Plane waves, Fourier transforms,
Generalised functions and Greens functions

T. Johnson

2016/01/21 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson



Outline

— Plane waves
« Phase velocity and eigenmodes
 Relation to Fourier series and Fourier transforms

— Fourier transforms of generalised functions
* Plemej formula

— Laplace transforms and complex frequencies
 Theorem of residues
« Causal functions
» Relations between Laplace and Fourier transforms

— Greens functions
« Poisson equation
« d’ Alemberts equation
« Wave equations in temporal gauge

2016/01/21 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson



Plane waves

Plane waves have the form

E(x,t) = Egexp(ik - x — iwt)
— With wave number k and frequency w.
— Why the name plane waves?

For |k| = w, plane waves are solutions to d’Alembert’s equation
0°E 2g
otz
Plane waves are also solution’s to Maxwell’s equation in vacuum
1 0%E
| | c? Ot?
ifand only if k- E = 0.
— I.e. Maxwell's equations in vacuum only allow transverse waves!

= VX (VXE)
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Phase velocity

The velocity of a waves front is called the phase velocity.

Att = 0 and x = 0 the phase of the plane wave is: ik-x —iwt = 0
Where is the corresponding wave front at t = dt?

Assume, k = k,e,, then the wave propagates along the x-axis
Denote x at the new wave front by dx, then
ik, dx —iowdt =0

dx = 2 qt
x—kx

Thus the phase velocity of a plane wave is thus
V| = ol or v, =2k
PRI ™ |k PR k| k|

What is the phase velocity of EM waves in vacuum?
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Eigenmodes

* When you put a wave in a “box” it has to satisfy certain boundary
conditions.

« Example: guitar strings

 The motion is constraint to
oscillate only at certain
eigenmodes, each having
an eigenfrequency, wj,
and kj = w]-/vph :

E(x, t)~ Z chos(ij
J

 How are eigenmodes related to plane waves?
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Plane waves and Fourier transforms

The sum over plane waves that solves a wave equation in a “box”
is in fact a Fourier series

— And the amplitudes are the Fourier coefficients

In the infinite domain there are no boundary conditions to restrict
the possible frequencies

— All real frequencies are possible!
— Sum over all real frequencies means an inverse Fourier transform!

Fourier transform calculates an “amplitude density” in m-space
o
flw) = j f)etetdt
— 00
Inverse Fourier transform is a sum over all frequencies

1 r ~ .
FO =5 | F@edo
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Basic theory of Fourier transformed...

The Fourier integral theorem:

— f(t) is sectionally continuous over —o < f < o

— f(t)is defined as  f(¢) = }jig(}%[f(t +0)+ f(t —5)]

— f(t) is amplitude integrable, that is, f |/ (0)|dt < o

Then the following identity holds:

Do these function have a

1) == [ [ 1y

—00 —00

FO =1
f () = cos(t)
f () = exp(—t)

Fourier transform? 1 f) = 0 , t<0
exp(—t) , t=0
£b) = 0 , tisrational number
~ |exp(—t) , tisrational number
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What functions have a Fourier transform?

 We are interested in Fourier transform to represent plane waves
— But plane waves don’t have a Fourier transform!!

« Solution: Use approximations of cos(t) that converge
asymptotically to cos(t) — details comes later on...

— NOTE: The asymptotic limits of functions like cos(t) will be
used to define generalised functions, e.g. Dirac d-function.
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Dirac o-function

« Dirac’s generalised function can be defined as:

5(x)=][0’x¢0 & }5(x)=1

oo, x=0
Alternative definitions, as limits of well behaving functions, will be identified later!

* Important example:

% 1
JLaro= 2 563

if(¢;)=0

Proof: Whenever |f{)|>0 the contribution is zero. For each ¢ = ¢, where
f(t)=0, perform the integral over a small region t,— e <t < ¢, + ¢ (Where
¢ is small such f(t) = (- t) f(t) ). Next, use variable substitution to
perform the integration in x =f{?), then dt =dx /f(t) -

1
IO Ef°°f<r> Mx= D

i:f(2;)=0 i.f(t;)=0
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Truncations and Generalised functions

« To approximate the Fourier transform of f (t) = 1, use truncation.

Truncation of a function f(7):

AOF
0

t|<T

,suchthat f(z)=1 t
{7 /(@) =lim £,

fT(t) ={

 Thenfor f(t) =1

sin(wt/2)
w/2

F{f; ()} = _TfT(t)e'im’dt = }le""”tdt =

— When T— then this function is zero everywhere except at w = 0 and its
integral is 27, i.e.

. {1} _ lim sin(wl'/2)

pm— = 2710 (a))

— Note: F{1} exists only as an asymptotic of an ordinary function,
l.e. a generalised function.
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More generalised function

* An alternative to truncation is exponential decay

£, =f@®e™ | suchthat f()=""f,®
* Three important examples:

A 271 27mn
7 = Fllf=lim—5—">

w +7 0@ +n

Fif,o} = 276 (o)

. : : o 20 1
— Sign function, sgn(?): F{sgn(t)} = nITOF{e-nM sgn(t)} _ nlfouf lf)nz —2ip [_]

— The generalised function is the Cauchy principal value function:

1 W {l/a),for w = ()

—:=lim =
(@a) =0’ +n° |0, for w=0

i

— Heaviside function f{z)=H(t) : F{H(;j)}=1ing .
=0 @+ in

1 : 1

= lim

w+i0 0 w+in

This generalised function is often written as:
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Plemelj formula

Relation between H(t) and sgn(t):

2H(t) =1+sgn(?)

with the Fourier transform:

1

w+10

oL _ind ()

w

This is known as the Plemelj formula

— Note: How we treat w = 0 matters! ...but why?

— We will use the Plemelj formula when describing resonant wave damping
(see later lectures)

2016/01/21
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Driven oscillator with dissipation

Example of the Plemelj formula: a driven oscillator with
eigenfrequency 2
g q y a(;;(t)+£22f(t)=E(t)

AC ) af (¢)
ot ot

+Q°f (1) = E(t)

with dissipation coefficient v :

Fourier transform: (—af —i2vo+Q° )f(a)) = E(w)

Solution: f(w) = _

0’ —i2vo+Q* 20
where Q=+/Q* -?
Take limit when damping v goes to zero:

E(w) E(w) 1 1
w—é+w w+§+w

E(w 1 1
fw) =2 __ .
20 |w-Q+10 w+Q2+10
Later we’ll look at
use Plemelj formula the inverse transform
E(w) 1 1 . :
w) = ——= — |- —imo(w-Q)+ im0 (w+ 2
1@ =510 1g )9 g im0 @) i (0ve)
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Physics interpretation of Plemej formula

* For oscillating systems:
eigenfrequency 2 will appear as resonant denominator

1
f(w) ~
W *

Including infinitely small dissipation and applying Plemelj formula

P f(t) - e:iQt

1 ~ 1
w-Q+10 w—-Q

—iﬂé(a)—Q)

« Later lectures on the dielectric response of plasma:
When the dissipation goes to zero for a kinetic plasma there is still a wave

damping called Landau damping, a “collisionless” damping, which comes
from the d-function

"damping" ~ i0 (a) — Q)
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Laplace transforms and complex frequencies (Chapter 8)

* Fourier transform is restricted to handling real frequencies,

— Not optimal for damped or growing modes

— For complex frequencies (damped/growing modes)
we need the Laplace transforms!

« To understand better the relation between Fourier and Laplace
transforms we will first study the residual theorem and see it
applied to the Fourier transform of causal functions.
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The Theorem of Residues

» Expand f{z) around singularity, z=z;:

R,
(z-2;)

f(2)=

+c,+c(z—2z2,)+ ...

— the point z=z, is called a pole
— the numerator R, is the residue

» The integral along closed contour in the complex
plane can be solved using the theorem of residues

J f@dz =27i )R C// \
C i
»Re(w)
R =lim(z-z,)f(2) \Q%
2 Poles z;

— where the sum is over all poles z; inside the contour
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Example: Theorem of Residues

« Example: f(z)=1/z and C encircling a poles at z=0

2:[1

ff(Z)dZ =fl dz = —zre’edﬁ fzdb’ 27i
C C z

1"8

174 . 17
where z=re' dz =ire”df
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Causal functions

« Causal functions: f(t)
functions f_that “start” at t=0, such that f(t)=0 for t<0. ;

« Example: causal damped oscillation f,(t) =e7r!cos(L2t), for t>0

o ; 1 1
F{f.(H))= | e ™e™cos(Qt)dt = —
{£.(O)} {e e™" cos(St)dt = - w_g_iy/2+m+9—iy/2]

— The two denominators are poles in the complex w plane
— Both poles are in the upper half of the complex plane Im(w)<0

Im(w)
% poles
+ +
*»Re(w)

« Causal function are suitable for Laplace transformations

— to better understand the relation between Laplace and Fourier transforms;
study the inverse Fourier transform of the causal damped oscillator
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Causal functions and contour integration

» Use residual theory for the inverse Fourier transform

1 | 1
F/.0) =5 - [ do e{;[

1
+
w-Q-1y/2 00+Q—iy/2”

Fort> 0:
— For Im(w) —= , then e —0 and, 1|1m f.(@)~1/w —=0 (e
=2 m(w
— Thus, close contour with half circle Im(w)>0 >0 A

C
— Inverse Fourier transform is sum of residues from poles ﬁ?\

i 1
t T iwt d
J(8) = f [w Q+iy/2 (1)+Q+zy/2] ®

= _EZR [ (iQ-y/2)t e(—iQ—y/Z)t]

For t <O: t<0  Im(w)
— et 0, for Im(w) —-; + |+

’ Re(w)
close contour with half circle Im(w)<0 Ci ;

— No poles inside contour: f(t)=0 for t<0
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Laplace transform

« Laplace transform of function f{?) is
F(s)=L{f(t)} = lim [ &™ f eyt

— Like a Fourier transform for a causal function, but iw — s.

« Region of convergence:

— Note: For Re(s)<0 the integral may not converge since the factor e-st diverges

— Consider function f(f) =" = F(s) = f:e(”‘”tdt

— F(s) is integrable only if Re(s) > Re(v)

L{f(t) } converges!

Thus, the Laplace transform is only valid for :
Re(s) > Re(v) +
——+——*Re(s)
) t =evt - .
Note: f(?) means pole at s=v, i.e. +

poles must be to the right of the region of convergence—""

« Conclusion:Laplace transform allows studies of unstable modes; e?!!
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Laplace transform

Laplace transform

o0 Im(s)
— — : —st A .
F(s)=L{f (0} lim * ™ f (e)dt 4+
For causal function the inverse transform is: “"—*TE—’Re(S)
f@O =LF@} = [ e"F(s)ds T

— Here the parameter I" should be in the region of convergence,
i.e. chosen such that all poles lie to the right of the integral contour Re(s)=T..

— Causality: since all poles lie right of integral contour, L-/{ f(s) }(¢£)=0, for t<0.

* Proof: see inverse Fourier transform for the causal damped harmonic
oscillator
(Hint: close contour with semicircle Re(s)>0)

— Thus, only for causal function is there an inverse f(¢) = L‘I{L{f(t)}}

Again, Laplace transform allows studies of unstable modes; er?!
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Compare Fourier and Laplace transforms

Formulas for Laplace and Fourier transform very similar
— Laplace transform for complex growth rate s / Fourier for real frequencies

— For causal function, Laplace transform is more powerful
— For causal function, Fourier transforms and Laplace transforms are similar!

Let s=iw ; provides alternative formulation of the Laplace transform for causal f(¢)

A lim +00 +0
F)=L{f0y=__ [ e f@di=[ e f@

Here w is a complex frequency Im(w)
The inverse transform for causal functions is
e S
gt " o 1 >
f&y=LYF@)}=[ " e"Fw)ad | Re(o)

— for decaying modes all poles are above the real axis and I'=0.

Thus, the Laplace and Fourier transforms are the same for
amplitude integrable causal function, but only the Laplace
transform is defined for exponentially growing functions.
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Summary so far...

This course is all about waves!

— The prototycal wave is the plane wave: exp(ik - X — iwt)
Sums of waves can be represented using Fourier transforms, but...

— many important function have no Fourier transform!

— They can still be transformed as limits of normal function

— The transform yield generalised function, e.g. the Dirac function
The Plemej formula, important for wave damping:

L ol ins(w)

w+10 w

Generalised function allows us to transform plane waves!

Exponentially growing functions (complex frequencies)
— Consider only causal functions
— Use Laplace transform
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Greens functions (Chapter 5)

Greens functions: technique to solve inhomogeneous equations
Linear differential equation for f with source S:

L(z)f(2)=S5(2)
— where the differential operator L is of the form:
dn dn—l
+ A + ...
dz" " dzn ! A
Define Greens function G to solve:
L(z2)G(z,Z2')=0(z-2Z")
— the response from a point source — e.g. the fields from a particle!
Ansatz: given the Greens function, then there is a solution:

f(@ = [ G(z,2)8(z)dz

Proof:

L) f(2) = [ L(2)G(2,2)8(2)dz = [8(z - 2)S(2)dz' = S(2)

L=A,
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How to calculate Greens functions?

For differential equations without
explicit dependence on z, then

L(z)=L(z-72")

— we may rewrite G as:
G(z,7") =G(z-1z")

Fourier transform fromz-z’to k :
L(z-7)G(z-2")=0(z-Z")
L(ik)G@(k) =1

v
k) = L(ik)

Inverse Fourier transform

1 % . .
G ) = G k —ik(z-z )dk _
(z-2) m_fw (k)e

Example:

(8—2 + QZ)G(t - =8(t-1")
ot

(—(1)2 + Qz)G(m) =2m

{

27
G(w) = - w2 — 02
1 5 e
f 1 e—zk(z—z )dk
2n Y L(ik)

Solve integral!
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Greens function for the Poisson’s Eq. for static fields

* Poisson’s equation

—£,V’0(x) = p(x)

- Green’s function —80V2G(X -x')=0(x-Xx")

—¢,k’|G(k) =1
N 1 exp[ik °* (X — X')] 3
=X Gy d 4
N 1
Clx—x) = 47e |x — x|

 Thus, we obtain the familiar solution; a sum over all sources

¢(X) _ 1 fd3xv p(X')

4re, ‘x - x"
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Greens Function for d'Alembert’'s Eq. (time dependent field)

« D’Alembert’s Eq. has a Green function G(%,x)

c? or’

* Fourier transform (¢t -t',x - x') = (w,K) gives...

2
(%—\k\z)G(w,k) - u,

—Hy
G(w,k) =
o[ = k[
G- x-x)=—7"05(r—¢ —x —x'|/c)
47|x - x|

— Information is propagating radially away from the source at
the speed of light
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Greens Function for the Temporal Gauge

Temporal gauge gives different form of wave equation
2

L A@,K) +kxkx A(@,k) = - o (@, k)

c
w’ >
[(? - K| )(51.]. +kk, | A (k) = —uJ, (w,k)
o2
— Different response in longitudinal : K- A(w,K) = — Hoz k-J(w,k)
W
— and fransverse directions: kxA(w,k) = - Ho kxJ(w,K)

w2/02 —|k|2

To separate the longitudinal and transverse parts the Greens function
become a 2-tensor G;

C

T
— = |k|" |9, + Kk, | Gy(@. k) = =40,

2
Solution has poles w= =+ |k| ¢ |G, (w,k) = - Wa | 9, +%kikj
/e -|K|
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