
	

CASE 1: Utveckling av en användarvänlig applikation för
Android

1. Introduktion
	

Utvecklingen av mobila enheter har varit stor de senaste åren, vilket har lett till att de

flesta svenskar idag äger åtminstone en “smartphone”[1]. Det mest populära

operativsystemet för mobila enheter idag heter Android[2]. Enligt en undersökning

väljs idag mobila enheter efter utbudet av applikationer, härefter kallat “appar”,

snarare än de tekniska specifikationer och designen mobiltelefonen har[ibid]. Med

appar kan folk underhålla sig och införskaffa information på ett lättillgängligt sätt.

Företagen ser därför stora möjligheter att kunna marknadsföra sig och sprida

information via appar. Eftersom allt fler besöker webbplatser från mobila enheter

tvingas utvecklare att skapa sidor som är enkla att använda med hjälp av dessa

enheter. Istället för mobilanpassade hemsidor skapar utvecklarna, i många fall, en

användarvänlig app. Denna uppsats omfattar utvecklingen av en mobil app, vilken

exekverar på operativsystemet Android.

Eftersom teknikutvecklingen hela tiden går framåt krävs det att företagen ligger i

framkant för att överleva i branschen. En av nycklarna till framgång är innovativa

lösningar, men att veta vilken lösning som kommer att bli en framgångsrik produkt är

inte lätt.

1.1 Bakgrund

Företaget The Mobile Life, ett nyskapat företag med kontor i Gamla stan i

Stockholm som utvecklar appar. På företaget arbetar många unga tekniker med

fördjupade kunskaper inom interaktionsdesign[3]. De arbetar dagligen med att

utveckla appar till de olika mobila operativsystemen.

The Mobile Life är projektets uppdragsgivare och de har har en idé om en app som

de vill ska utvecklas. Den utvecklade appen skapar en brygga mellan den verkliga

	

världen och den digitala, där den digitala världen är användarens mobiltelefon och

den verkliga världen är användarens brevlåda. Med hjälp av denna brygga kan

digitala foton enkelt bli utskrivna och skickade till användarens brevlåda. The

Mobile Life har haft tidigare examensarbetare som har utvecklat en liknande

version för iPhone.

1.2 Problem

Det som utfärdas är skapandet av en användarvänlig app. Appen bör därmed vara

såpass användarvänlig att vem som helst intuitivt ska kunna använda den. Det

innebär att projektet omfattar både designen och kodningen av appen. För att

kunna utföra arbetet behöver metoder för utvecklingen plockas fram och väljas med

omsorg. Utvecklingen innehåller testande av design och funktionalitet. Dessa test

underlättas genom att prototyper skapas som testpersonerna kan interagera med.

Framför allt är det designen och användarvänligheten som är problematiska.

Framtagningen av en användarvänlig design förlitar sig mycket på den kunskap som

testen bidrar med. Under testen krävs en struktur och ordning för att kunna bearbeta

kritiken och observationerna på ett så effektivt sätt som möjligt. Det är svårt att alltid

sätta den slutliga användaren i fokus när arbetet med appen utförs, men en sådan

inställning behöver införskaffas för att resultatet ska bli användarvänligt och

attraktivt för potentiella kunder.

Eftersom projektet utförs i samband med ett företag är det också viktigt att sköta

kommunikationen däremellan. Det krävs ett effektivt kommunikationssätt för att

projektets resultat inte ska bli lidande.

Slutsatser

Uppsatsen presenterar utvecklandet av en applikation som tillåter användaren att på

ett smidigt sätt skriva ut sina bilder på papper och få dem levererade till brevlådan.

Applikationen fungerar på alla apparater som exekverar operativsystemet Android. I

applikationen väljer användaren fotografier ur sitt album, på telefonen, och kan under

processen redigera dem genom att lägga till olika filter eller ändra fotografiets storlek.

	

Fråga/ Problem –> 1 fråga!

Syfte

Mål

Metod– Kvantitativ /Kvalitativ, Deduktiv/Induktiv
Litteraturstudie

Problem

Sätta slutsats i relation till relaterat arbete i teoriavsnittet

Utvärdering av eget arbete.

	

CASE 2: Using SIR--models to Estimate the Bonus Effects of
Influenza Mass Vaccination

1 Introduction

In the early year of 2009, the World Health Organization(WHO) raised an alarm that a new
strain of influenza had broken out in Mexico. Later that year, the outbreak was classified as a
pandemic by WHO as the virus spread across the globe (Chan 2009). Different countries
adopted different policies for dealing with the pandemic in order to minimize its impact on
society. One of the policies that were used was mass vaccination, the distribution of vaccine to
large parts of the population (The Guardian, 2009). How the vaccinations affected the spread of
infection the following season is unknown.

1.1 Background

In systems theory, there is a special approach for understanding complex systems’ behavior
over time: System Dynamics (SD). SD is a mathematical modelling technique, with a high level
of abstraction. The technique aids in analysing, understanding, and discussing complex
situations and problems. SD models take a holistic view of a system, that is, the system is
viewed as a whole and each little factor can have an impact on the entire system’s behavior.
(Systems dynamic society 2012, Radzicki & Taylor 1997).

Different kinds of systems can be studied with SD, for example, models analysing population
growth, effects of certain policies in different areas, market changes, spread of diseases in a
population, and economic systems both in private and public sectors (Radzicki & Taylor 1997).
SD models and other types of simulation models are often used to help in problem solving and
decision making (Sargent 2008, p 147). For modelling the spread of different diseases, a certain
kind of epidemiological SD model is often used: the SIR-model (Susceptible - Infected -
Recovered). (Towers et al 2012, p 415)

The A(H1N1) influenza pandemic of 2009, has been studied before by means of SD. In 2010,
researchers at Department of Computer and System Sciences at Stockholm University (DSV)
created a SD model called VirSim1 (Fasth, Ihlar & Brouwers 2010) in order to investigate the
spread of the disease in Sweden during the influenza season of 2009-2010. Other SD models
were made in other parts of the world as well, with varying scope and level of detail (Pruyt &
Hamarat 2010). VirSim, however, focuses on showing how different strategies dealing with the
pandemic would affect the outcome of the 2009/10 influenza season; it does not study the
effects of the mass vaccinations on the following season.

Other studies regarding pandemic influenza spreading using SIR-models have been done.
Towers et al (2012) studied the impact of school closure on pandemic influenza by using a
seasonal SIR-model. A seasonal SIR-model means that the model takes into account the
seasonal variation of transmissibility of influenza, by using a modifying function that changes
certain parameter values over time (Towers et al 2012, p 413).

	

Furthermore, a microsimulation model called MicroSim was developed in 2004 at SMI
(Brouwers, Mäkilä & Camitz 2006, Saretok & Brouwers 2007). The goal was to produce a tool
for testing the effects of different intervention policies. MicroSim represents nine million
individuals living in Sweden, and was first developed to simulate outbreaks of smallpox, but
was further developed in 2006 to support pandemic influenza simulation. Microsimulation
models differ from SD models in several ways. While SD models display systems at a macro
level, microsimulation models display them on a micro level. They have a low level of
abstraction, and can model population on an individual level, taking in account advanced
contact patterns, such as individuals going to work etcetera. MicroSim studied what the effect
on the 09/10 influenza season would have been if the mass vaccinations did not take place.
However, as in VirSim, this model focused on one season only, and did not investigate the
effects on the following season.

1.2 Problem statement

The mass vaccination against A(H1N1), commonly referred to as “Swine Flu”,
in Sweden during the fall/winter of 2009 has been issue of much debate. This debate was
fuelled after the pandemic turned out not to be as serious as WHO and the Swedish government
had feared (Engwall 2009, Ledarsidan DN 2010). Additionally, the vaccine was later found to
have caused narcolepsy among other side effects (LMV 2012).

All consequences of the vaccinations have not been completely investigated yet, but, for the

sake of future policy making for pandemics in Sweden, it needs to be done. A project group at
Swedish Institute for Communicable Disease Control (SMI) are currently doing research to
evaluate the vaccination program and study its effects. One aspect of the vaccinations, which
needs to be investigated by this project group, is the protection the vaccination program
provided to the population during the following influenza season of 2010/2011. The degree to
which infections during the subsequent season could be avoided is, from here on, referred to as
“bonus effects”. (SMI 2011:a)

The effects that mass vaccinations might have on the following seasons infections, represents a
gap in epidemiological knowledge and research. When this gap of knowledge is filled, it will
provide valuable insights that can aid in policy and decision making, thus have consequences in
several different fields, such as public health care, economics and pandemic preparations. (SMI
2012:a)

One vital problem is how to be able to measure these bonus effects. Since these kinds of
questions and issues are not possible to test in real life, the use of simulation models can be
considered suitable. However, simulation models, such as SD-models, have not been used for
this specific purpose before. It is unknown if, and how, suitable they are for this purpose. One
reason for this is that SIR-models tend to only study a single epidemic outbreak, but in order to
be able to study the bonus effects of mass vaccination, two outbreaks must be implemented in a
single model (SMI 2012:a).

This thesis will investigate if SD-models are suitable for providing information about bonus
effects. Thus, it may aid in filling in the gap in epidemiological research, as well as the gap
regarding the use of simulation models.

	

8 Conclusion

To be able to answer the research question, the model needs to be able to provide three valid
output values for two different scenarios; Infected 09/10 with mass vaccination, Infected10/11
with mass vaccinations and Infected 09/10 without mass vaccination. Valid output values
means that the output matched the historical data and the output value from MicroSim. In
addition, it was required that the model passed all other validation tests in order for it to be
considered valid.

When these three output values were deemed valid, it became possible to measure the effects
on 10/11 without mass vaccination, and thus draw conclusions about bonus effects following
influenza mass vaccination.

Since the SIR-model discussed in this thesis has strong support for it being valid, and it is able
to supply the required information, the conclusion that can be drawn is that SIR-models can
indeed be used to provide information about bonus effects following influenza mass
vaccinations. …not as individuals, there were some problems in tracking which individuals got
vaccinated and then sick again the following season. The situation of not being able to see the
model at an individual level DQG ³NHHS WUDFN´ RI LQGLYLGXDO entities can be seen as one of the
limitations of SD models. Since this sort of real world-system is very sensitive, it might be
necessary to construct a more granular model. It might be the case that the output of a SIR-
model is also not as detailed as the output of other types of simulation models, such as
microsimulation models. Geographical and social aspects are possible to implement in an
agent-based model, which probably would provide even more information about the spread of
pandemic influenza.

Research question

Purpose (of thesis)

Goal

Literature study

 “To be able to answer the research question, “

Is the purpose fulfilled?

GOAL? Is the goal accomplished?

What is the result of the degree project? are the results? Of the thesis?

Is the own work related to literature study and related work (chapter 2)

	

CASE 3: Security Evaluation of the Electronic Control Unit
Software Update Process

1 Introduction

Modern heavy-duty vehicles rely greatly on software running the embedded devices
controlling their different modules - Electronic Control Units (ECUs). This thesis analyses
the process of updating software on ECUs for security flaws, and is conducted in the global
heavy-vehicle company Scania. This chapter introduces the background, purpose and
general outline of the thesis project.

1.1 Background

Scania Group [40] is a global company, which produces a wide variety of trucks, buses and
engines. They provide a complete technical, educational and financial service of managing
an inventory of motor carriers. Among Scania’s services, workshop maintenance is the one
relevant to this thesis. It is during a mainte- nance checkup that the latest software is
installed on the vehicle’s computational units. Scania is responsible for the correct
functioning of the vehicle, which ad- ditionally translates to the safety of its driver and
passengers. Therefore, it is in Scania’s interest to ensure the integrity of the installed
software.

A modern vehicle holds in itself an array of separate modules: the engine, breaks, air
conditioner, locking, and dozens of others. Each module in a vehicle consists of mechanical
components, as well as electrical sensors and actuators. An Electronic Control Unit (ECU)
is an embedded system, which manages and controls a module’s electrical components by
running software stored in its non-volatile memory [20] [22]. The ECUs in a vehicle
communicate over a Controller Area Network (CAN), a message-based communication
protocol [9]. This network can be accessed externally via a standard connector, which is
commonly located under the dashboard [34]. During routine checkup, the CAN is connected
to for diagnostic purposes: reading usage and performance data, and updating the
software of ECUs [43] [40]. To make these processes
easier, specific application-level communication standards are in use: Keyword Protocol
2000 (KWP2000) [44] and Unified Diagnostic Services (UDS) [42]. The hardware for
connecting to a vehicle’s internal electrical system is available and respective diagnostic
communication standards are open as well. Therefore, anyone can set up an interaction
with a vehicle that they have physical access to. KWP2000 and UDS define security
measures, in order to guarantee that only authorised persons get access to read and
write ECU software data.

1.2 Problem Description

ECUs are responsible for most of the functionality of a vehicle. Software bugs and
miscalculated settings in an ECU may easily cause a vehicle to malfunction. This does not

	

only pose an inconvenience for the business it serves, but could also potentially endanger
the safety of its transportees or other travellers on the road. Therefore, it is of great
importance that before a vehicle is handed over to the customer, the functioning and co-
operation of all its modules is thoroughly tested.

Some parties may have interest in altering the software of an ECU - for example, a truck
owner wishing to improve some performance indicators, or a criminal intending financial
or physical harm. Unexpected behaviour of a vehicle resulting from untested software
alterations may then lead to legal warranty cases. In such situations it may be difficult to
prove that any manipulation has occurred, and the responsibility would lie on the
manufacturer. Therefore, it is in the interest of the manufacturing company to minimize
the possibility of ECU software being altered outside its own production units and verified
workshops.

The industry standards concerning ECU software updating feature several security
measures, but the degree of their implementation varies from device to device. Previous
research has already demonstrated cases of overriding ECU software security in
automobiles. However, lack of overview exists when it comes to the security of ECUs used in
trucks and buses.

Research question

Purpose (of thesis)

Goal

Literature study

8 Conclusions

Modern vehicles are controlled by a distributed computer system of embedded devices -
Electronic Control Units (ECUs). Customising the functionality of a vehicle comes down to
changing the software on ECUs. To avoid problems with road safety, as well as legal issues,
it is desirable that only the vehicle manufac- turer is able to make software alterations to
ECUs controlling critical modules. This goal requires for appropriate security measures to
be in place, so that ex- ternal parties would be unable to get access to an ECU’s self-
reprogramming functionality. Previous research has already identified several potentially
ex- ploitable vulnerabilities in the diagnostic interfaces of ECUs used in automo- biles. Also,
general-purpose attacks have been demonstrated, mostly related to sending immediately
executable commands to ECUs.

This thesis continued the research by moving the focus to ECUs used in heavy-duty
vehicles, and specifically the reprogramming functionality of the ECUs’ diagnostic
interfaces. The purpose was to evaluate the process of per- forming software updates on
different Scania ECUs from the security perspec- tive. As a result, it reports security
vulnerabilities, which may lead to an unau- thorised person flashing ECUs with arbitrary

	

software. To thoroughly present vulnerabilities and their impact, the thesis has three
consecutive goals: to iden- tify vulnerabilities, demonstrate attacks, and propose
solutions. The research was carried out as a quantitative study, using experimental
research methods and a deductive approach. Experimental methodology was used to test
ECUs and calculations were performed to arrive at conclusions. To evaluate the sever- ity of
the vulnerabilities found, the results were validated by performing exper- imental attacks.

To start off the security evaluation and meet the first goal - identifying vul- nerabilities
- formal software testing methods were used. The abstraction level tested was the
integration of the ECU and a diagnostic node. The subject of testing was the application-
level diagnostic interface of each chosen ECU. The vulnerabilities pointed out in previous
research, as well as the security require- ments defined in the UDS and KWP2000
standards documents, were built upon to compile a set of test cases. Each test aimed to
verify the correct or sufficient implementation of a functional security requirement.
Positive tests were exe- cuted to verify the presence of standardised security requirements,
and negative testing was added to identify any security bugs. As the specification
documents and software code used internally in Scania was available for this study, then
grey-box testing methods were applied to save time. To make accurate mea- surements of
time delays and query speeds, some tests were automated with scripts.

8.1 Identified Vulnerabilities

The results of the security evaluation reveal several exploitable vulnerabilities in ECUs with
varying security strength. The main identified problems were the following:

• No security implementation whatsoever. These systems were not chosen to perform
further attacks on.

• Short seed and authentication code used in authentication. It is feasible to perform a
brute-force attack on an ECU with a seed and authentication code length of merely 2
bytes, and an average-length failed access attempt delay.

• No authentication or encryption of messages carrying flashing data. Since CAN is a
message-based protocol, then lack of higher-level authentication and sending plaintext
messages makes it vulnerable to man-in-the-middle attacks.

The found vulnerabilities are in line with previous research, which empha- sizes similar
or related problems in ECUs used in automobiles. To determine and demonstrate the
significance of these vulnerabilities, they were further ex- perimented with.

8.2 Performed Attacks

Experimental attacks were devised to meet the second goal of the thesis. The aim of this
was to validate whether the identified vulnerabilities could realis- tically be exploited to flash
an ECU with arbitrary software. The goal of the attacks was to gain unauthorised access
to an ECU’s flashing functionality.

Three different types of attacks were successfully conducted, implying that the identified
vulnerabilities pose a realistic threat.

	

8.2.1 Brute-Force Attack

Previous research suggests that short seeds and keys might only provide a tem- porary
protection from malicious security access attempts. As in the course of testing an ECU
was found, which featured a 2-byte seed and authentication code, the realistic feasibility of
a brute-force attack could be verified.

A random 2-byte combination was chosen and repeatedly used as the authentication
code. New seeds were queried, until the authentication code was accepted, and a higher
security level was unlocked. This experiment was con- ducted twice, and succeeded in a
feasible amount of time on both occasions.

Gaining access to a higher security level makes it possible to successfully send flashing
commands to an ECU. However, flashing itself was not performed as a part of this
experiment - bypassing authentication and unlocking the ECU was the sole goal.

8.2.2 Man-in-the-Middle Attack

Previous research also points out that the message-based nature of the CAN network, and
the lack of encryption in ECU diagnostic interface implementations makes it susceptible to
message replaying. It was the intention of this research to verify whether it could be
exploited to perform a man-in-the-middle attack.

This experimental attack was performed on an ECU, which in the course of testing
proved to be one of the most secure ones. However, flashing messages are sent without
separate authentication of each message, and software data is unencrypted. This means
that another device can be placed between the communication line of the tester and the
ECU, to relay messages between them, and change or drop them at will.

The testbed consisted of 2 computers - one of them acting as the tester, and one of them
the adversary - and an ECU. The adversary managed to successfully relay messages to the
ECU until authorisation was successfully finished. Then, it dropped the following messages
from the tester, and replied to them with positive response messages and calculated
checksums. At the same time, it sent messages containing arbitrary software data to the
ECU. Once the tester and the adversary had finished sending flashing data, the adversary
continued relaying messages from the tester to the ECU, in order to finalise the flashing
process, and not arise immediate suspicion. As a result, the legitimate workshop flashing
tool finished its task without giving error messages, and the ECU was actually flashed with
arbitrary software provided by the adversary.

8.2.3 Combined Attack

The previous attack is defined as an active man-in-the-middle attack, since the
adversary intercepts messages. However, the intention of the adversary may simply be to
sniff on the communication between the tester and the ECU. This way they could find out
a legitimate seed-authentication code pair, and use it in a sped-up brute-force attack to
unlock a higher security level. The combined attack is suggested as a part of this research.

The same test set-up was used as in the previous attack. The ECU used was the same as
in the first brute-force attack. This time, message relaying was not stopped. Instead, when

	

the tester and ECU performed a SecurityAccess challenge, the seed and authentication code
were sniffed and stored. Later, the ECU was queried for seeds without sending any
response, until the sniffed seed appeared. Then it was replied to with the sniffed
authentication code. Since no false authentication codes were sent, then time delay was
never activated. The higher security level was successfully unlocked with substantially
reduced time in comparison to the previous brute-force attack.

8.3 Proposed Solutions

As the identified vulnerabilities proved to be exploitable, solutions were also proposed to
avoid such attacks on ECUs in the future.

First, it is essential that ECU software implements the security functionality suggested
in the UDS and KWP2000 standards. Flashing functions should only be available after
unlocking a higher level of security via a successful completion of the SecurityAccess challenge.
The seed and key used in the challenge should be 8 bytes long to mitigate brute-force
attacks. In case of a shorter key, a time delay should be implemented after a failed security
access attempt, before a new seed can be queried, as well as after every boot. To prolong
the time required to performed the combined attack, a time delay should be activated
right after a SecurityAccess seed is queried.

Secondly, the ECU software update process would benefit from using the
SecuredDataTransmission service for sending software data to the ECU in an encrypted form.
This would protect the proprietary software of the vehicle manufacturer from being
reverse engineered. Also, it would be impossible to reuse the software data to illegitimately
flash another ECU. Additionally, the software data messages could not be altered by a “man
in the middle”.

Since decryption on a large scale might be too labour-intensive for an ECU, an
alternative protection method against an active man-in-the-middle attack would be
adding a signature on each message containing software data, con-

firming that it came from a legitimate source. The signature would consist of a message
hash and a nonce, encrypted with a session key. The session key would be agreed upon
with the Diffie-Hellman algorithm, where the tester is authen- ticated with public-key
cryptography. Alternatively, if symmetric cryptography is preferred, the session key could
be a random number chosen by the ECU, encrypted the shared secret key used for
SecurityAccess.

8.4 Constraints

The research only focused on one part of the ECU software update process - the security
implementations in the ECU’s self-reprogramming interface. In that component of the
whole process several vulnerabilities were found and demonstrated. It may very well be
that additional security holes lie in the other elements of the process, such as the storage
and distribution of cryptographic keys or production and signing of flash files.
Additionally, no offline brute- force attacks were performed on the cryptographic
algorithms to uncover secret authentication codes, although they may have been feasible.

	

Therefore, this research does not present a complete picture, regarding the security of the
ECU software update process.

The experiment performed in the course of this thesis relied greatly on the internal
specification documents and proprietary software code of Scania. The documentation was
used to build an understanding on the Scania-specific details of the application-level
communication protocols used in updating the software of different ECUs. These details
could theoretically be reverse engineered by an adversary, who has sniffed on a flashing
procedure, therefore this should not completely nullify the reproducibility of the research.
Scania’s proprietary software code was used in experiments to take care of establishing a
connection with the ECU, as well as for performing the flashing itself, after authentication
was bypassed in the course of the man-in-the-middle attack. As Scania software is built on
the publicly available Kvaser CANlib library [29], then, given suffi- cient time and knowledge
about the flashing protocol, these scripts could also be reproduced without access to
proprietary software.

The brute-force attack and combined attack did not follow up with software updating
after authentication was bypassed. Thereby, the attacks are slightly incomplete, although
the potential threat has been demonstrated.

All tests and experimental attacks were performed in a testbed, not on a real vehicle.
ECUs were treated as standalone devices, not as a part of a complete system. Adding a
“man in the middle” to a truck may mean inconspicuously inserting a pre-programmed
device in its internal electrical system. Also, addi- tional restrictions may apply to perform
these attacks or make arbitrary software functional in a complete vehicle.

The results of Test case 4.1 were only concerned with randomness as per- ceived by a
human observer - that seeds did not have an obvious pattern. Given the context, this may
have been a sufficient criterion, but it would have been more comprehensive to analyse the
pseudo-random number generation algo- rithm used, to see whether its results can be
predicted.

Evaluation of the Research

	

CASE 4: Mobile Multiplatform Web Application
Development for Online Product Services

1. Introduction

Today, a large portion of mobile phone users own a Smartphone [1, 2]. Having facebook, twitter,
angry birds and other mobile applications available all the time are taken for granted by many. Of
course this has not always been the case.
A few years ago software development for mobile devices was in its cradle. With the launch of
Smartphones the mobile software market has been rapidly expanded. As in any healthy market
there are several competing companies with their own Smartphones and operating systems. The
multitude of available mobile platforms has allowed third-party mobile software companies like
Rovio, the creators of the popular game “Angry birds” (http://www.rovio.com), to flourish. All of
these third party companies have one thing in common: the challenge of multiplatform
development [3].

1.1 Background
Every company wants to maximize their profits. One way to do this is to maximize the number of
platforms the company's product can be launched on. This means that the product, application in
this case, needs to be compatible with multiple platforms. Mobile multiplatform compatibility
comes in three flavors: native, web, and hybrid [4]. The native approach uses coding languages and
frameworks exclusive to a particular platform and in essence means that an application is rewritten
from scratch for each platform the company wants to support. The web approach is an attempt at
Java’s “write once run anywhere” philosophy: only one application will be developed which can
execute on any device and platform [5]. This is possible since all modern mobile platforms support
the same web markup-, script- and preprocessor-, languages, essentially running the application in
their respective web browsers. Finally the hybrid solution is a combination of the native and web
approaches. A hybrid application offers many of the functionalities of a native application while at
the same time keeping the bulk of the code in web languages. A hybrid application is thus a shell of
native code encapsulating a pure web application.

This thesis is about the development of a mobile multiplatform application. The mobile application
will be an online retail service and supports an undefined number of mobile platforms. This leads to
the critical decision of a compatible multiplatform development strategy.

1.2 Problem
Selecting a target platform is arguably the most important decision to a mobile software
development project since it will not only govern the target audience but also the development
environment and the required expertise to complete the project.

	

Research question

Purpose (of thesis)

Goal

Literature study

8 Conclusions and future work

The thesis has presented an example of multiplatform app development by following agile
software development methods. The thesis has described the decision making process for
selecting an appropriate multiplatform development strategy for use in a development project.

- Create a multiplatform mobile application.
- An app was developed and the development process is described in the thesis.

The web strategy is suitable for companies like SPS that have an existing website to be made
into an app. The decision making process is likely to be quite different for companies with other
services and goals from those described for the example company SPS. The SPS Company was
modeled after a medley of real services but not one in particular. Therefore, the design and
implementation decisions are applicable for real companies. Even though the web app created
is not a final product ready to be released it is still a working application that can be further
developed into a final product. The app is fully operational and designed with mobile devices in
mind. The app allows a customer to use the app just as they use the SPS website. The
description of the development process is based on the authors` experience. Attempts to
replicate the work may lead to a different development process. One of the most important
parts of software development experienced is the value of having a good planning phase before
the project starts, as well as good planning for each iteration during the project.

The biggest problem encountered due to the limited pre-planning of the project was the fact the
database had to be altered at several times during the development. This resulted in rewriting
of code which could have been avoided if the underlying database (tables, field names, value
types) had been determined in an early stage of the development.

Disciplined use of the version control system allowed the developers to focus on actual
development rather than management of the source code. Since the version control handles
backup and merging of source files.

When developing web apps with JQuery Mobile it was discovered, belatedly, that full page
reloads have a negative impact on performance. This is something that the developers learned
to avoid as much as possible, however, the app was already heavily dependent on PHP scripts
with full page reload requirements. The full page reload problem can be solved by restructuring
the app navigation and inter-pages message passing. On mobile devices with high internet
connection speeds and good processing power this issue is a minor one. However, it is very
noticeable on older mobile devices or where there is limited internet connection available.

