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Introduction

What you will learn from this tutorial�

� What Large Deviation Theory is about

� Coin tossing� how to explore Large Deviations using your PC

� Cram�er�s Theorem and the Rate�Function

� The connection with the Central Limit Theorem �why �Large� Devi�
ations	


� How to calculate the rate function� bypassing combinatorics with Cherno��s
formula

� The connection with Shannon entropy

� How to deal with more general cases� Varadhan�s Theorem and the
scaled CGF

� New rate�functions from old� the Contraction Principle

� Large Deviations in Queuing Networks� e�ective bandwidths

� Bypassing modelling� estimating the scaled CGF
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What Large Deviation Theory is about

Large Deviation theory is a theory of rare events it can be used to estimate
the tails of probability distributions� In recent years� it has been used extens�
ively in teletra�c theory� The aim of this tutorial is to introduce engineers
to the basic ideas of the theory�

Coin tossing�

how to explore Large Deviations using your PC

If you have a little skill in programming� you can very quickly get a good
feel for the basic ideas of Large Deviation theory by carrying out on your
PC the experiments we are going to describe� Even if you can�t program �
and you can�t rope anyone into programming for you� you will �nd it useful
to read this section� consider what we are going to describe as a thought�
experiment� and we will supply the results�

Imagine a coin�tossing experiment� where we toss a coin n times and
record each result� There are � possible outcomes for each toss� giving �n

possible outcomes in all� What can we say about the total number of heads	
Well� there are n�� possible values for the total� ranging from � heads to n
heads of the �n possible outcomes��

n
r

�

result in r heads� If the coin is fair� every outcome is equally likely� and so
the probability of getting r heads is�

n
r

�
�

�n
�

Thus the distribution of heads is made up of n�� atoms with weights given by
the combinatorial factors to calculate the probability of the average number
of heads per toss lying in a particular range� we add up the weight of each of
the atoms which fall inside that range� If we let Mn be the average number
of heads in n tosses� then

IP�x � Mn � y� �
X
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Exercise� Write a function�procedure to take an integer n and two �oating�
point numbers x and y and return the value of the expression above� Use
this function�procedure to write a program to produce histograms of the
distribution of Mn for selected values of n�

We have done this for n���� n���� n��� and n���� we can see clearly
the Law of Large Numbers at work� as n increases� the distribution becomes
more and more sharply peaked about the mean� ���� and the tails become
smaller and smaller�
Exercise� Pick some point x greater than ��� and write a program to cal�
culate� for a range of values of n� the logarithm of the probability of Mn

exceeding x�
We have chosen x���� and produced a plot of log IP�Mn � x� against n

for n up to ����� It is clear that� although things are a little jumpy initially�
the plot becomes linear for large n� Repeat the experiment for a di�erent
value of x and you will see that the same thing happens� no matter what
value of x greater than ��� you take� the plot will always be linear for n large�
How quickly it becomes linear� and what the asymptotic slope is� depends
on the value of x� but the graph of log IP�Mn � x� against n is always linear
for large n� Let�s call this asymptotic slope �I�x
�
Exercise� Repeat the experiment for a range of values of x from ��� to ��
measure the asymptotic slope in each case� and plot the values of I�x
 you
get against x� Do the same thing for log IP�Mn � x� for a range of values of
x from � to ����
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You have made a discovery�

THE TAIL OF THE DISTRIBUTION OF THE
AVERAGE NUMBER OF HEADS IN n TOSSES
DECAYS EXPONENTIALLY AS n INCREASES

The plot you have made tells you the local rate at which a tail decays as
a function of the point from which the tail starts� you have built up a picture
of the rate�function I�x
�
Exercise� Plot the graph of the function x lnx � �� � x
 ln�� � x
 � ln �
against x and compare it with your previous plot�

We see that the two plots �t� we have guessed a formula for I�x
� the
rate�function for coin�tossing� One of the goals of Large Deviation theory is
to have a systematic way of calculating the rate�function we will show you
later one way of achieving this�

To summarise� we have found that� for coin tossing� the tails of the distri�
bution of Mn� the average number of heads in n tosses� decay exponentially
fast

IP�Mn � x� � e�nI�x�� x � ����

IP�Mn � x� � e�nI�x�� x � ����

as n becomes large in fact� the approximation is quite good for surprisingly
small values of n�
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Cram�er�s Theorem and the Rate Function

Harald Cram�er was a Swedish mathematician who served as a consultant
actuary for an insurance company this led him to discover the �rst result
in Large Deviation theory� The Central Limit Theorem gives information
about the behaviour of a probability distribution near its mean while the
risk theory of insurance is concerned with rare events out on the tail of a
probability distribution� Cram�er was looking for a re�nement of the Central
Limit Theorem� What he proved was this�

Cram�er�s Theorem Let X��X��X�� � � � be a sequence of bounded� inde�

pendent and identically distributed random variables each with mean m� and

let

Mn �
�

n
�X� � � � ��Xn


denote the empirical mean� then the tails of the probability distribution of

Mn decay exponentially with increasing n at a rate given by the rate�function

I�x
�
P �Mn � x� � e�nI�x�� x � m�

P �Mn � x� � e�nI�x�� x � m�

Historically� Cram�er used complex variable methods to prove his theorem�
He gave I�x
 as a power�series how this came about is the subject of the
next section�

The connection with the Central Limit Theorem

Recall what the Central Limit Theorem tells us� if X��X��X�� � � � is a se�
quence of independent and identically distributed random variables with
mean � and variance �� � �� then the average of the �rst n of them�
Mn � �

n
�X� � � � ��Xn
 is approximately normal with mean � and variance

���n� That is� its probability density function is

f�x
 �
�q

�	���n
e�

n
�

�x����

�� �

and the approximation is only valid for x within about ��
p
n of �� If we

ignore the prefactor in f and compare the exponential term with the approx�
imation that Cram�er�s Theorem gives us� we see that the terms �x��
�����

�



occupy a position analogous to that of the rate function� Let us look again
at the coin tossing experiments� for x close to ���� we can expand our rate�
function in a Taylor series�

x log x� �� � x
 log�� � x
 � log � �
�x� �

�

�

� � �
�

� � � � �

The mean of each toss of a coin is ���� and the variance of each toss is ���
thus the rate�function for coin tossing gives us the Central Limit Theorem� In
general� whenever the rate�function can be approximated near its maximum
by a quadratic form� the Central Limit Theorem holds�

So much for the similarities between the CLT and Large Deviations the
name �Large Deviations� arises from the contrast between them� The CLT
governs random �uctuations only near the mean � deviations from the mean
of the order of ��

p
n� Fluctuations which are of the order of � are� relative to

typical �uctuations� much bigger� they are large deviations from the mean�
They happen only rarely� and so Large Deviation theory is often described as
the theory of rare events � events which take place away from the mean� out
in the tails of the distribution thus Large Deviation theory can be described
alternatively as the theory which studies the tails of distributions�
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How to calculate the rate function�

bypassing combinatorics with Cherno��s formula

One way of calculating the rate�function for coin�tossing is to apply Stirling�s
formula in conjunction with the combinatorial arguments we used earlier�
Cherno��s formula gives the rate�function in terms of the cumulant generat�

ing function 
�
I�x
 � min

t�IR
fxt� 
�t
g�

where 
 is de�ned by

�t
 �� log IEetXj�

The cumulants of a distribution are closely related to the moments� The
�rst cumulant is simply the mean� the �rst moment� The second cumulant
is the variance� the second moment less the square of the �rst moment�
The relationship between the higher cumulants and the moments is more
complicated� but in general the kth cumulant can be written in terms of the
�rst k moments� The relationship between the moments and the cumulants
is more clearly seen from their respective generating functions� The function
��t
 � IEetX� is the moment generating function for the X�s� the kth moment
of the X�s is the kth derivative of � evaluated at t � ��

dk

dtk
��t
 � IE�Xk

� e
tX��

dk�

dtk

�����
t�	

� IE�Xk
� � � kth moment

The cumulant generating function is de�ned to be the logarithm of the mo�
ment generating function� 
�t
 �� log ��t
� and the cumulants are then just
the derivatives of 
�

d

dt

�t


�����
t�	

� m�

d�

dt�

�t


�����
t�	

� ��� ����

So� what is the idea behind Cherno��s formula	 Well� in order to calculate
the Central Limit Theorem approximation for the distribution for Mn� we
must calculate the mean and variance of the X�s� essentially we use the
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�rst two cumulants to get the �rst two terms in a Taylor expansion of the
the rate�function to give us a quadratic approximation� It is easy to see
that� if we want to get the full functional form of the rate function� we must
use all the terms in a Taylor series� that is� we must use all the cumulants�
The cumulant generating function packages all the cumulants together� and
Cherno��s formula shows us how to extract the rate�function from it�

 



The connection with Shannon entropy

The context in which the word !entropy� appears most often outside the
physical sciences is Information Theory� Many people have heard of Shannon
entropy and are familiar with the formula�Pi pi log pi� Although it would be
very interesting to give an exposition here of the ideas involved in Information
Theory� that would sidetrack us somewhat� However� we shall at least apply
Cram�er�s Theorem to derive one of the basic results used in Information
Theory and show how Shannon information is related to a Large Deviation
rate�function�

Suppose we draw n letters at random from a �nite alphabet A � fa�� � � � arg�
Let us call the word we form in this way �� and let n��
 be the vector whose
r components are the relative frequencies with which each of the letters ap�
pear�

n��
 ��

�
n���


n
� � � �

nr��


n

�
�

where nj��
 is the number of times the letter aj appears in the word �� The
vector n takes values in the space X of probability vectorsm � �m�� � � �mr
�
where mj � � and m� � � � � � mr � �� One such probability vector is the
vector p whose jth component pj is the true probability of drawing the letter
aj� Since the letters are drawn independently of one another� the probability
of getting the word � is

IPp��� � p
n����
� � � � pnr���r �

Sanov�s Theorem states that

IPp�n��
 is close to m� � e�nH�mjp��

where the rate�function H�mjp
 is given by

H�mjp
 � m� log
m�

p�
� � � ��mr log

mr

pr
�

The fact that the letters are drawn independently allows us to apply Cram�er�s
Theorem to prove the existence of the rate�function� but wemust use Cherno��s
formula to calculate the functional form of H�mjp
� Since H is a function
of a vector� the cumulant generating function is a function of a vector t�


�t
 � ln IEe�t�
n�
n

���
tr

nr
n
��

� log
�
p�e

t� � � � �� pre
tr
�

��



To compute H�mjp
� we must calculate the Legendre transform of 
�

H�mjp
 � max
t
f t�m� � � � �� trmr � 
�t
 g�

Exercise� Use di�erential calculus to show that t must satisfy

�


�tk
�

pke
tk

p�et� � � � �� pretr
� mk�

and so
tk � log

mk

pk
� 
�t
�

Substitute this into the expression to be minimised to show that

H�mjp
 � m� log
m�

p�
� � � ��mr log

mr

pr
�

Going back to the statement of Cram�er�s Theorem� we see that the dis�
tribution of Mn is concentrated near m� the place where the rate�function
vanishes�
Execise� Show that it follows from Cram�er�s Theorem that� as n increases�

lim
n

IP�m� � � Mn � m� �� � ��

for any � � ��
In Sanov�s Theorem� the rate�function is H�mjp
 this vanishes if and

only if m � p� It follows that

lim
n

IPp�n��
 is close to p� � ��

Now de�ne "n to be the set of words of length n for which n��
 is close to
p� Then

IPp�"n� � ��

The set "n consists of the most probable words� We may decide that these
are the only ones we need to code this decision can yield a worth�while saving
in e�ort if the probability vector p is not the uniform vector u � ��

r
� � � � � �

r

�

Notice that IPu is just normalised counting measure�

IPu�A� � jAj�j#nj
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� In particular� IPu�"n� � j"nj�j#nj� We can use Sanov�s Theorem applied to
IPu to estimate the size of "n�

IPu�"n� � IPu�n��
 is close to p� � e�nH�pju��

Exercise� Use Sanov�s Theorem to show that

j"nj � enh�p��

where h�p
 �� �$jpj ln pj is the Shannon entropy of p�
Since j#nj � en ln r and h�u
 � ln r � h�p
 if p �� u� it follows that "n is

substantially smaller than #n when p is not uniform�
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How to deal with more general cases than coin tossing

So far we have only talked about I�I�D� processes� What about more general
processes� such as Markov chains	 Well� just as there is an analogue for non�
independent random variables of the CLT� giving a normal approximation
to the the distribution of Mn� so there is an analogue of Cram�er�s Theorem�
giving the Large Deviation estimates for the distribution of Mn�

Again� suppose that X��X��X�� � � � is a sequence of real�valued random
variables which is mixing �a very descriptive term � it means that X�s which
are widely separated are approximately independent of each other� no matter
what the value of X� is� its in�uence on the value of Xn is negligible since
it is well �mixed� in with the randomness of all the X�s in between
� Let
Mn � �

n
�X� � � � � � Xn
 be the average of the �rst n of them then� again�

we have a rate function I which describes the dominant behaviour of the
distribution of Mn�

IP�Mn � C� � e�nminx�C I�x��

How do we calculate the rate�function here	 Varadhan�s Theorem gives
us the answer�

I�x
 � min
t�IR

fxt� 
�t
g
where 
 in now the scaled cumulant generating function �SCGF
 de�ned by


�t
 �� lim
n��

�

n
ln IEentMn�

The proof is somewhat technical� but the idea behind it is very simple� Write
the expectation IE in the de�nition of 
 as an integral with respect to the
distribution of Mn�


�t
 � lim
n��

�

n
log

Z
IR
entxdIP�Mn � x�

since IP�Mn � x� behaves like e�nI�x�� we can say


�t
 � lim
n��

�

n
log

Z
IR
entxe�nI�x�dx

� lim
n��

�

n
log

Z
IR
en�tx�I�x��dx�

��



For n large� the integral is dominated more and more strongly by the max�
imum value of the integrand� which is enmaxx�tx�I�x��� and so we expect that


�t
 � lim
n��

�

n
log enmaxx�tx�I�x��

� max
x

�tx� I�x

�

The last quantity is known as the Legendre transform of I� The Legendre
transform is like the Fourier transform in that� for an appropriate class of
functions� the transformed function contains exactly the same information
as the original function and so the transform is invertible � The Legendre
transform is invertible on the class of convex functions and is inverted by
repeating it thus if I is convex� then its double transform I�� is just I itself�

Thus the scaled cumulant generating function 
 is the Legendre transform
of the rate�function and� if the latter is convex� it is the Legendre transform of
the SCGF� The convexity of the rate�function is not that unusual a condition
very often� the argument that establishes the existence of the rate�function
also tells us that it is convex�

Note that Cherno��s formula is a special case of Varadhan�s theorem� if
the X�s are independent� then

IEentMn � IEet�X�
���
Xn� �
�
IEetX�

�n
�

the last step because the X�s are independent and identically distributed�
Thus


�t
 � lim
n��

�

n
log

�
IEetX�

�n
� lim

n��

n

n
log IEetX�

� log IEetX�

in this case� the scaled cumulant generating function is the same as the cumu�
lant generating function and Varadhan�s theorem yields Cherno��s formula�
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New rate�functions from old�

the Contraction Principle

In many applications of probability theory � we model a process with a se�
quence fYng of random variables and we are able to show that some property
of the process is described by a related process ff�Yn
g� Does the Large Devi�
ation behaviour of the �rst process tell us anything about the Large Deviation
behaviour of the second process	 The answer is given by the
Contraction principle�If fYng has a rate�function I and f is continuous�

then ff�Yn
g has a rate�function J and J is given by

J�z
 � minfI�y
 � f�y
 � z�g
To see the Contraction Principle in action� let us return to the experiment

in which n letters are drawn at random from a �nite alphabet� We saw that
the relative frequency vector n satis�es a Large Deviation Principle in that

IP�n��
 is close to m� � e�nH�mjp��

Suppose we take the letters a�� � � � ar to be real numbers and that� instead
of investigating the distribution of the relative frequency vector� we decide
to investigate the distribution of the mean Mn��
 � a�

n����
n

� � � �� ar
nr���
n

�
Do we have to go and work out the Large Deviation Principle for Mn from
scratch	 No� because Mn is a function of the relative frequency vector n� It
is a very simple function � just the inner product f�m
 �� a�m �� where
a is the vector whose components are the letters a�� � � � ar� It is obviously
continuous hence the contraction principle applies� allowing us to calculate
the rate�function I�x
 for Mn in terms of the rate�function H�mjp
 for n�
We have that

I�x
 � min
m

H�mjp
 subject to � a�m �� x�

This is a simple optimisation problem with one constraint� we can solve it
using a Lagrange multiplier�
Exercise� Show that the value of m which achieves the minimum is given
by

mk �
e�akpk

e�a�p� � � � �� e�arpr
�

where � is the Lagrange multiplier whose value can be determined from the
constraint�
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Large Deviations in Queuing Networks�

e�ective bandwidths

Consider a single�server queue Q with constant service rate s fed by a stream
of arrivals which� at time t� brings an amount of work Xt to be served� For
each t� the arrivals process At is de�ned to be the total amount of work which
has arrived since time �t in the past� It follows from a standard result in
queuing theory that the current queue�length Q is determined by the arrivals
process�

Q � max
t
fAt � stg�

An argument based on the Contraction Principle shows that if the arrivals
process satis�es a Large Deviation principle with rate�function I� so that

IP�At�t � x� � e�tI�x��

then the tail of the queue�length distribution satis�es� for large q�

IP�Q � q� � e�q��

where � is determined by I� Of course� � can also be calculated from the
scaled cumulant generating function 
 of the arrivals process�

� � maxf � � 
��
 	 s� g� 
��
 �� lim
t��

�

t
log IEe�At�

If the queue has only a �nite waiting space� then � gives us an estimate
of what that bu�er�size must be in order to achieve a given probability of
over�ow� If we know what 
 is� we can calculate � for each value of the service
rate� and so we can Estimate what size bu�er is needed� Alternatively� we can
turn the equation 
��
 � s� around to answer the question� if we have a �xed
bu�er�size� what service rate is needed to make the probability of over�ow
acceptably small	 We can specify � and calculate the e�ective bandwidth s
of the tra�c from

s � 
��
��

�
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Bypassing modelling�

estimating the scaled CGF

All we need for the SCGF �scaled cumulant generating function
 of the ar�
rivals to exist is for the arrivals to be stationary and mixing� If these two
conditions are satis�ed� we can use the SCGF to make predictions about the
behaviour of the queue�

One way to get the SCGF for the arrivals is to make a suitable statistical
model� and then calculate it using techniques from Large Deviation theory�
There are a number of problems with this approach� Firstly� real tra�c
streams cannot be accurately represented by simple models any realistic
model would have to be quite complex� with many parameters to be �tted
to the data� Secondly� the calculation of the SCGF for any but the simplest
model is a di�cult problem� Thirdly� even if you could �nd a realistic model�
�t it to your data and calculate the SCGF� this would be a wasteful exercise�
the SCGF is a Large Deviation object� and it does not depend on the details
of the model� only on its �bulk properties�� Hence all the e�ort you put into
�tting your sophisticated model to the data is� to a large extent� lost�

Our approach is to ask �Why not measure what you are looking for dir�
ectly	� There are many good precedents for this approach� When engineers
design a steam turbine they need to know the thermodynamic properties of
steam� To �nd this out� they do not make a sophisticated statistical mech�
anical model of water and calculate the entropy from that instead� they
measure the entropy directly in a calorimetric experiment� or �more likely

they use steam tables � based on somebody else�s measurements of the en�
tropy� Now entropy is nothing but a rate�function� so how do we measure
the rate�function � or� equivalently� the SCGF � of an arrivals stream	 Well�
assuming that the stream is mixing� we can approximate the SCGF by a
�nite�time cumulant generating function�


��
 � 
T ��
 �
�

T
log IEe�AT �

for T su�ciently large� We can now estimate the value of the expectation by
breaking our data into blocks of length T and averaging over them�

%
��
 ��
�

T
log

�

K

k�KX
k��

e�
�Xk �

��



where the &X�s are the block sums

&X� � X� � � � ��XT � &X� � XT
� � � � ��X�T � etc�

This simple estimator has been used in preliminary investigations it is likely
that more sophisticated estimators will make bu�er�dimensioning �on the
�y� a practicable proposition�
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