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Introduction
What you will learn from this tutorial:

o What Large Deviation Theory is about
e Coin tossing: how to explore Large Deviations using your PC
o Cramér’s Theorem and the Rate-Function

e The connection with the Central Limit Theorem (why “Large” Devi-
ations?)

e How to calculate the rate function: bypassing combinatorics with Chernoft’s
formula

e The connection with Shannon entropy

e How to deal with more general cases: Varadhan’s Theorem and the

scaled CGF
o New rate-functions from old: the Contraction Principle
o Large Deviations in Queuing Networks: effective bandwidths

e Bypassing modelling: estimating the scaled CGF



What Large Deviation Theory is about

Large Deviation theory is a theory of rare events; it can be used to estimate
the tails of probability distributions. In recent years, it has been used extens-
ively in teletraffic theory. The aim of this tutorial is to introduce engineers
to the basic ideas of the theory.

Coin tossing:
how to explore Large Deviations using your PC

It you have a little skill in programming, you can very quickly get a good
feel for the basic ideas of Large Deviation theory by carrying out on your
PC the experiments we are going to describe. Even if you can’t program —
and you can’t rope anyone into programming for you, you will find it useful
to read this section: consider what we are going to describe as a thought-
experiment, and we will supply the results.

Imagine a coin-tossing experiment, where we toss a coin n times and
record each result. There are 2 possible outcomes for each toss, giving 2"
possible outcomes in all. What can we say about the total number of heads?
Well, there are n + 1 possible values for the total, ranging from 0 heads to n
heads; of the 2" possible outcomes,

(7)

result in r heads. If the coin is fair, every outcome is equally likely, and so
the probability of getting r heads is

()

Thus the distribution of heads is made up of n+1 atoms with weights given by
the combinatorial factors; to calculate the probability of the average number
of heads per toss lying in a particular range, we add up the weight of each of
the atoms which fall inside that range. If we let M,, be the average number
of heads in n tosses, then

Plo <M, <yl= > (Z)Ql—n
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Exercise: Write a function/procedure to take an integer n and two floating-
point numbers z and y and return the value of the expression above. Use
this function/procedure to write a program to produce histograms of the
distribution of M,, for selected values of n.

We have done this for n=16, n=32, n=64 and n=128; we can see clearly
the Law of Large Numbers at work: as n increases, the distribution becomes
more and more sharply peaked about the mean, 1/2, and the tails become
smaller and smaller.

Exercise: Pick some point x greater than 1/2 and write a program to cal-
culate, for a range of values of n, the logarithm of the probability of M,
exceeding .

We have chosen =0.6 and produced a plot of log IP[M,, > x| against n

for n up to 1000. It is clear that, although things are a little jumpy initially,
the plot becomes linear for large n. Repeat the experiment for a different
value of x and you will see that the same thing happens: no matter what
value of @ greater than 1/2 you take, the plot will always be linear for n large.
How quickly it becomes linear, and what the asymptotic slope is, depends
on the value of x, but the graph of log IP[M,, > x| against n is always linear
for large n. Let’s call this asymptotic slope —1(x).
Exercise: Repeat the experiment for a range of values of = from 1/2 to 1,
measure the asymptotic slope in each case, and plot the values of I(x) you
get against . Do the same thing for log IP[M,, < z| for a range of values of
x from 0 to 1/2.



You have made a discovery:

THE TAIL OF THE DISTRIBUTION OF THE
AVERAGE NUMBER OF HEADS IN n TOSSES
DECAYS EXPONENTIALLY AS n INCREASES

The plot you have made tells you the local rate at which a tail decays as
a function of the point from which the tail starts: you have built up a picture
of the rate-function I(x).

Exercise: Plot the graph of the function zlna + (1 — 2)In(l — 2) + In2
against  and compare it with your previous plot.

We see that the two plots fit: we have guessed a formula for I(x), the
rate-function for coin-tossing. One of the goals of Large Deviation theory is
to have a systematic way of calculating the rate-function; we will show you
later one way of achieving this.

To summarise: we have found that, for coin tossing, the tails of the distri-
bution of M,,, the average number of heads in n tosses, decay exponentially
fast

P[M, > 2] ~ e ™M@ 2> 1/2,

IP[M, <]~ e ™M@ 2 <1/2,

as n becomes large; in fact, the approximation is quite good for surprisingly
small values of n.



Cramér’s Theorem and the Rate Function

Harald Cramér was a Swedish mathematician who served as a consultant
actuary for an insurance company; this led him to discover the first result
in Large Deviation theory. The Central Limit Theorem gives information
about the behaviour of a probability distribution near its mean while the
risk theory of insurance is concerned with rare events out on the tail of a
probability distribution. Cramér was looking for a refinement of the Central
Limit Theorem. What he proved was this:

Cramér’s Theorem Let X, X3, X3,... be a sequence of bounded, inde-
pendent and identically distributed random variables each with mean m, and
let

1

denote the empirical mean; then the tails of the probability distribution of
M, decay exponentially with increasing n at a rate given by the rate-function
I(x):

P[M, > 2] ~ ™M@ 2 > m,

P[M, < 2]~ e ™M@ 2 < m.

Historically, Cramér used complex variable methods to prove his theorem.
He gave [(x) as a power-series; how this came about is the subject of the
next section.

The connection with the Central Limit Theorem

Recall what the Central Limit Theorem tells us: if X, Xy, X5,... is a se-
quence of independent and identically distributed random variables with
mean y and variance o? < oo, then the average of the first n of them,
M, = %(Xl + ...+ X,) is approximately normal with mean g and variance
o?/n. That is, its probability density function is

1 n (z=1)?

f(x)zie 20—27

2r0?/n

and the approximation is only valid for @ within about o/y/n of u. If we
ignore the prefactor in f and compare the exponential term with the approx-
imation that Cramér’s Theorem gives us, we see that the terms (z — p)?/20?



occupy a position analogous to that of the rate function. Let us look again
at the coin tossing experiments: for = close to 1/2, we can expand our rate-
function in a Taylor series:

zlogae + (1 —a)log(l — ) +1log2 = +....

(z—3)°
Ry
The mean of each toss of a coin is 1/2, and the variance of each toss is 1/4;
thus the rate-function for coin tossing gives us the Central Limit Theorem. In
general, whenever the rate-function can be approximated near its maximum

by a quadratic form, the Central Limit Theorem holds.

So much for the similarities between the CLT and Large Deviations; the
name “Large Deviations” arises from the contrast between them. The CLT
governs random fluctuations only near the mean — deviations from the mean
of the order of o/4/n. Fluctuations which are of the order of o are, relative to
typical fluctuations, much bigger: they are large deviations from the mean.
They happen only rarely, and so Large Deviation theory is often described as
the theory of rare events — events which take place away from the mean, out
in the tails of the distribution; thus Large Deviation theory can be described
alternatively as the theory which studies the tails of distributions.



How to calculate the rate function:
bypassing combinatorics with Chernoff’s formula

One way of calculating the rate-function for coin-tossing is to apply Stirling’s
formula in conjunction with the combinatorial arguments we used earlier.
Chernoff’s formula gives the rate-function in terms of the cumulant generat-
ing function \:

I(x) = min{at — A(1)},

telR

where X is defined by
A(t) := log IEe™,

The cumulants of a distribution are closely related to the moments. The
first cumulant is simply the mean, the first moment. The second cumulant
is the variance, the second moment less the square of the first moment.
The relationship between the higher cumulants and the moments is more
complicated, but in general the £** cumulant can be written in terms of the
first £ moments. The relationship between the moments and the cumulants
is more clearly seen from their respective generating functions. The function
#(t) = I is the moment generating function for the X’s: the &*® moment
of the X’s is the k" derivative of ¢ evaluated at t = 0:

d* ko tX

Toott) = B[Xie]

d¥

—f = IE[X}] = k™ moment
dtr |, _,

The cumulant generating function is defined to be the logarithm of the mo-
ment generating function, A(t) := log ¢(¢), and the cumulants are then just
the derivatives of A:

d
—A(t =
d2
—A(t = o°,.
dt2 ( )t:O i

So, what is the idea behind Chernoft’s formula? Well, in order to calculate
the Central Limit Theorem approximation for the distribution for M,, we
must calculate the mean and variance of the X’s: essentially we use the



first two cumulants to get the first two terms in a Taylor expansion of the
the rate-function to give us a quadratic approximation. It is easy to see
that, if we want to get the full functional form of the rate function, we must
use all the terms in a Taylor series, that is, we must use all the cumulants.
The cumulant generating function packages all the cumulants together, and
Chernoft’s formula shows us how to extract the rate-function from it.



The connection with Shannon entropy

The context in which the word ‘entropy’ appears most often outside the
physical sciences is Information Theory. Many people have heard of Shannon
entropy and are familiar with the formula — 3=, p; log p;. Although it would be
very interesting to give an exposition here of the ideas involved in Information
Theory, that would sidetrack us somewhat. However, we shall at least apply
Cramér’s Theorem to derive one of the basic results used in Information
Theory and show how Shannon information is related to a Large Deviation
rate-function.
Suppose we draw n letters at random from a finite alphabet A = {aq,...a,}.

Let us call the word we form in this way w, and let vy(w) be the vector whose
r components are the relative frequencies with which each of the letters ap-

(i) = (”1<‘”>,..,”r<w>) |

n n

pear:

where n;(w) is the number of times the letter a; appears in the word w. The
vector v, takes values in the space X of probability vectors m = (mq,...m,),
where m; > 0 and m; 4+ ...+ m, = 1. One such probability vector is the
vector p whose j'" component p; is the true probability of drawing the letter
a;. Since the letters are drawn independently of one another, the probability
of getting the word w is

Prlw] = pit @) ),
Sanov’s Theorem states that
PP, (w) is close to m] a2 ¢~ "H(mIP),

where the rate-function H(ml|p) is given by

m m,
H(m|p):m110gp—1+...+mTlog .
1

P

The fact that the letters are drawn independently allows us to apply Cramér’s
Theorem to prove the existence of the rate-function, but we must use Chernoft’s
formula to calculate the functional form of H(m|p). Since H is a function
of a vector, the cumulant generating function is a function of a vector t:

At) = InIBel 5ot

10



To compute H(ml|p), we must calculate the Legendre transform of A:
H(mlp) = max{tim + ...+ t;m, — A(t) }.

Exercise: Use differential calculus to show that t must satisfy

20 pre’r
Oty preft + ...+ poetr

prnd mk?

and so -
ty = log —= + \(t).
Pk

Substitute this into the expression to be minimised to show that

H(mlp) = mllogm + ...+ m,log o
1 Pr
Going back to the statement of Cramér’s Theorem, we see that the dis-
tribution of M, is concentrated near m, the place where the rate-function

vanishes.

Execise: Show that it follows from Cramér’s Theorem that, as n increases,
limIP[m —6 < M,, < m+ 6] =1,

for any 6 > 0.
In Sanov’s Theorem, the rate-function is H(m|p); this vanishes if and
only if m = p. It follows that

lim IP?[v,(w) is close to p] = 1.

Now define I',, to be the set of words of length n for which v, (w) is close to
p. Then
P[] ~ 1.

The set I',, consists of the most probable words. We may decide that these
are the only ones we need to code; this decision can yield a worth-while saving
in effort if the probability vector p is not the uniform vector u = (%, ey %)
Notice that IP* is just normalised counting measure:

P*[A] = [A[/]€2,]

11



. In particular, IP*[I",] = |[',|/|2.]. We can use Sanov’s Theorem applied to
IP* to estimate the size of 1',:

IPY[I,] = IP[1,(w) is close to p] & e "H (P,
Exercise: Use Sanov’s Theorem to show that
T, | & e P,
where h(p) := —Y;p; Inp; is the Shannon entropy of p.

Since |,] = ¢ and h(u) = Inr > h(p) if p # u, it follows that T, is
substantially smaller than €2, when p is not uniform.

12



How to deal with more general cases than coin tossing

So far we have only talked about I.I.D. processes. What about more general
processes, such as Markov chains? Well, just as there is an analogue for non-
independent random variables of the CLT, giving a normal approximation
to the the distribution of M,,, so there is an analogue of Cramér’s Theorem,
giving the Large Deviation estimates for the distribution of M,,.

Again, suppose that Xy, X5, X5,... 1s a sequence of real-valued random
variables which is mizing (a very descriptive term — it means that X’s which
are widely separated are approximately independent of each other: no matter
what the value of X is, its influence on the value of X, is negligible since
it is well “mixed” in with the randomness of all the X’s in between). Let
M, = X(X; + ...+ X,,) be the average of the first n of them; then, again,
we have a rate function I which describes the dominant behaviour of the
distribution of M,,:

IP[M, € O] ~ e mitvec I(@),

How do we calculate the rate-function here? Varadhan’s Theorem gives
us the answer:

I(x) = min{et — A(1)}

where X in now the scaled cumulant generating function (SCGF) defined by

A(t) := lim lhq [EetMn,

n—oo n

The proof is somewhat technical, but the idea behind it is very simple. Write
the expectation IE in the definition of A as an integral with respect to the
distribution of M,,:

A(t) = lim —log/ " dIP[M,, = z];

n—oo n

since IP[M,, > x] behaves like e(*) we can say

At) = lim —log/ nte g =nl(@

n—oo n

= lim —log/ nfte=I(@

n—oo n

13



For n large, the integral is dominated more and more strongly by the max-

nmaxg (tz—I(z))

imum value of the integrand, which is e , and so we expect that

1
At) = lim —log rmaxs (tv—1(w))

n—0o
= mggax(t:z; — I(x)).

The last quantity is known as the Legendre transform of I. The Legendre
transform is like the Fourier transform in that, for an appropriate class of
functions, the transformed function contains exactly the same information
as the original function and so the transform is invertible . The Legendre
transform is invertible on the class of convex functions and is inverted by
repeating it; thus if I is convex, then its double transform [** is just [ itself.

Thus the scaled cumulant generating function A is the Legendre transform
of the rate-function and, if the latter is convex, it is the Legendre transform of
the SCGF. The convexity of the rate-function is not that unusual a condition;
very often, the argument that establishes the existence of the rate-function
also tells us that it is convex.

Note that Chernoft’s formula is a special case of Varadhan’s theorem: if
the X’s are independent, then

IEemsMn _ IEet(X1+...+Xn) _ (IEetXl)n7

the last step because the X’s are independent and identically distributed.
Thus

1 n
At) = lim —log (IEe™
(t) = lim log (IBe™)

= limﬁlogIEetX1

n—oo n

= logIEe'*1;

in this case, the scaled cumulant generating function is the same as the cumu-
lant generating function and Varadhan’s theorem yields Chernoff’s formula.

14



New rate-functions from old:
the Contraction Principle

In many applications of probability theory , we model a process with a se-
quence {Y,, } of random variables and we are able to show that some property
of the process is described by a related process {f(Y,)}. Does the Large Devi-
ation behaviour of the first process tell us anything about the Large Deviation
behaviour of the second process? The answer is given by the

Contraction principle:If {Y,} has a rate-function I and f is continuous,
then {f(Yn)} has a rate-function J and J is given by

J(z) = min{l(y) : f(y) ==}

To see the Contraction Principle in action, let us return to the experiment
in which n letters are drawn at random from a finite alphabet. We saw that
the relative frequency vector v, satisfies a Large Deviation Principle in that

IP[vn(w) is close to m] ~ ¢~ (mIP),
Suppose we take the letters aq,...a, to be real numbers and that, instead
of investigating the distribution of the relative frequency vector, we decide
to investigate the distribution of the mean M, (w) = al% + ...+ aT%.
Do we have to go and work out the Large Deviation Principle for M, from
scratch? No, because M, is a function of the relative frequency vector v,. It
is a very simple function — just the inner product f(m) =< a,m >, where
a is the vector whose components are the letters ay,...a,. It is obviously
continuous; hence the contraction principle applies, allowing us to calculate

the rate-function I(x) for M, in terms of the rate-function H(ml|p) for v,.

We have that
I(z) = min H(m|p) subject to < a,m >=z.

This is a simple optimisation problem with one constraint: we can solve it
using a Lagrange multiplier.

Exercise: Show that the value of m which achieves the minimum is given
by

_ e’ py

T efup 4. ePup,

where 3 is the Lagrange multiplier whose value can be determined from the
constraint.

mg
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Large Deviations in Queuing Networks:
effective bandwidths

Consider a single-server queue () with constant service rate s fed by a stream
of arrivals which, at time ¢, brings an amount of work X; to be served. For
each t, the arrivals process A; is defined to be the total amount of work which
has arrived since time —t in the past. It follows from a standard result in
queuing theory that the current queue-length () is determined by the arrivals
process:

Q= meX{At — st}

An argument based on the Contraction Principle shows that if the arrivals
process satisfies a Large Deviation principle with rate-function 7, so that

P[A;/t > z] = e7H(®)
then the tail of the queue-length distribution satisfies, for large ¢,
P[Q > q] = e,

where ¢ is determined by I. Of course, ¢ can also be calculated from the
scaled cumulant generating function A of the arrivals process:

1
6 =max{0:\(0) <sb}, A0) = tlim ;log | D

It the queue has only a finite waiting space, then ¢ gives us an estimate
of what that buffer-size must be in order to achieve a given probability of
overflow. If we know what X is, we can calculate ¢ for each value of the service
rate, and so we can Estimate what size buffer is needed. Alternatively, we can
turn the equation A(¢) = sé around to answer the question: if we have a fixed
buffer-size, what service rate is needed to make the probability of overflow
acceptably small? We can specify ¢ and calculate the effective bandwidth s
of the traffic from

s=X)/6
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Bypassing modelling:
estimating the scaled CGF

All we need for the SCGF (scaled cumulant generating function) of the ar-
rivals to exist is for the arrivals to be stationary and mixing. If these two
conditions are satisfied, we can use the SCGF to make predictions about the
behaviour of the queue.

One way to get the SCGF for the arrivals is to make a suitable statistical
model, and then calculate it using techniques from Large Deviation theory.
There are a number of problems with this approach. Firstly, real traffic
streams cannot be accurately represented by simple models; any realistic
model would have to be quite complex, with many parameters to be fitted
to the data. Secondly, the calculation of the SCGF for any but the simplest
model is a difficult problem. Thirdly, even if you could find a realistic model,
fit it to your data and calculate the SCGF, this would be a wasteful exercise:
the SCGF is a Large Deviation object, and it does not depend on the details
of the model, only on its “bulk properties”. Hence all the effort you put into
fitting your sophisticated model to the data is, to a large extent, lost.

Our approach is to ask “Why not measure what you are looking for dir-
ectly?” There are many good precedents for this approach. When engineers
design a steam turbine they need to know the thermodynamic properties of
steam. To find this out, they do not make a sophisticated statistical mech-
anical model of water and calculate the entropy from that; instead, they
measure the entropy directly in a calorimetric experiment, or (more likely)
they use steam tables — based on somebody else’s measurements of the en-
tropy. Now entropy is nothing but a rate-function, so how do we measure
the rate-function — or, equivalently, the SCGF — of an arrivals stream? Well,
assuming that the stream is mixing, we can approximate the SCGF by a
finite-time cumulant generating function:

1 6A
AO) ~ Ap(8) = Tlog [Ee™T,
for T sufficiently large. We can now estimate the value of the expectation by
breaking our data into blocks of length T" and averaging over them:

1 1 k=K

5\(0) = log 17 > e,
k=1
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where the X’s are the block sums
X1:X1—|—...—|—XT, XlzXT+1—|—...—|—X2T, etc.

This simple estimator has been used in preliminary investigations; it is likely
that more sophisticated estimators will make buffer-dimensioning "on the
fly” a practicable proposition.
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