

Lecture 4: Channel Coding 1 Advanced Digital Communications (EQ2410)¹

Ming Xiao CommTh/EES/KTH

Wednesday, Jan. 28, 2016 10:00-12:00, B23

1/1

Overview

Lecture 1-3

- ISI channel and equalization
- \rightarrow Signal processing methods to improve the received signal

Digital Communications

- Block codes
- Convolutional codes
- Random Coding (information theoretical concept)

Lecture 4: Channel Coding 1 (LDPC Codes)

Notes				
Notes				

¹Textbook: U. Madhow, Fundamentals of Digital Communications, 2008

Overview

 LDPC codes were invented by Robert G. Gallager in the 1960s and forgotten for three decades.

[source: http://lids.mit.edu/]

Natas

- After Turbo codes were invented 1993, LDPC codes found new attention.
- First channel codes, which provably allow to achieve the capacity limit of the binary erasure channel and to approach the capacity limit for other important channel models.

Lecture 4
Channel Coding 1

Ming Xiao
CommTh/EES/KTH

Linear Block Codes

- Information word $\mathbf{u} = [u_1, \dots, u_k] \Rightarrow 2^k$ codewords $\mathbf{x} = [x_1, \dots, x_n]$
- ullet Code ${\mathcal C}$
 - Set of all codewords $\mathcal{C} = \{\mathbf{x}_1, \dots, \mathbf{x}_{2^k}\}$
 - Code rate R = k/n
 - A linear block code spans a k-dimensional subspace $\mathcal C$ in the n-dimensional binary space.
- Encoder
 - Mapping from the information word space into the codeword space
 - Linear encoding with generator matrix **G**: $\mathbf{x} = \mathbf{uG}$, dimension $k \times n$
 - \rightarrow The rows \mathbf{v}_i of \mathbf{G} are basis vectors of the subspace \mathcal{C} .
- Check matrix H
 - Each codeword $\mathbf{x} \in \mathcal{C}$ satisfies $\mathbf{H}\mathbf{x}^T = \mathbf{H}\mathbf{G}^T\mathbf{u} = \mathbf{0}$.
 - **H** spans the (n-k)-dimensional subspace \mathcal{C}^{\perp} orthogonal to \mathcal{C} .
 - **H** is the generator matrix of the dual code C^{\perp} of the code C.
 - Syndrome $\mathbf{c} = \mathbf{H} \mathbf{x}^T$; i.e., for all $\mathbf{x} \in \mathcal{C}$ we have $\mathbf{c} = \mathbf{0}$.
- Linearity
 - For $\mathbf{x}_0 = \mathbf{u}_0 \mathbf{G}$ and $\mathbf{x}_1 = \mathbf{u}_1 \mathbf{G}$ we can see that $\mathbf{x}_2 = \mathbf{x}_0 + \mathbf{x}_1 = \mathbf{u}_0 \mathbf{G} + \mathbf{u}_1 \mathbf{G} = (\mathbf{u}_0 + \mathbf{u}_1) \mathbf{G} \in \mathcal{C}.$
 - Convenient for performance evaluation: distance properties can be expressed by the weight distribution (e.g., d_{min} = w_{min}).

Notes				
Notes				

3/1

Tanner Graph

Bipartite graph representing the parity-check matrix.

- Variable nodes (left) represent the code symbols x_i in \mathbf{x} .
- Check nodes (right) represent the symbols c_j of the syndrome c.
- A variable node x_i is connected to a check node c_j by an edge in the graph if x_i is included in the check equation specifying c_j (i.e., if H_{ji} = 1).
- Degree of a node
 - Number of outgoing edges of a node
 - Variable node degree d_v
 - Check node degree d_c

Lecture 4 Channel Coding 1 Ming Xiao CommTh/EES/KTH

LDPC Codes

Low-density parity-check (LDPC) codes

- Codes with a sparse parity-check matrix (i.e., only few elements $H_{ij} = 1$ in **H**).
- Regular (d_v, d_c) LDPC code
 - Sparse H where each variable node has degree d_V and each check node has degree d_C.
- Code rate
 - Number of edges in the Tanner graph

$$N = n \cdot d_V = (n - k) \cdot d_C$$

• With R = k/n we get

$$R=1-\frac{d_{v}}{d_{c}}.$$

Code construction

• As suggested by the figure above, the problem of finding the ${\bf H}$ matrix can be interpreted as the problem of finding the edge permutation Π (edge interleaver).

Notes			

-			
Notes			

5/1

Lecture 4
Channel Coding 1
Ming Xiao

Irregular LDPC Codes

- Variable-node and check-node degrees are not constant; the degrees are chosen according to a predefined degree distribution.
- Degree distribution for the variable-node degrees and check-node degrees

$$\lambda(x) = \sum_{i} \lambda_{i} x^{i-1}$$
 and $\rho(x) = \sum_{i} \rho_{i} x^{i-1}$

with coefficients

- $\lambda_i = \Pr[\text{an edge is connected to a variable node with } d_v = i]$
- $\rho_i = \Pr[\text{an edge is connected to a check node with } d_c = i]$

Example, (3,6) LDPC code: $\lambda(x) = x^2$ and $\rho(x) = x^5$

- Code rate
 - Number of edges connected to degree-i variable nodes: $N\lambda_i$
 - Number of variable nodes with degree $d_v = i$: $N\lambda_i/i$

$$\Rightarrow n = N \sum_{i} \frac{\lambda_{i}}{i} = N \int_{0}^{1} \lambda(x) dx \quad \text{ and similarly} \quad (n-k) = N \sum_{i} \frac{\rho_{i}}{i} = N \int_{0}^{1} \rho(x) dx$$

$$R = \frac{k}{n} = 1 - \frac{\int_0^1 \rho(x) dx}{\int_0^1 \lambda(x) dx}$$

• Fractions of degree-i variable nodes and degree-j check nodes

$$\tilde{\lambda}_i = rac{\lambda_i/i}{\sum_l \lambda_l/l}$$
 and $\tilde{
ho}_i = rac{
ho_i/i}{\sum_l
ho_l/l}$

7 /

Notes

Lecture 4
Channel Coding 1

Ming Xiao
CommTh/EES/KTH

LDPC Decoding

Iterative decoding on the Tanner graph

- Code symbols are transmitted over a channel characterized by p(y_i|x_i)
 (→ received symbols y_i).
- Nodes are replaced by local decoders.
 - → Variable node decoder (repetition code)
 - → Check node decoder (single-parity-check code)
- Decoders exchange "messages" along the edges (e.g., log-likelihood ratios or estimates of the bits).

Notes	
Notes	

LDPC Decoding

- Gallager's Algorithm A (suboptimal)

Assumption: BSC with error probability ϵ (i.e., $\Pr(x_i \neq y_i) = \epsilon$).

Variable-node decoder

• Message from the channel: $u_0 = y$

- Messages received by the variable node from the check nodes: u_i ("decoder input")
- Messages from the variable node to check nodes: v_i ("decoder output")

$$v_i = \begin{cases} \bar{u}_0 & u_1 = \ldots = u_{i-1} = u_{i+1} = \ldots = u_{d_v} = \bar{u}_0 \\ u_0 & \text{else} \end{cases}$$

Check-node decoder

- Messages received from the variable nodes: v_i ("decoder input")
- Messages from the check node to the variable nodes: u_i ("decoder output")

$$u_j = \sum_{l=1, l \neq j}^{d_c} v_l \mod 2$$

Decoding is successful if all check equations after an iteration are fulfilled.

9/1

Notes

Lecture 4
Channel Coding 1
Ming Xiao
CommTh/EES/KTH

LDPC Decoding - Belief Propagation

- Variable-node decoder and check-node decoder are realized by the respective soft-input/soft-output decoders.
- Extrinsic log-likelihood ratios (LLRs) are exchanged.
- Suboptimal algorithm with close-to-optimal performance

Variable-node decoder

• Message from the channel:

$$u_0 = \log(p(y|x=0)/p(y|x=1)$$

• BSC, $Pr(y \neq x) = \epsilon$:

$$u_0 = (-1)^x \log((1-\epsilon)/\epsilon)$$

- AWGN, $y = A(-1)^x + w$: $u_0 = 2A/\sigma^2 y$
- LLRs received by the variable node from the check nodes: u_q ("decoder input")
- LLRs from the variable node to check nodes: v_p ("decoder output")

$$v_p = u_0 + \sum_{q=1, q
eq p}^{d_v} u_q \qquad o \; ext{extrinsic information}$$

Notes		

LDPC Decoding - Belief Propagation

Check-node decoder

("decoder input")
LLRs u_p from the check node to the variable nodes ("decoder output") satisfy

$$anh\left(rac{u_p}{2}
ight) = \prod_{q=1, q
eq p}^{d_c} anh\left(rac{v_q}{2}
ight) \qquad (1)$$

or

$$u_p = 2 \cdot anh^{-1} \left(\prod_{q=1, q
eq p}^{d_c} anh \left(rac{ extstyle V_I}{2}
ight)
ight)$$

• LLRs received from the variable nodes: v_a

 \rightarrow extrinsic information!

Remark

- Given the LLR I for a bit b, the estimate of b given I is
 E[b|I] = tanh(b/2).
- Interpretation of Eq. (1): the expected value of the output LLR is given by the product of the expected values of the incoming LLRs.

11 / 1

Notes

Lecture 4 Channel Coding 1 *Ming Xiao* CommTh/EES/KTH

Density Evolution – General Idea

- Tool for analyzing iterative decoding and predicting the convergence of the iterative decoder.
- Track how the distribution of the messages u_i , v_j at the output of the component decoders evolve from iteration to iteration.
- Without loss of generality the analysis can be restricted to the case where the all-zero codeword is transmitted.
- To simplify the analysis, one typically parameterizes the densities by a single parameter (approximation, only optimal in special cases):
 - AWGN channel and message passing with LLRs: variance or mean of the LLRs (both are coupled; see problem 7.12(f) in the textbook).
 - BSC channel and binary messages (e.g., Algorithm A): error probability (optimal).
 - Binary erasure channel (messages are either the erasure symbol or the correct bit): erasure probability (optimal).
- EXIT charts (see Chapter 7.2.5): special case of density evolution where the densities are represented by their mutual information.

Notes			

Density Evolution – Algorithm A

- · Binary messages are exchanged.
- Assuming that the all-zero codeword was transmitted, the error probabilities p(I), q(I) at the decoder outputs during the I-th iteration are:

p(I) = Pr[message sent by variable node in iteration I is 1] q(I) = Pr[message sent by check node in iteration I is 1]

- Analysis for the check-node decoder, *I*-th iteration
 - Input to the check-node decoder: binary messages with error probability p(I)
 - Output message at edge i is incorrect if the input to the check decoder on the remaining edges j ≠ i includes an odd number of errors.
 - Marginalizing over all error events yields

$$q(I) = \sum_{j=1,j \text{ odd}}^{d_c-1} {d_c-1 \choose j} p(I)^j (1-p(I))^{d_c-1-j}$$
$$= \frac{1-(1-2p(I))^{d_c-1}}{2}$$

13 / 1

Notes

Lecture 4 Channel Coding 1 Ming Xiao

Density Evolution – Algorithm A

- Analysis for the variable node decoder, *I*-th iteration
 - Input to the variable-node decoder: binary messages with error probability q(I)
 - Output message at edge i is incorrect if
 - **1** Channel message u_0 is right and all incoming messages u_j at edges $j \neq i$ are wrong, or
 - 2 Channel message u_0 is wrong and not all incoming messages u_j at edges $j \neq i$ are right.
 - It follows that

$$p(I) = p(0)[1 - (1 - q(I))^{d_v - 1}] + (1 - p(0))q(I)^{d_v - 1}$$

(with the error probability of the channel $p(0) = \epsilon$)

• Combining the terms for p(I) and q(I) yields

$$p(l) = p(0) - p(0) \left(\frac{1 + (1 - 2p(l - 1))^{d_c - 1}}{2} \right)^{d_v - 1} + (1 - p(0)) \left(\frac{1 - (1 - 2p(l - 1))^{d_c - 1}}{2} \right)^{d_v - 1}$$

 \rightarrow If $p(I) \rightarrow 0$ as $I \rightarrow \infty$, Algorithm A converges to the correct solution.

Notes		
Notes		

Lecture 4 Channel Coding 1 Ming Xiao

Density Evolution - Belief Propagation for AWGN Channels

- AWGN channel: $u_0 = 2/\sigma^2 y$ (A = 1) Considering that the all-zero codeword was transmitted, we get $u_0 \sim \mathcal{N}(2/\sigma^2, 2 \cdot (2/\sigma^2)) = \mathcal{N}(m_{u_0}, 2m_{u_0})$, with $m_{u_0} = 2/\sigma^2$.
- Gaussian assumption
 - The messages u_i, v_j at the outputs of the check-node and variable-node decoders are Gaussian with means m_{ui}, m_{vj} and variances 2m_{ui}, 2m_{vi}.
 - \rightarrow Density evolution by tracking the means $m_{u_i}(l), m_{v_j}(l)$ over the number of iterations l.
- Variable-node decoder: $m_v(I) = m_{u_0} + (d_v 1)m_u(I 1)$ by considering independence of the incoming messages.
- Check-node decoders: guite involved....
- \rightarrow If $m_u(I) \rightarrow \infty$ as $I \rightarrow \infty$, belief propagation converges to the correct solution.

Lecture 4 Channel Coding 1 Ming Xiao CommTh/EES/KTH

Code Design

- Choose the degree distributions $\lambda(x), \rho(x)$ such that the rate R is maximized while the chosen decoder converges provably to the correct solution for the given channel (i.e., $p(I) \rightarrow 0$ for Algorithm A, $m_u(I) \rightarrow \infty$ for belief propagation).
- So far, density evolution for regular LDPC codes; for irregular codes the error probabilities or means can be obtained by averaging over the degree distributions.

Example: Algorithm A:

$$p(I) = \sum_{i} p(I|d_{v} = i)\lambda_{i}$$

$$q(I) = \sum_{i} q(I|d_{c} = i)\rho_{i}$$

• Finding **G**: generate **H** satisfying $\lambda(x)$, $\rho(x)$, bring it into a systematic format, and generate **G**.

Notes				
Notes				

Natas

15 / 1