Advanced Digital Communications (EQ2410)
Lecture 1, Period 3, 2016

Task 1 Gather in groups of 3-4 students, and go through the proof of Theorem 5.2.1. Dis-
cuss the steps of the proof and try to explain it to each other.

Proof of Theorem 5.2,1 We can prove this resull using either the hypoth-
esis testing framework of Chapter 3, or the broader parameter estimation
framework of Chapter 4. Deciding on the sequence b is equivalent to test-
ing between all possible hypothesized sequences b, with the hypothesis H,
corresponding to sequence b given by

2 y{(1) = s (6) +n(s),
where

sp{t) = 3 bln}p(r —n1)

is the noiseless received signal corresponding to transmitled sequence b, We
know from Theorem 3.4.3 that the ML rule is given by

[

5
The MPE rule is similar, except for an additive correction term accounting
for the priers. In both cases, the decision rule depends on the received signal
only through the term (y, s,,). The optimal front end, therefore, should capture
enough information to be able to compute this inner product for all possibie
sequences b.

We can also use the more general framework of the likelihood function
derived in Theorem 4.2.1 to infer the same result. For y = s, +n, the likelihood
function {conditioned on b} is given by

By () = arg max Re((y,5,)) -

L) =exp ( 55Re a0~ 13111).

‘We have sufficient information for deciding on b if we can compute the pre-
ceding likelihood function for any sequence b, and the observation-dependent
part of this computation is the inner product {y, ,}.

Let us now consider the structure of this inner procif{ct in more detail.
o5y = O L blnlp(e =n)y = 0[] [ y(0p*(t-n) di= 35 [nleln],

where {zin]} are as in (5.3). Generation of {z[n]} by sampling the outputs
of the matched filter (5.2) at the symbol rate follows immediately from the
definition of the matched filter. 3

While the matched filter is an analog filter, as discussed earlier, it can be
implemented in discrete time using samples at the output of a wideband
analog filter. A typical implementation is showa in Figure 5.3. The matched
filter is implemented in discrete time after estimating the effective discrete-
time channel (typically using a sequence of known training symbols) from
the input to the transmit filter to the output of the sampler after the analog
filter.

For the suboptimal equalization technigues that we discuss, it is not nec-
essary to implement the matched fiiter. Rather, the sampled outputs of the
analog filter can be processed directly by an adaptive digital filter that is
determined by the specific equalization algorithm employed.
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Task 2 Gather in groups of 3-4 students, and explain to each other based on the running
example in Madhow how the Viterbi algorithm can be applied for equalization.

! Running example For our running example, it is easy to see from Figure
5.1 that p(r) only has nontrivial overlap with p(t — nT) for n =10, +1. In
particular, we can compute that 2[0] = 3/2, A{1] = h{—1] = —1/2, and
h[n] =0 for |n| > 1.

Branch metric for running example For our running example in Figure
5.1, suppose that we employ BPSK modulation, with b{n|e{~1, +1}.
The number of states is given by M’ = 2! = 2. The state at time n is
s[n} = b{n— 1]. The branch metric in going from state s{n| = b[n — 1} to
state s[n - 1] = b{a] is given by specializing (5.13}, to obtain ,

A, (binl, s[r]) = A, (sin] — s[n+1])
H{0]

= Re(b*[n]z[n]) —~ 7 |B[n]|* ~Re[b*{n]b[n ~ 1]1A[1]].

Since {b{k]} are real-valued, we see that only y[n] = Re(z[n]) (Le. the 1
component of the samples) affects the preceding metric. Furthermore, since
[B#]i? = 1, the second term in the preceding equation does not depend
on bin] (since [b{n}* = 1), and can be dropped from the branch metric.
(This simplification applies more generalty to PSK alphabets, but not to
constellations with amplitude variations, such as 16-QAM.) We therefore
obtain the moditied metric

m,(bin), s[n]) = m,(s[n] = s{n+1])
= b[n]y[n]+ %b{n]b[m —1]
= bin] (y[n] + :—;b[n — l]) : (3.16)
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Suppose now that we know that 5[0] = 1, and that the first few samples
at the output of the matched filter are given by y[0] = —1, y[1] =2,
¥2] = -2, and y[3] = 1.5. We can now use (5.16) to compute the branch
metrics for the trellis. Figure 5.4 shows the corresponding treilis, with the
branches labeled by the corresponding metrics. Note that, since we know
that s{1] == b[0] = +1, we do not need the value of y[0]. The first branch
metric we need is

e, (s[1] = s[2]) = b[1]¥[1]+ %b[ﬂ}b[l}.

We compute this for b[0] = 41 and for b[1] = 1. After this, we compute
the branch metrics

my(s{nd = sin-+ 11) = bialyin] — 5blnlbln — 1]

= HAlGln] ~ 3bln—1)

for bfn] =21 and bln+ 1] =%l forn=1,2,3.

s{1]=510] s[2i=b[1] s[3l=5b[2] si4i=5(3]

s[11=56101 sl2l=b[1] s[3]=5bI2] sld4]=b[3]
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