
Assignment 1: Speech Production and Models

EQ2320 Speech Signal Processing

2016-01-23

Instructions for the deliverables

Perform all (or as many as you can) of the tasks in this project assignment.

Summarize your results in a presentation style document. You are going to

present your work to the course responsible or one of the teaching assistants (TA)

and it pays off to have a clear, well structured and brief document. Explicitly

state, on the slides, the problem numbers. Include an algorithmic solution

and/or numerical result and/or a graph illustrating your results.

Your Matlab code should be functioning and easy to read. You have to send

us your Matlab source code at least a day before the scheduled time for your

presentation. Use a naming convention for your files that is easy to understand

and associate with a specific problem number. Be prepared to demo your own

code on a personal or our computer. Archive your files before sending them to

us!

You can find all necessary materials for successfully accomplishing the as-

signment on the course homepage: https://www.kth.se/social/course/EQ2320/.

Grading system

Each correctly solved task brings you a certain amount of points. The grade

you get depends on the amount of points you accumulate and your ability to

motivate your solutions during the presentation. A passing grade corresponds

to having 30 % and more of the total amount of points, while an excellent grade

requires 85 % and more. No points will be granted for a correct response if you

cannot motivate your answer.

Keep in mind, when working in a group of two, that both people are expected

to be able to make a complete presentation and answer questions related to all

problems. You may be graded differently depending on your responses. The

grade you get depends on the amount of correctly solved tasks and your ability

to motivate the solutions during the presentation.

1

1 Introduction

The first assignment is perhaps the most important for two reasons: Firstly, the

knowledge obtained in this exercise is the basis for the whole course, and the

program code that you produce will be useful in coming exercises. Secondly,

this exercise is relatively easy, and this is a chance for all who are not familiar

with the MATLAB environment to catch up. The coming computer exercises

will require more MATLAB knowledge (but will also be proportionally more

exciting).

On the course homepage you can find the speech data which you will analyze

in this computer assignment. Download and unzip the file assignment1.zip

from the course webpage. Store it in a directory which is readable from the

MATLAB prompt. To load the data, type load assignment1.mat in MAT-

LAB. Several MATLAB variables are then loaded into memory. All the signals

are sampled at 8 kHz. The signals are stored in double floating point format,

but they originate from 16 bit AD conversion.

In this first assignment a lot of code is provided to you. Note that this is

for your convenience only; if you prefer to write your own code from scratch we

encourage you to do so, but it may be time consuming.

2 Bandwidth of Speech

In our first experiment we study how low-pass filtering affects the speech sig-

nal. Load the files male44.waw and female44.wav into MATLAB using the

function wavread. The speech is sampled at 44.1 kHz. In the following, use the

m-file (MATLAB function) lowpass.m.

TASKS/QUESTIONS

1. Do not listen to the full-band signals! Start with a very low cut-off fre-

quency (say 500 Hz), and listen to the output. Increase the cut-off in steps

of 500 Hz. At what cut-off frequency do you start hearing what is said?

This is a test of intelligibility, i.e., how well we can understand what is

spoken. (0.5 pts)

2. At what cut-off frequency do you start to hear a degradation in overall

speech quality? (0.5 pts)

3. Why, do you think (you are allowed to speculate!), is a sampling frequency

of 8 kHz used in plain old telephony services (POTS)? (1 pts)

2

HINTS/REMARKS

1. On most platforms1, MATLAB’s own playback functions sound and soundsc

usually work fine. You should use the soundsc function to make sure the

signal is properly scaled and does not cause overflow in the output sound

device. See also hint about SPCLAB in the next section.

2. Two important commands in MATLAB are help and lookfor. With

“help” you get detailed instructions about a certain MATLAB function.

It requires that you know the name of the function. If you don’t know the

name of a function, sometimes “lookfor” finds it for you.

3 Voiced and Unvoiced Speech Sounds

Here, we study the variable “male short” which contains a short utterance of

speech. From a time plot, find voiced and unvoiced regions. Study the har-

monic structure and envelope of the speech spectra corresponding to voiced and

unvoiced regions.

TASKS/QUESTIONS

1. Create a time plot with voiced and unvoiced regions marked with a pen.

(0.5 pts)

2. In the time plot, mark the regions where the pitch is the highest and the

lowest. What are the pitch frequencies in those regions? (0.5 pts)

3. Plot the DFT based spectrum for a voiced frame using,

% x is a vector of speech, N is the frame length (must be even),

% S is the first sample of the frame to be analyzed

xf = x(S:S+N-1).*hanning(N);

X = fft(xf);

figure(1); clf;

plot(10*log10(abs(X(1:N/2+1)).ˆ2));

Make sure you understand every line of the above piece of code. (0.5 pts)

1Under Linux on PC platforms the MATLAB-internal soundsc command might not work.

In this case you can use the program mysound that is provided to you with the other files for

this assignment.

3

4. What is the mathematical expression of the MATLAB variable X(3), i.e.,

the third element in the FFT vector? What analog frequency (between

0-8000 Hz) does X(3) correspond to? (1 pts)

5. What is the fundamental frequency (pitch) in your particular case? (0.5

pts)

6. What frame length is appropriate? What compromise do you have to

make when choosing frame length? (1 pts)

7. Replace the hanning window function with a rectangular window and

compare the result. (1 pts)

8. Extend the code above with the following lines to plot also the LP enve-

lope of the short-time speech spectrum:

% M is the prediction order

c = xcorr(xf, xf, M);

[a, e]= levinson(c(M+1:2*M+1)); % a is a vector always starting

with a 1.

a = a(:); % Make a a column vector

% The commented code below is essentially equivalent to the two

lines above

% r = c(M+1:2*M+1);

% R = toeplitz(r(1:M),r(1:M)); % A Toeplitz matrix with first

row r(1:M)

% a = - R / r(2:M+1);

% a = [1; a]; % Add the leading 1

% e = sum(a*r);

h = zeros(N,1);

for k=0:N-1

h(k+1) = 1 / (a’*exp(-i*2*pi*k/N*(0:M)’));

end

% h = freqz(1, a, N, ’whole’); % Equivalent to the above for-loop!

hold on

plot(10*log10(e*abs(h(1:N/2+1)).ˆ2), ’r’);

Make sure you understand every line in the code above or use your own

code which you do understand. (0.5 pts)

9. What is the mathematical expression of the MATLAB variable c(3)? Why

do we multiply abs(h(1:N/2+1)).ˆ2 by e before plotting? (1 pts)

4

10. What prediction order do you recommend? (1 pts)

11. Repeat the spectrum plotting for an unvoiced frame. (0.5 pts)

HINTS/REMARKS

1. You can use the zoom in the figure window in MATLAB to study details

of the signals.

2. A much more convenient tool is SPCLAB that is free to use and can be

accessed from the course web page. SPCLAB provides a lot of useful

functionality for the study of speech signals and we recommend its use.

Especially useful here is the tool to zoom in on a region corresponding

to a certain speech sound and then saving that region to a vector in the

MATLAB workspace for further processing.

3. The statement “Plot the spectrum” is vague. There are many alternatives,

e.g. plotting the real, and imaginary part of the FT separately. Here we

focus on the squared magnitude of the DFT coefficients, and hence disre-

gard the phase. Also it is common to plot the spectrum in a logarithmic

scale, i.e., in decibels (dB), since this better reflects what we actually hear.

4. In all MATLAB functions related to linear prediction and filtering, the

polynomial A(z) is defined A(z) = 1 +
∑

akz
−k. This means that if you

use for example levinson to calculate the polynomial coefficients they will

have opposite sign compared to what we get based on our definition in the

course book.

4 Formants

In the speech variable “male short”, try to identify the vowels by comparing

the formants from an LP analysis to the formant frequencies of template vowels

in Table 1. Note that the table contains only the three first formants; you can

often see up to four formants.

TASKS/QUESTIONS

1. In the time plot from the previous section, add the formant frequencies

and the vowels you come up with. (1 pts)

2. How are pitch and formant frequencies related? (1.5 pts)

5

vowel F1 F2 F3 example

iy 270 2290 3010 beet

ih 390 1990 2550 bit

eh 530 1840 2480 bet

ae 660 1720 2410 bat

ah 520 1190 2390 but

aa 730 1090 2240 hot

ao 570 840 2410 bought

uh 440 1020 2240 foot

uw 300 870 2240 boot

er 490 1350 1690 bird

Table 1: Formant frequencies of vowels

HINTS/REMARKS

It more fun if you do not listen to the speech sample beforehand. Afterwards

you can check if your formant analysis was “correct”. Use the zoom in the

figure window in MATLAB to find segments where the signal can be regarded

as stationary. Then copy that segment to a new vector and perform an LP

analysis.

5 Phonemes and Allophones

Vowels, which we studied in the previous section, constitute one class of phonemes.

Here we identify what other phonemes are contained in “male short”. This time,

it is OK to listen to the speech!

TASKS/QUESTIONS

1. In the time plot from the previous sections, mark the regions of the other

phonemes and label each region with the correct phonetic symbol. (1 pts)

2. Can consonants have formant frequencies? (1 pts)

3. What is a diphthong? (0.5 pts)

4. How many phonemes are there in English? (0.5 pts)

5. What is a phone? What is an allophone? How many allophones are there?

(0.5 pts)

6

HINTS/REMARKS

1. In chapter 2 of the course book, you can learn what the difference between

phonemes, allophones, and phones is. This is material which makes lin-

guistics happy. Basic knowledge of this is also useful to the speech signal

processing expert.

6 The Spectrogram

Program a spectrogram function in MATLAB. A spectrogram shows the

energy in speech as a function of time and frequency. The result is often

displayed with time on the horizontal axis, and frequency on the vertical

axis. The energy (squared magnitude, and in dB) of the DFT coefficients

are illustrated by e.g. a grayscale, where black corresponds to high energy,

and white represents low energy. To obtain a smooth evolution over time,

we want to use overlapping analysis windows, see Figure 1. Test your

function on the speech samples provided for this lab. For the presentation

have the result for “male short” available.

Figure 1: Overlapping analysis frames

TASKS/QUESTIONS

1. First program a function that extracts overlapping frames and plots each

frame. Input arguments should be update length, and analysis length:

function myspectrogram(x, alen, ulen)

% x is the speech vector

7

% alen is the analysis frame length, ulen is the update length

N = length(x);

naf = floor((N-alen+ulen)/ulen); % Number of analysis frames

n1 = 1;

n2 = alen;

for n=1:naf % Counter over analysis frames

xf = x(n1:n2);

figure(1); clf; plot(xf); axis([1 alen min(x) max(x)]); pause(0.05)

n1 = n1 + ulen;

n2 = n2 + ulen;

end

Call myspectrogram(male short, 256, 32) from the MATLAB prompt

and view the “animation”! (0.5 pts)

2. Next add frequency analysis of each frame. Use the code for the DFT

based spectrum from section 3 (dont forget to window before DFT). If

you want to plot both the time domain signal, and the spectrum in the

same plot, but in different parts of the window, see subplot. Illustrate

the function as in the previous step. (0.5 pts)

3. Now we are ready to implement the classical spectrogram. Instead of plot-

ting the squared magnitude of the DFT, you put it into the columns of

a matrix S. Preallocate the matrix by S = zeros(alen/2+1, naf);. In

the loop you write to column n by S(:,n) = In this assignment it is

important that the right hand side is a column vector (try and see what

MATLAB says otherwise). To plot the spectrogram, use the following

code

colormap(gray) % The classical spectrogram is gray,

% type help gray for other colormaps

imagesc(flipud(-S)); % flipud flips S along the frequency axis

so that

% frequencies increase when we move up the vertical axis

% -S makes black correspond to high energy!

(1 pts)

8

4. Produce a narrow-band spectrogram. Be prepared to indicate the funda-

mental frequency track, and the boundaries of the phonemes. (0.5 pts)

5. Produce a wide-band spectrogram. Here the spectrogram tends to become

blocky if smoothing is not performed in the frequency domain. Incorporate

smoothing by zero-padding before applying the DFT. Can you see the

formant trajectories? (0.5 pts)

7 Speech Parameter Estimation

In this section, you will analyze (estimate) the parameters of a vocoder model.

In the next section you will synthesize speech based on the estimated parame-

ters. The parameters we will estimate are frame energy, pitch, vocal tract filter

coefficients, and voiced/unvoiced classification.

The estimation should be done on a frame-by-frame basis and we will use

overlapping analysis frames. Just as in the case of the spectrogram the choice

of analysis frame length is a compromise between having long enough frames to

get reliable estimates, but not too long so that rapid events are averaged out2.

Also as in the spectrogram case, the update length controls the smoothness of

the parameter trajectories over time.

TASKS/QUESTIONS

1. Let us warm up with estimation of frame energy (normalized per sample)

E =
1

Nα

Nα−1∑
n=0

x2(n) (1)

where Nα is the analysis frame length and the sum is over the samples in

one analysis frame. Write a function that returns the frame energies in a

vector. Start with the function skeleton from the first task in section 6.

Before the loop over all frames, allocate space for the vector of energies:

function E = analysis(x, alen, ulen)

% Initialization

E = zeros(naf, 1);

% Inside loop

E(n) = ...

2For the spectrogram we consciously average out the pitch pulses in the narrow-band case,

whereas we consciously sacrifice accuracy in the spectral domain in the wide-band case.

9

(0.5 pts)

2. Next let us look at voiced/unvoiced detection. This is a difficult problem,

but here we resolve to a simple solution based on zero-crossings. A zero

crossing occurs when x(n)x(n− 1) < 0. By counting all those occurrences

within a frame, and normalizing by the frame length, a (near) continuous

parameter is obtained. To make a binary decision a threshold can be used

(by normalizing with the frame length, the threshold becomes independent

(almost) of the analysis frame length). Extend your analysis function like:

function [E, ZC, V] = analysis(x, alen, ulen)

% Initialization

E = zeros(naf, 1);

ZC = zeros(naf, 1);

V = zeros(naf, 1);

% Inside loop

E(n) = ...

ZC(n) = ... % The normalized number of zero crossings

V(n) = ... % Equal to 1 if voiced, 0 if unvoiced.

(1 pts)

3. Next extend your analysis function by incorporating code for vocal tract

filter estimation via LP analysis. The code from Section 3 should work

fine! Store the filter parameters in the rows of a matrix like:

function [E, ZC, V, A] = analysis(x, alen, ulen, M)

% Initialization

E = zeros(naf, 1);

ZC = zeros(naf, 1);

V = zeros(naf, 1);

A = zeros(naf, M+1); % M is the prediction order.

% M+1 allows space for the leading 1

% Inside loop

E(n) = ...

ZC(n) = ... % The normalized number of zero crossings

V(n) = ... % Equal to 1 if voiced, 0 if unvoiced.

A(n,:) = ... % Make sure the polynomial coefficients are in

10

a row vector! (0.5 pts)

4. Finally extend the function with pitch analysis. Many speech coding (com-

pression) systems depend on accurate pitch analysis. Here we base our

estimation on the correlation function of the frame. You may choose if you

wish to use the ACF or the normalized cross-correlation function (slightly

more difficult to program). The problem you have to solve is how to find

the lag of the peak in the ACF that corresponds to one pitch period. This

is usually easy to do “manually”, i.e., by looking at the ACF, but you

have to make the computer do it automatically! The function will finally

look something like

function [E, ZC, V, A, P] = analysis(x, alen, ulen, M)

% Initialization

E = zeros(naf, 1);

ZC = zeros(naf, 1);

V = zeros(naf, 1);

A = zeros(naf, M+1); % M is the prediction order.

% M+1 allows space for the leading 1

P = zeros(naf, 1);

% Inside loop

E(n) = ...

ZC(n) = ... % The normalized number of zero crossings

V(n) = ... % Equal to 1 if voiced, 0 if unvoiced.

A(n,:) = ... % Make sure the polynomial coefficients are in

a row vector!

P(n) = ... % Pitch period in samples (0.5 pts)

5. Plot the output of your analysis function with the following code (or in-

clude the code below in the analysis function):

figure(1);clf;

subplot(3,2,1)

plot(x) % Plot the input waveform

axis([1 length(x) min(x) max(x)]);

subplot(3,2,2)

plot(sqrt(E)) % Plot the standard deviation

11

axis([1 length(E) min(sqrt(E)) max(sqrt(E))]);

subplot(3,2,3)

plot(V, .) % Plot voiced/unvoiced decision

axis([1 length(V) 0 1]);

subplot(3,2,4)

plot(ZC) % Plot the normalized number of zero-crossings

axis([1 length(ZC) min(ZC) max(ZC)]);

subplot(3,2,5)

F = 8000./P;

plot(F) % Plot the fundamental frequency in Hz

axis([1 length(F) 0 600]);

subplot(3,2,6)

S = zeros(512, naf);

for n=1:naf

S(:,n) = 20*log10(abs(freqz(1,A(n,:),512)));

end

S = flipud(S);

colormap(gray);

imagesc(S); % Illustrate the vocal tract envelope in a spectrogram

style!

Test and tune your analysis function on the files “male long”, and “female

long”. Be prepared to provide plots with smooth temporal evolution, i.e.,

with ulen = 1. (0.5 pts)

6. What could make the voiced/unvoiced detection go wrong? (1 pts)

7. In the pitch estimation, what can cause pitch doubling? What can be the

reason for pitch halving? (1 pts)

8 The Vocoder

In this section we will synthesize speech based on the parameters from the

analysis. Speech coding (compression) systems based on this principle are called

vocoders and can reach bit rates as low as 2 kbits/second when the parameters

12

are quantized. This can be compared with 64 kbits/second for the PCM system

used in fixed telephone networks. The quality of the vocoder is lower though.

Here we will synthesize speech based on unquantized parameters.

TASKS/QUESTIONS

1. Let us start by only incorporating the vocal tract filter in the synthesis.

Write a function like

function s = synthesis1(E, ZC, V, A, P, ulen)

% We have included all the estimated parameters as input arguments

% but here we only use A!

n frames = size(A,1); % Assuming filter coefficients are stored

row-wise

% Create a pulse train excitation:

cp = ...; % Constant pitch period in samples

pexc = zeros(n frames*ulen, 1);

pexc(1:cp:end) = 1;

% Create noise excitation:

nexc = ...;

n1 = 1;

n2 = ulen;

Z = [];

s = zeros(n frames*ulen,1);

for n=1:n frames

% Filter the excitation through the production (vocal tract) filter:

[s(n1:n2), Z] = varifilter(1, A(n,:), pexc(n1:n2), Z);

n1 = n1+ulen;

n2 = n2+ulen;

end

Make sure you use the same update length (ulen) in the synthesis as in

the analysis! Make sure you understand why ulen samples are generated

13

in the synthesis for each analysis frame3.

Test with a pulse train excitation (use a constant pitch corresponding to

100 Hz). Then test with noise excitation. Can you hear what is said based

on only vocal tract parameters (you may need to rescale the whole output

before playing back)? (1 pts)

2. Make sure the energy contour of the synthesized speech matches that of

the original speech. A crude but simple way is to (re)normalize each

synthesized frame to have frame energy E(n)4. Write a new function

synthesis2 (naturally based on synthesis1!). Test with the pulse and

noise excitations from the previous task. How much does the energy con-

tour contribute to the intelligibility? (1 pts)

3. Switch between pulse excitation and noise excitation based on the voiced/

unvoiced decision, and write synthesis3! Does this increase intelligibil-

ity? Our vocoder model assumes that all speech sounds are either voiced

or unvoiced. Is this true? Discuss how our vocoder could be modified?

(0.5 pts)

4. Create a function synthesis4 by adding time varying pitch! Now you

cannot use the variable pexc anymore, but have to create the pulse train

“on the fly”. One way is to keep a counter that is incremented for each

sample during voiced frames. When the counter equals or exceeds the

current pitch value, a pulse is inserted into the excitation, and the counter

is set to zero. The quality of the synthesized speech depends a lot on the

quality of the pitch estimate. Make sure the pitch contour is smooth in

voiced regions. If necessary you may median filter the pitch contour prior

to synthesis. (1 pts)

5. Tune your analysis and synthesis functions so that the produced speech

3Instead of varifilter you can also use the MATLAB function filter to implement the

synthesis. But then you have to make sure that the final filter state after one frame is used as

initial state in the next frame. Unfortunately, the filter structure in MATLAB is not designed

for time-varying coefficients and audible clicks may result. To remedy this, see the function

filtic, and varifilter. Another option is to implement the filter yourself. In that way you

have full control over the filter memory. The downside is that your filter will probably execute

slower than MATLAB’s filter which is a built-in function.
4In the most straightforward energy normalization, a problem occurs when the synthesis

frame contains no pitch pulses (this will happen frequently if your update length is short).

Can you suggest a fix? It may require estimating the prediction residual energy (thus changing

also your analysis function slightly), and re-normalizing the excitation (before filtering) during

synthesis.

14

has as high quality as possible. We want to hear an exciting result! Please

make sure the vocoder output is readily available in a separate file (.mat;

see help save) when you come to present your results. (1.5 pts)

15

