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Overview

Lecture 1

• Channel model and ISI

• Optimal receiver design

• Nyquist criterion, Nyquist rate, and pulse shaping

• ML sequence estimation (optimal but high complexity)

Lecture 2: Linear Equalization (suboptimal but low(er) complexity)
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Geometric Model

Channel filter
gC(t)

Transmit filter
gT (t)Rate 1/T

{b[n]}

n(t)Equivalent pulse p(t) = (gT ⋆ gC)(t)

y(t)
Receive filter

gRX(t)

r[k]

Sampling, t = nTs

with Ts = T/m

• Received signal: y(t) =
∑
n

b[n]p(t − nT ) + n(t)

• Arbitrary receive filter gRX (t)
• suboptimal equalizers do not require an optimal front end

• not matched to p(t); often wideband filter, especially, if sampling is
faster than the symbol rate (m > 1).

• Sampling time: Ts = T/m
• m = 1: symbol spaced sampling

• m > 1: fractionally spaced sampling

• Output of the sampler: r [k] = (y ? gRX )(kTs + δ)

• Sampled impulse response: f [k] = (p ? gRX )(kTs + δ)

• Noise at the output of the sampler: w [k] = (n ? gRX )(kTs + δ)
→ Colored noise with auto correlation/covariance

Cw (k) = 2σ2
∫

gRX (t)g∗RX (t − kTs)dt
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Geometric Model
• A block of L received samples r[n] is used to decide one symbol b[n].

• Model for the received vector

r[n] = Ub[n] + w[n],

where
• b[n] = (b[n− k1], . . . , b[n], . . . , b[n + k2])T is a length-K vector with

K = k1+k2+1; it includes all symbols b[n′] which contribute to r[n].

• U = [u−k1
. . . uk2

] is a L× K matrix with columns ui corresponding
to the shifted impulse response f [k].

• w[n] is zero-mean, proper complex Gaussian noise with covariance
matrix Cw

• Example2: L = 3, k1 = 1, k2 = 0, K = 2
b[0]f [0]

b[0]f [1]

b[1]f [0]

b[0]f [2]

b[1]f [1]

b[2]f [0]

r[1]r[0] r[2] r[3] r[4]

b[1]f [2]

b[3]f [0]

b[2]f [1]

b[2]f [2]

r[5] r[6]

= r[2] ⇒ b[2] = (b[1], b[2])T

r[2] =

 r [3]
r [4]
r [5]

 =

 f [1] 0
f [2] f [0]

0 f [1]

[ b[1]
b[2]

]
+

 w [3]
w [4]
w [5]


2Note that this choice of parameters may not be the optimal choice.
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Linear Equalization

• Alternative formulation of the received vector

r[n] = b[n]u0 +

k2∑
i=−k1,i 6=0

b[n + i ]ui + w[n]

• Linear equalization: correlate r[n] with a vector c to produce a
decision variable Z [n] = 〈r[n], c〉:

Z [n] = cHr[n] = b[n]cHu0 +

k2∑
i=−k1,i 6=0

b[n + i ]cHui︸ ︷︷ ︸
residual ISI

+ cHw[n]

→ choose c such that the signal component b[n]cHu0 is significantly
larger than the residual ISI (if possible).

→ Colored noise cHw[n] with covariance cHCwc

• Hard decision or soft decision based on Z [n]
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Zero-Forcing Equalization

• The zero-forcing solution (if it exists) satisfies

cHu0 = 1 and cHui = 0, for all i 6= 0

or equivalently

cHU = (0, . . . 0, 1, 0 . . . , 0)T = eT or UHc = e

• The correlator c should lie in the signal space spanned by the
vectors {ui}

• Components of c outside the signal space contribute only noise.
→ c should be a linear combination of the ui ’s, i.e., c = Ua.

• It follows the zero-forcing equalizer as cZF = U(UHU)−1e
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Zero-Forcing Equalization

• Geometric interpretation of the
signal space

• Component in direction of
the desired signal: u0

• Interference subspace SI

spanned by {ui , i 6= 0}

[U. Madhow, Fundamentals of Dig. Comm., 2008]

• To suppress the interference completely, c must be orthogonal to
the interference subspace (only possible if L > K − 1)): c = αP⊥I u0

• With the normalization 〈c, u0〉 = 1, we get the scale factor
α = 1/‖P⊥I u0‖2.

• Noise variance v 2
ZF of the output noise:

v 2
ZF = σ2‖c‖2 =

σ2

‖P⊥I u0‖2

→ Noise enhancement with increasing α
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MMSE Equalization

• Minimization of the minimum mean squared error (MMSE)

cMMSE = arg min
c

E[ |cHr[n]− b[n]|2︸ ︷︷ ︸
mean squared error (MSE)

]

→ tradeoff between between ISI suppression and noise enhancement

• Solution:
cMMSE = R−1p

with
• autocorrelation matrix of the received signal R = E[r[n]rH [n]]
• cross-correlation vector p = E[b∗[n]r[n]]

• Proof: by solving ∇c∗E[|cHr[n]− b[n]|2] = 0

• Useful performance measure for linear equalizers:
signal-to-interference ratio (SIR)

SIR =
σ2
b|〈c, u0〉|2

σ2
b

∑
j 6=0 |〈c, uj〉|2 + cHCwc

• Important properties:
• The MMSE equalizer maximizes the SIR.
• At high SNR, the MMSE equalizer specializes to the ZF equalizer.

8 / 1

Notes

Notes



Lecture 2
Channel Equalization

Ming Xiao
CommTh/EES/KTH

Adaptive Implementations
• Channel knowledge required for equalization
→ ZF: U ⇒ channel impulse response required
→ MMSE: R, p ⇒ auto and cross correlation of the received vector

and the data

• Training and decision directed modes
• training phase: training sequences (known to the receiver) are

transmitted; the receiver estimates parameters of the EQ.
• data phase: data are transmitted, and the receiver uses the EQ

based on the estimated parameters.

• Least squares algorithm
• MMSE with empirical averages of R and p (N training sequences)

→ cLS = R̂−1p̂ with

R̂ =
1

N

N∑
n=1

r[n]rH [n] and p̂ =
1

N

N∑
n=1

b∗[n]r[n]

• Least mean squares algorithm
• Gradient descent: c[k] = c[k − 1]− µE[r[n](rH [n]c[k − 1]− b∗[n])]︸ ︷︷ ︸

∇c∗ J(c[k−1])

• Replacing the expectation by the instantaneous value yields

c[k] = c[k − 1]− µr[n] (rH [n]c[k − 1]− b∗[n])︸ ︷︷ ︸
e∗[k]

= c[k − 1] + µe∗[k]r[n]
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Performance Analysis

• The equalizer output can be written as

Z [n] = A0b[n] +
∑
i 6=0

Aib[n + i ] + W [n] with

• amplitudes Ai = 〈c, ui〉
• zero-mean Gaussian noise with variance v2 = σ2‖c‖2

• BPSK system with hard decision based on Z [n]: b̂[n] = sign(Z [n])

• Error probability

Pe = Pr[b̂[n] 6= b[n]] = Pr[Z [n] > 0|b[n] = −1]

due to symmetry.
• Conditional error probability for given ISI bits bI = {bn+i , i 6= 0}

Pe|bI = Pr[Z [n] > 0|b[n] = −1, bI ]

= Pr[W [n] > A0 −
∑
i 6=0

Aib[n + i ])] = Q

(
A0 −

∑
i 6=0 Aib[n + i ]

v

)

• Error probability averaged over ISI: Pe = EbI {Pe|bI }
• Alternative approximation: model ISI as Gaussian random variable

with variance v 2
I =

∑
i 6=0 A

2
i
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