example spectrum estimate computed via Bartlett’s method for the AR4 process considered before
is given below for the parameters N = 1024, L = 64, K = 16.
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6.2 Welch’s method

• Welch’s method divides the data into overlapping blocks of equal length, and averages modified peri-
odograms computed for each individual block. The method can be described as follows

w[n] w[n] w[n] w[n] w[n]

x[n]

x0[n] x1[n] x2[n] · · · xK−1[n]

– Choose K, L, and D such that KL ≥ N and 1
2L ≤ D ≤ L

– Create K length L blocks xk[n] = x[kD + n], n = 0, . . . , L− 1, k = 0, . . . ,K − 1
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– Average length L modified periodograms to get

P̂W
x (ν) =

1

K

K−1∑
k=0

1

LU

∣∣F{xk[n]w[n]
}∣∣2 , U =

1

L

L−1∑
n=0

w2[n] .

• Defining properties of Welch’s method are

– Bias

E{P̂W
x (ν)} = Px(ν) ~

1

LU
|W (L)(ν)|2 where W (L)(ν) = F{w[n]}

– Variance (assuming a triangular window and 50% overlap)

Var{P̂W
x (ν)} ≈ 9

8K
P 2
x (ν)

where the approximation is good for “noisy” AR type processes and sufficiently large L

– The resolution is the same as for the length L modified periodogram

• An example spectrum estimate computed via Bartlett’s method for the AR4 process considered before
is given below for the parameters N = 1024, L = 64, D = 32, K = 31, and a Hamming window in the
modified periodogram.
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6.3 Blackman-Tukeys’s method

• The conceptual view of Blackman-Tukey is

P̂BT
x (ν) = P̂Per

x (ν) ~W (ν)

• The straightforward implementation of Blackman-Tukey is given by

P̂BT
x (ν) = F

{
r̂[k]w[k]

}
where w[k] is symmetric around k = 0 and w[k] = 0 for |k| ≥M for a given M

– we generally want to choose w[k] such that W (ν) ≥ 0

– M is often referred to as the maximum lag of Blackman-Tukey’s method

– for proper power normalization we require that w[0] = 1
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• Defining properties of Blackman-Tukey’s method are

– Bias
E{P̂BT

x (ν)} ≈ Px(ν) ~W (2M+1)(ν) where W (2M+1)(ν) = F{w[n]}

– Variance

Var{P̂BT
x (ν)} ≈

[
1

N

M∑
k=−M

w2[k]

]
P 2
x (ν)

where the approximation is good for “noisy” AR type processes.

– The reduction for the variance can be computed explicitly as

1

N

M∑
k=−M

w2[k] =

{
2M/N rectangular window

2M/3N triangular window

– The resolution is proportional to 1/M and ultimately determined by the window function used

• An example spectrum estimate computed via Blackman-Tukey’s method for the AR4 process considered
before is given below for the parameters N = 1024, M = 64, and a Blackman window
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7 Parametric spectral estimation

7.1 ARMA models

• Model based parametric spectrum estimation is schematically illustrated below, where x[n]is the mod-
elled process and e[n] is unit variance white and zero mean driving noise.

hα[n]
e[n] x[n]

α1, . . . , αp
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x[0], . . . , x[N − 1] α̂1, . . . , α̂p

P̂x(ν)

r̂x[k]

• The autoregressive moving average (ARMA) model is given by

+

+

+

+

+

+

z−1

z−1

z−1

b0

−a1 b1

−a2 b2

−aM bM

e[n] x[n]

...
...

...

α = (a1, . . . , aM , b0, . . . , bM )

Hα(z) =
b0 + b1z

−1 + · · ·+ bMz
−M

1 + a1z−1 + · · ·+ aMz−M

⇒ hα[n]

• For α = (a1, . . . , aM , b0, . . . , bM ), the power spectrum of the ARMA process is

Px(ν) =
|
∑M
m=0 bme

−j2πνm|2

|1 +
∑M
m=1 ame

−j2πνm|2

• The Yule-Walker equations for a general ARMA process are

rx[k] +

M∑
m=1

amrx[k −m] =

M∑
m=0

bmhα[m− k] , k ∈ Z

• General idea behind parametric ARMA spectral estimate

1. Obtain an estimate r̂x[k] of the ACF rx[k] from the data {x[0], . . . , x[N − 1]}

2. Obtain a parameter estimate α̂ = (â1, . . . , âM , b̂0, . . . , b̂M ) by solving

r̂x[k] +

M∑
m=1

âmr̂x[k −m] =

M∑
k=0

b̂khα̂[m− k]

for some finite set of k ∈ Z
3. Obtain power spectrum estimate by evaluating

P̂x(ν) =
|
∑M
m=0 b̂me

−j2πνm|2

|1 +
∑M
m=1 âme

−j2πνm|2
.
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7.2 AR models

• The purely autoregressive (AR) model is given by

+

+

+

z−1

z−1

z−1

b0 x[n]

−a1

−a2

−aM

e[n]

...
...

α = (a1, . . . , aM , b0)

Hα(z) =
b0

1 + a1z−1 + · · ·+ aMz−M

⇒ hα[n]

• The Yule-Walker equations for pure AR process are

rx[k] +

M∑
m=1

amrx[k −m] = b20δ[k] , k ∈ Z

which for k = 1, . . . ,M simplifies to

rx[k] +

M∑
m=1

amrx[k −m] = 0 ,

which can be used to solve for a1, . . . , aM , and which for k = 0 simplifies to

b0 =

√√√√rx[0] +

M∑
m=1

amrx[m] ,

which yields b0.

• The autocorrelation method estimates the autocorrelation according to

r̂[k] =


1
N

∑N−k−1
n=0 x[n]x[n+ k] k = 0, . . . , N − 1

r̂[−k] k = −1, . . . ,−(N − 1)

0 |k| > |N |

and solves the Yule-Walker equations with r̂x[k] in place of rx[k] for estimates of the model parameters
a1, . . . , aM , b0), for some model order M under the assumption that N ≥M .

7.3 MMSE prediction

• Consider the problem of estimating a random variable y ∈ R from a random vector x ∈ Rn.

– A linear detector has the form ŷ = wTx where w ∈ Rn is a set of weights.
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– The best linear detector, in the mean square sense, is given by the solution to

Rxw = ryx ⇔ w = R−1
x ryx

where Rx = E{xxT} and ryx = E{yx} .

– The minimum mean square error (MSE) is given by

E{y2} − rT
yxR

−1
x ryx

• The coefficients w ∈ RM of the Mth order linear minimum mean square error 1-step ahead predictor
are related to the ARM parameters a ∈ RM as w = −a. Moreover, for the ARM model we have

b20 = rx[0] +

M∑
m=1

amrx[m] = rx[0] + aTryx

and for the 1-step ahead predictor we have

MSE = E{y2} − rT
yxR

−1
x ryx = E{y2} −wTryx

if w = R−1
x ryx, which implies that b20 = MSE because E{y2} = rx[0] and w = −a.

• One may choose AR model order by increasing M until no significant further reduction in b20 is observed.

• Assume that N is the number of data-samples, and b20,M is driving noise power for the M -th order AR
model, then two famous model order selection criteria are

– Akaike information criterion (AIC): Choose M to minimize

AIC(M) = ln b20,M +
2M

N

– Minimum description length (MDL): Choose M to minimize

MDL(M) = N ln b20,M +M lnN

8 Multirate signal processing: Decimation and Interpolation

8.1 Downsampling

• Downsampling by an integer factor of D is the operation given by

y[m] = x[mD] ∀m ∈ Z ,

which is schematically drawn as

↓ D
x[n] y[m]

• In terms of the DTFT it holds that

Y (ν) =
1

D

D−1∑
k=0

X

(
ν − k
D

)
.

22



• In terms of the bilateral z-transform it holds that

Y (z) =
1

D

D−1∑
k=0

X
(
z1/De−j2πk/D

)
.

• Proper decimation refers to the operation

↓ Dh[n]
x[n] z[n] y[m]

where
z[n] = h[n] ∗ x[n] , y[m] = z[mD] ∀m ∈ Z

and

F{h[n]} = H(ν) =

{
1 |ν| ≤ 1

2D

0 1
2D ≤ |ν| ≤

1
2

• For proper decimation it holds that

Y (ν) =
1

D
X
( ν
D

)
, |ν| ≤ 1

2
,

and for a general (possibly imperfect) decimation filter with frequency response H(ν) it holds that

Y (ν) =
1

D

D−1∑
k=0

H

(
ν − k
D

)
X

(
ν − k
D

)
.

8.2 Upsampling

• Upsampling by an integer factor of U is the operation given by

y[m] =

{
x[m/U ] m/U ∈ Z
0 m/U /∈ Z

which is schematically drawn as

↑ U
x[n] y[m]

• In terms of the DTFT it holds that
Y (ν) = X(νU) .

• In terms of the bilateral z-transform it holds that

Y (z) = X
(
zU
)
.

• Proper interpolation refers to the operation

↑ U h[m]
x[n] z[m] y[m]
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where

z[m] =

{
x[m/U ] m/U ∈ Z
0 m/U /∈ Z

, y[m] = h[m] ∗ z[m] ∀m ∈ Z

and

F{h[m]} = H(ν) =

{
U |ν| ≤ 1

2U

0 1
2U ≤ |ν| ≤

1
2

• For proper interpolation it holds that

Y (ν) =

{
UX(Uν) |ν| ≤ 1

2U

0 1
2U ≤ |ν| ≤

1
2

,

and for a general (possibly imperfect) interpolation filter with frequency response H(ν) it holds that

Y (ν) = H(ν)X(Uν) .

8.3 Upsampling and downsampling stochastic signals

• Downsampling a wide sense stationary signal x[n] to y[m] with a factor D gives

Py(ν) =
1

D

D−1∑
k=0

Px

(
ν − k
D

)

• Decimating x[n] to y[m] with a filter H(ν) gives

Py(ν) =
1

D

D−1∑
k=0

Px

(
ν − k
D

) ∣∣∣∣H (ν − kD

)∣∣∣∣2

• Proper decimation with a factor D gives

Py(ν) =
1

D
Px

( ν
D

)
, |ν| ≤ 1

2D

• Upsampling a wide sense stationary signal x[n] to y[m] with a factor U gives (after the inclusion of a
uniform random time delay Θ ∼ U [0, 1, . . . , U − 1] needed to ensure wide sense stationarity in y[m])

Py(ν) =
1

U
Px(Uν)

• Interpolating x[n] to y[m] with a filter H(ν) gives

Py(ν) =
1

U
Px(Uν)|H(ν)|2

• Proper interpolation with a factor U gives

Py(ν) =

{
UPx(Uν) |ν| ≤ 1

2U

0 1
2U ≤ |ν| ≤

1
2
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9 Multirate signal processing: Filter banks

9.1 Filterbanks

• A two branch filterbank, with the task of splitting the signal x[n] into two half rate signals v0[m] and
v1[m] typically representing the low and high frequency content of the signal repspectively, is illustated
below.

+H0(ν) ↓ 2 ↑ 2 G0(ν)
x[n] v0[m] y[n]

H1(ν) ↓ 2 ↑ 2 G1(ν)
v1[m]

• The input output relation of a two branch filter bank is under the bilateral z-transform given by

Y (z) =
1

2

[
G0(z)H0(z) +G1(z)H1(z)

]
X(z)

+
1

2

[
G0(z)H0(−z) +G1(z)H1(−z)

]
X(−z)︸ ︷︷ ︸

aliasing

.

• Perfect reconstruction with delay L, i.e., y[n] = x[n− L], is achieved if

G0(z)H0(z) +G1(z)H1(z) = 2z−L

G0(z)H0(−z) +G1(z)H1(−z) = 0

• The symmetry assumptions G0(z) = H1(−z) and G1(z) = −H0(−z) are sufficient conditions for alias
canceling.

• The quadrature mirror filter (QMF) design satisfies the symmetry assumptions above with the filters
chosen as H0(z) = H(z), H1(z) = H(−z), G0(z) = H(z) and G1(z) = −H(−z) for some base (typically
low pass) filter H(z).

9.2 Polyphase implementations

• The polyphase implementation of a decimation circuit with downsampling factor D and decimation
(anti aliasing) filter h[n] is shown below.

↓ D
x[n]

z−1

↓ D

z−1

↓ D

p0[n]

p1[n]

p2[n]

+

+

y[m]

...

pk[n] = h[Dn+ k]
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• The polyphase implementation of an interpolation circuit with upsampling factor U and decimation
(anti aliasing) filter h[n] is shown below.

p0[n]
x[n]

p1[n]

p2[n]

↑ U

↑ U

↑ U

+

+

z−1

z−1

y[m]

...

pk[n] = h[Un+ k]

• The transfer function of the base filter h[n] can be obtained as

H(z) =

K−1∑
k=0

z−kPk(zK) .

• The polyphase implementation of a two branch polyphase QMF bank is given by

↓ 2

↓ 2

z−1

P0(z)

P1(z)

+

+

+

+

P0(z)

P1(z)

↑ 2

↑ 2

z−1

+
x[n]

−

v0[m]

v1[m]

−

y[n]

• The noble identities are useful when working with multirate systems and are given schematically by

↓ D H(z)
x[n] y[m]

⇔ ↓ DH(zD)
x[n] y[m]

and

↑ UH(z)
x[n] y[m]

⇔ ↑ U H(zU )
x[n] y[m]

10 Quantization and finite-precision digital signal processing

10.1 Quantization

• Signal (amplitude) quantization is illustrated below.
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n

x[n]

n

x̂[n]

Q
x[n] x̂[n]

x[n]

x̂[n] = Q
[
x[n]

]

∆

∆

R

x[n]

e[n] = Q
[
x[n]

]
− x[n]

∆
2

−∆
2

R

• The additive noise quantization model is given by

Q
x[n] x̂[n]

model
=⇒ +

x[n]

e[n]

x̂[n]

where

– e[n] is a white (memoryless) stochastic process, re[k] = E{e[n]e[n− k]} = σ2
eδ[k]

– e[n] is a independent of x[n], rex[k] = E{e[n]x[n− k]} = 0 ∀k
– e[n] is uniformly distributed, e[n] ∼ U [−∆/2,∆/2] which implies σ2

e = E{e2[n]} = ∆2/12

• In the fixed point B + 1 bit signed magnitude representation the collection of bits represents a real
number x ∈ (−1, 1) according to

x = (−1)b0
B∑
i=1

bi2
−i ⇔ (x)2 =

{
+0.b1b2 · · · bB b0 = 0

−0.b1b2 · · · bB b0 = 1

x

B = 2

0 1
4

1
2

3
4− 1

4− 1
2− 3

4

000
100

001 010 011101110111
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• In the fixed point B + 1 we have ∆ = 2−B and

σ2
e =

∆2

12
.

10.2 Fixed point implementations

• The varying levels of modeling a fixed point circuit implementation are shown below.

– Base implementation

y[n]x[n] a

– Quantization based representation of fixed point implementation

Q
x[n] a y[n]

– Additive noise model for quantization noise

+
x[n] a y[n]

e[n]

• Statistical characterization of fixed point implementations:

1. Insert quantization noise source at each point of multiplication, e1[n], . . . , eM [n] for circuit with
M total multiplications.

2. Evaluate noise at output due to every single noise source as

σ2
ei =

2−2B

12

∞∑
k=0

h2
i [n]

where hi[n] is impulse response from noise source to output.

3. Obtain total noise at output as

σ2
e =

M∑
i=1

σ2
ei

• An example statistical fixed point model of an AR1 filter is shown below.

+

+

z−1

y[n]

−a1

x[n]

Fixed point implementation

+

+

z−1

yx[n]

−a1

x[n]

e[n]

Statistical noise model
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11 Fixed point filter implementations

11.1 Filter coefficient quantization

• A Type I linear phase FIR filter can be constructed as a cascade of smaller components of the form

– Second order “Type I” component

Hk(z) = ck0 + ck1z
−1 + ck0z

−2

– Fourth order “Type I” component

Hk(z) = ck0 + ck1z
−1 + ck2z

−2 + ck1z
−3 + ck0z

−4

– These components are sufficient for realizing all Type I linear phase FIR filters

– Quantization of cki, i = 0, . . . , 2, maintains linear phase property

• For second order Type I factors, the transfer function

Hk(z) = ck0 + ck1z
−1 + ck0z

−2 ,

where ck0, ck1 ∈ R , if zk is a complex valued zero, Hk(zk) = 0 and ={zk} 6= 0, then Hk(z∗k) = 0 and
|zk| = 1.

• For fourth order Type I factors, the transfer function

Hk(z) = ck0 + ck1z
−1 + ck2z

−2 + ck1z
−3 + ck0z

−4

where ck0, ck1, ck2 ∈ R , if zk is a complex valued zero, Hk(zk) = 0 and ={zk} 6= 0, then Hk(z∗k) = 0,
Hk(1/zk) = 0, and Hk(1/z∗k) = 0.

11.2 Circuit sensitivity

• The sensitivity of H(z) to perturbations in a filter coefficient mk is given by

∂

∂mk
H(z) = Fk(z)Gk(z)

– Fk(z) is the transfer function from the input to before the multiplication

– Gk(z) is the transfer function from an input after the multiplication to the output

x[n] y[n] + ∆y[n]

+
mk

u[n] v[n]
∆mk

Transfer functions: x[n]→ u[n] : Fk(z) , v[n]→ y[n] : Gk(z)
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• Assume a rational transfer function given by

H(z) =
B(z)

A(z)

where the zeros are roots of

B(z) =

M∑
k=0

bkz
−k = b0

M∏
k=1

(1− zkz−1)

and where the poles are roots of

A(z) = 1 +

M∑
k=1

akz
−k =

M∏
k=1

(1− pkz−1)

– If

A(z) = 1 +

M∑
k=1

akz
−k =

M∏
k=1

(1− pkz−1)

and A(pi) = 0, then

∂pi
∂ak

=
pM−ki∏

l 6=i(pi − pl)

for i = 1, . . . ,M and k = 1, . . . ,M .

– If

B(z) =

M∑
k=0

bkz
−k = b0

M∏
k=1

(1− zkz−1)

and B(zi) = 0, then

∂zi
∂bk

=
zM−ki

b0
∏
l 6=i(zi − zl)

for i = 1, . . . ,M and k = 1, . . . ,M .

• Many closely packed zeros or poles increases the sensitivity of the zeros or poles to perturbations
(quantization) in the filter coefficients.
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