Advanced Digital Communications (EQ2410) Period 3, 2016

Assignment 4

Due: Wednesday, Jan. 29, 2014 M. Xiao

Reading assignment

• Madhow, Fundamentals of Digital Communication: chapters 7.3 (pp. 342-356)

Preparation tasks

Problem 4.1: In this problem, we will recapitulate a few properties of binary block codes. Consider in the following a linear block code C which is given by its encoder characterized by the $(k \times n)$ generator matrix

$$oldsymbol{G} = \left[egin{array}{c} oldsymbol{v}_1 \ dots \ oldsymbol{v}_k \end{array}
ight].$$

- (a) What is the difference between "encoder" and "code"?
- (b) Show that the generator matrix G for a systematic encoder has the form

$$G = [I_k P],$$

where I_k is the $(k \times k)$ identity matrix.

- (c) Explain why a generator matrix G' which is obtained by substituting v_i (i.e., the *i*-th row of G) by $v_i + v_j$, with $i \neq j$, constructs the same code.
- (d) Explain how you can generate a systematic encoder for a code which is given by a non-systematic generator matrix.
- (e) Show that the parity-check matrix of a systematic code can be expressed as $\boldsymbol{H} = [-\boldsymbol{P}^T \ \boldsymbol{I}_{n-k}].$
- (e) Explain why the result from (c) applies as well for the $((n-k) \times n)$ check matrix \mathbf{H} .