Ex. 8.4 7-4-2-1 code

Codeconverter 7-4-2-1-code to /7 4 2 1
BCD-code. X7 X4 X2 Xy

=
]

Co
+
o
—

.-‘F::
—

I

-
oy

When encoding the digits O ... 9 © 0
sometimes in the past a code having (1) 0
weights 7-4-2-1 instead of the binary 2y
code weights 8-4-2-1 was used. 20
0
0
0

In the cases where a digit's code (4)
word can be expressed in various
ways the code word that contains the
least number of ones is selected

—_——0 O O O
h = o b — D

(A variation of the 7-
4-2-1 code is used
today to store the
bar code)

— — O O O O O O O O

William Sandgvist william@kth.se

=l e == ==}
OO = =00 == 0O
—_ 0 — 0 — O — O — o=

Ex. 8.4 7-4-2-1 code

Codeconverter 7-4-2-1-code to /7 4 2 1 § 4 2 1
BCD-code. X7 X4 X7 Xy Vg V4 V2 Vi
When encoding the digits 0 ... 9 © o0 0 0 0010 0 0 0
sometimes in the pastacodehaving (1) O O O 1 |1]0 O O 1
weights 7-4-2-1 instead of thebinary >y o o0 1 0o |2]0 0 1 0
code weights 8-4-2-1 was used. 3 00 1 11310 0 1 1
In the cases where a digit's code 4 0 1 0 ol4l0o0 1 0 0
word can be expressed in various 5 01 0 115lo 1 0 1

ways the code word that contains the ') '
least number of ones is selected © 0 1 1 04610 1 10
: - & 1 0 0 0|70 1 1 1

A variation of the 7- o 0 - 0
4-2-1 code is used @ 00 s 0000
911 0 0 1

today to store the
bar code)

William Sandgvist william@kth.se

Ex. 8.4 7-4-2-1 code

Codeconverter 7-4-2-1-code to /4 2 1 § 4 2 1
BCD-code. X7 Xq4 X Xy Vg V4 Vo Vi
When encoding the digits 0 ... 9 © 0 0 0 0]0)j0 0 0 0
sometimes in the pastacode having (I) O O O 1 |1 (0O O O 1
weights 7-4-2-1 instead of the binary >y o o | 0{2]0 0 1 0
code weights 8-4-2-1 was used. 3 00 1 11310 0 1 1
In the cases where a digit's che 4 0 1 0 ol4]l0 1 0 0
word can be expressed in various 5 01 0 115101 0 1
ways the code word that contains the =
least number of ones is selected © o0 1 1T 0960 1 10
: - & 1 0 0 0|70 1 1 1
A variation of the 7- o 0 : 0
4-2-1 code is used {) % 00 ? Lo ﬂ ¥
today to store the 10y 10101911 0 0 1

bar code)

William Sandgvist william@kth.se

~1
B

=
|
=
=

h = W o = O

—_— —_——_ 0o O0oCCcoOoCcOoO
CC O =~ = =00 c ol

— 00— 20— o 2|x W
O~ 00 — O~ O — Ok ~

8 4 2 1
Yg Y4 Y2 1
0 0 0 0
00 0 1 8 4 Code converter
0 0 1 0 u
0 0 1 1
010 0 XYH 7-4-2-1 ——= y8
Xy—> —> Y,
01 0 1 X, S = S
0O 1 1 0 XH 8-4-2-1 S 2
0O 1 1 1 1 1
1 0 0 0
1 0 0 1
Yy Y5 Y,
1 }(}(1 }{2}{1 }(){1
00 01 11 10 N 00 01 11 100 N 00 01 11 10 XN\ 00 01 11 10
7 solo T 2 NI E oo T 7
0 0 0
6 9 4 15 7 |6 94 R E 9 1 15 7 |5
14 11112 3 15 |14 112 3 15 14 112 13 |15 |14
10 1z 19 11 [0 115 o 11 [0 115 |19 i1 [0
0 0 0

William Sandgvist william@kth.se

7 4 2 1 8 4 2 1
X7 Xg4 X2 X Vg Y4 Y2 M
0O 0 0 0|00 O O O
0O 0 0 |10 0 0 1
0O 0 1 01210 0 1 0
0O 0 1 L]|3(0 0 1 1
O 1 0 040 1 0 0
0O 1 0 1|50 1 0 1
o1 1 of6|0 1 1 0O
1 0 0 0|70 1 1 1
1 0 0 L |81 O 0 0O
Il 01 091 0O 0 1
ye
K2K1
00 01 11 10 X

00~ '~ 124 12 Xy

gl 010 (0|0

olaa 12~ 17 |6

1010 - 10

j] ERIERERE

112~ 194, 11 T

ol 011 |- EI

KEK

Ya

1
00 01

11

8.4

10

"0

0

&

1

12

13

‘1

0

= -

Code converter

William Sandgvist william@kth.se

X7————> 7-4-2-1 ——= y8
X— 57—V
X S 8-4-2-1 S .
Y, Y,
K2K1 K2K1
00 01 11 10 XN\ 00 01 11 10
ol0~A TTA 2. 12 oo~ L 122 12
alolof1|1] *al0O]|1]1]0
o4~ e~ 7 |6 olia 15, |7 |6
iloloyl- (1 ifol"1[-10
jlwg FRIEREE :l]’l;? FRIERE
AEPRENEENE 115, 19~ [11 [
ol [P0 |2 "o o1" [0 | ™

7 4 2 1 8 4 2 1

X7 X4 Xo X Vg V4 V2 Vi

0O 0 0 0|00 O O O

000 1]1loo 01 8 4 Code converter

0O 0 1 01210 0 1 0 u

0O 0 1 L]|3(0 0 1 1 X

01 00[4]/0 1 0 0 x g 7421 . g//8

0O 1 0 1[50 1 0 1 x4 S = S 4

01 1 0f6lo1 10 XiH 8-4-2-1 |3 RP

1 0 0 0|70 1 1 1 1

1 0 0 L |81 O 0 0O

Il 01 091 0O 0 1
Yg Yy Y, Y,

K2K1 }{2}{1 KEK“I

01 11 10 3N 00 01 11 10 %N\ 00 01 11 10 XN\ 00 01 11
P EE N Y Y ENE SN NN B E *solo~ T
olol0o| *gloloflol0]| *alofoO|1|1| *al0O]|1]1
S G ol4, 15, |7 16 o4~ e~ 7 |6 0li~ 154 |7
0]- [0 1111 - 1 11010 - |1 110111 -
1 172 112 e 14 112 12 e 14 112 112 [
- 15*"’"51 8 R R R) R R N R R
N E 1[5, 19~ 111 [AEPRENEENE 116, 19~ [11
O S o2 0] of1 || 0] &% |-

William Sandgvist william@kth.se

~1
B

§ 4 2 1
Vg Y4 V2

._-
3
=
s
=2

e}
o
=]
o

h = W o = O

[e3}

O — 00 — O~ O — Ok ~
oo -1

—_——_—— 0 0CO0COC OO Ok
OO~~~ 0000

— 00— 20— o 2|x W
——00c 00 OC OO
OO0~ = ——_0 00
OO0~ OO0~~~ O

—_ 0 0 — O = O —

o

00 01

P
o

I
7

o
|
(=7

o

)
B

—_—
—_—
—_—
)
o
=

8.4

Code converter

William Sandgvist william@kth.se

X7—————> 7-4-2-1 ——= yé
X— 57—V
Xl S 8-4-2-1 S .
‘}'4 ‘:’2 ‘>’1
K2K1 K2K1 KEK’I
00 01 11 10 %N\ 00 01 11 10 XN\ 00 01 11 10
00~ 1T~ 12~ 12 SN NN B E oo~ L 122 12
olololol0] *glolol1|1] *alO]|'1]1]0
0 A E N EE JENI P E
1 il 010 - [ifo11]-10
;]1 j] 12 [z s pa j] ERIERERE
1] 112, (9~ 111 11 AEVEEN L
0 ol 110 - B ol 110]- EI

7 4 2 1 8 4 2 1

X7 X4 X2 X| Vg Va4 V2 Vi

0O 0 0 0|00 O O O

000 1]1loo 01 8 4 Code converter

0O 0 1 01210 0 1 0 u

0O 0 1 L]|3(0 0 1 1 X

01 00[4]/0 1 0 0 x g 7421 . g//8

0O 1 0 1[50 1 0 1 x4 S = S 4

01 1 0f6lo1 10 XiH 8-4-2-1 |3 RP

1 0 0 0|70 1 1 1 1

1 0 0 L |81 O 0 0O

Il 01 091 0O 0 1

Yg Y, Y, Y,
}{2}{1 }{2}{1 }{2}{1 }{2}{1
00 01 11 10 3N 00 01 11 10 60N 00 01 11 100 XN 00 01 11 10

NI N ENE N Y Y ENE *sofo~ T 00 2
o|’0 o |0fo| *5|0]'of0f0| “8|0]ofTT™N| ‘oo |TTT)0
ol2~ 15~ [7 |6 0 ol2~ 15~ I |6 04 i B
0 o[- [o] o "o | 7o kL Jo
1112 [=—a 1 1 3 |15 14 1 13
11T 1l [| Al 1
112 N E 1 AN IV ERE AN I EE
0 Oh- 1 0 ol(1J{0 |- |'0 o (LY 0 - _qJ

Yo, = X7 Xy + X7 X, X

Yy = Xg X+ XX, + X7 Xy X

William Sandgvist william@kth.se

7 4 2 1 8 4 2 1
X7 Xg4 X2 X Vg Y4 Y2 M
0O 0 0 000 O 0 O
0O 0 0 |10 0 0 1
0O 0 1 01210 0 1 0
0O 0 1 L]|3(0 0 1 1
O 1 0 040 1 0 0
O 1 0 11510 1 0 1
o1 1 of6|0 1 1 0O
1 0 0 0|70 1 1 1
1 0 0 L |81 O 0 0O
Il 01 091 0O 0 1
ys
K2K1
00 01 11 10 X
00~ T~ 2~ 12 *
ololofolo] *
VBN
7 0|-1|0
j]m 12 4—6\--’!-41
115 KN B
R E

8 4 Code converter
|
X7————> 7-4-2-1 ——= y8
X— 57—V
X2 > 21 > 2
Xi— 8421 sy
Common groupings can provide for
shared gates!
Y, Y, Y,
K2K1 K2K1 K2K1
oo o1 11 10 iT oo 01 11 10 ;({T oo 01 11 10
o0 |'o 00| “Blo|ofTT™| ‘B|0|T N0
0 o]l DN NN R I3 e il B
: o o] o o
1 1 12 119 14 1 13
1\ =1 - |- A 1
1 1 1
; 0 29 Y I 120 Y S,

William Sandgvist william@kth.se

Yy = Xg X+ XX, + X7 Xy X

8.4

PLA circuits containing programmable AND and OR gates.
(This turned out to be unnecessarily complex, so the
common chips became PAL circuits with only the AND
network programmable).

The gates have many programmable input connections. The many inputs are
usually drawn in a "simplified" way.

Frogrammerbar logik x.
e < E
- B
T—]
= Xy TP 2y,
"B]
farenklat ritsatt for 8 ingangars grind Xz El_yz
|| || || || ra
ML —I [—[[—FF-a] IIéll
1& |
X, 21—y,

William Sandgvist william@kth.se

Vg =| N5 X,

+ XX,

_1 4 = -\.‘4 + .-‘I.‘-F -‘I..E -‘I..l

Yy =Ny Xy X, N

_1 I.1 — L‘\.? n.-\..l

+ n‘\.? 51.2 + n‘\‘? 51.2 :\.1

8.4

Shared-gates!

7T s s z 1
n——4 21
){?
&
& ' 3
n. >
){4
& »
& »
X, +H1p ! >
& :
& ‘!
» >1
X4 1

William Sandgvist william@kth.se

Yg

_1 lg - .-‘I."F .-‘I.‘z + .-‘I."F .-‘I..l 8 1
_-1 ’ 4 = I-‘-.4 + n“.‘? :\.2 :\.1 .
V=X X, X,

v = .T_?.Tl + X. X, + Xq z‘k_l Shared-gateS!

X7 _“ & 21 y8

< p &
*

¥ & -+
X, +ib $ Hex 21—Y,
X &
X X—¥— & ¢
X, +1b ‘ XK 21—,
€ x€ & +

% T &
X, T b TRy

William Sandgvist william@kth.se

_1 lg — .-‘I."F .-‘I.‘z + .-‘I."F .-‘I..l 8 4
W= X XX, X, . One chip

Va

. — e A Code converter

Vy =X X 4N X X

Vo= X o v X . il

=% - o - - - 4 4

noaEmE R Shared-gates! =
- . X; 3]

X7 X7 X4 X4 X2 X2 X1 X1

X7 _“ & 21 y8

< p &
*

¥+ & |-+
X, Hib) Xx >y,
)I(&
= X1 & t
:
x,, Hip ! YK 21—,
% ¥ & $

3 T &
\ S

William Sandgvist william@kth.se

Real numbers

Decimal point ”,” and Binary point ”.

10,3125,, = 1010.0101,

Bin —= Dec
101 0.0 1 0 1

2320l ol ol 52 53 o
8 4 2 1 05 025 0,125 00825

B+0+24+0 + 0+02 + 0+ 0025 =103125

Ex. 1.2b

110100.010, =

William Sandgvist william@kth.se

Ex. 1.2b

110100.010, =
= (2°+2%+22 + 22 =32+16+4 + 0.25) =
=52,25,,

William Sandgvist william@kth.se

Calculation with complement

Subtraction with an adding machine = counting with the
complement

8 .17
17 54 45 36 17— |82
R e i i R .
“71'819| = *146
o]

63 -17 =46

The number -17 Is entered with red digits
17 and gets 82. When the — key Is pressed
1 1s added. The result is: 63+82+1 = 146. If
only two digits are shown: 46

2-complement

7 1o 7) 0111— 0111
= 0] 1 (3) 0011 |1100

=
= —+1|0100| (4)

The binary number 3, 0011, gets negative -3 if one inverts
the digits and adds one, 1101.

Register arithmetic

o Computer registers are ’rings”

A four bit register could
contains 24 = 16 numbers.

Either 8 positive (+0...+7) and 8
negative (-1...-8) ”signed integers”,
or 16 (0...F) "unsigned integers”.

If the register is full +1 makes the
register to the "turn around".

Register width

e 4 bit is called a Nibble. The register contains 24 = 16
numbers. 0...15, -8...+7

e 8 bit is called a Byte. The register contains 28 = 256
numbers 0...255, -128...+127

e 16 bit is a Word. 215 = 65536 numbers.
0...65535, -32768...+32767

Today, general sizes are now 32 bits (Double Word) and 64
bits (Quad Word)..

William Sandgvist william@kth.se

Ex. 1.8

Write the following signed numbers with two's complement notation,
X = (Xg, X5, Xgqs Xg5 Xpy Xq5 Xp)-

a) -23
b) -1 =

C) +38 =

d) -64 =

William Sandgvist william@kth.se

Ex. 1.8

Write the following signed numbers with two's complement notation,
X = (Xg, X5, Xgqs Xg5 Xpy Xq5 Xp)-

a) -23= (+23,, = 0010111, — -23,,= 1101000, + 1,) = 1101001,
=105,

b) -1 =

C) +38 =

d) -64 =

William Sandgvist william@kth.se

Ex. 1.8

Write the following signed numbers with two's complement notation,
X = (Xg, X5, Xgqs Xg5 Xpy Xq5 Xp)-

a) -23= (+23,, = 0010111, — -23,,= 1101000, + 1,) = 1101001,
=105,

b) -1 = (+1,,= 0000001, — -1,,= 1111110, + 1,) = 1111111, = 127,

C) +38 =

d) -64 =

William Sandgvist william@kth.se

Ex. 1.8

Write the following signed numbers with two's complement notation,
X = (Xg, X5, Xgqs Xg5 Xpy Xq5 Xp)-

a) -23= (+23,, = 0010111, — -23,,= 1101000, + 1,) = 1101001,
=105,

b) -1 = (+1,,= 0000001, — -1,,= 1111110, + 1,) = 1111111, = 127,

c) +38 = (32,,+4,,+2,,) = 0100110, = 38,,

d) -64 =

William Sandgvist william@kth.se

Ex. 1.8

Write the following signed numbers with two's complement notation,
X = (Xg, X5, Xgqs Xg5 Xpy Xq5 Xp)-

a) -23= (+23,, = 0010111, — -23,,= 1101000, + 1,) = 1101001,
=105,

b) -1 = (+1,,= 0000001, — -1,,= 1111110, + 1,) = 1111111, = 127,

C) +38 = (32,,+4,,+2,,) = 0100110, = 38,,

d) -64 = (+64,, = 1000000, is a to big positive number (for 7 bits)!
But will still function for -64,, — 0111111, +1,) = 1000000, = 64,

William Sandgvist william@kth.se

Ex. 2.1

a) 110+ 010 b) 1110 + 1001
c¢) 11 0011.01 + 111.1 d) 0.1101 + 0.1110

a}i%”} b)_]lll{)

+ 010 + 1001
1000 10111

0) 111 d) 1l
11001 101 01101
+ 11 101 +0/1 110
11101011 1J1 011

William Sandgvist william@kth.se

Full adder

Full adder

S1EE= o]

A logic circuit that makes a binary addition on any bit position with
two binary numbers is called a full adder.

4-bit adder

An addition circuit for binary four bit numbers thus consists of four
fulladder circuits.

As By Az B =) Ay By Cpy

¥ ¥ 7 2 7 Y 1 7 . A
Full Full Full Full
Adder Adder Adder Adder
¥ ¥ ¥ ¥

Y
Cor % & 3, 2 r, & g

BsB3B:By Az Az A Ay

4-Bit Binary Full Adder

Cour — — Ci

Subtraction?

Ay By Ay Ay additions

subtraktion

54535251 || 111t — 011
\\\\wwwa

4-Bit Binary Full Adder

Cour —
LN

The inversion of the bits could be done with b_|
XOR-gates, and a one could then be added to the b

number by letting C = 1.

Subtracting the binary numbers can be
done vith the two-complement.

Negative numbers are represented as the
true complement, which means that all bits
are inverted and a one is added.

The adder is then used also for subtraction.

:1 f = azh

imvertera bl

f
0
1
1
0

Yn-1 Y1 Yo

Xn—l Xl XO oo o v v
1 | B | \ | ! Y
Co

n-bit adder /L

Figure 5.13. Adder/subtractor unit.

Add / Sub
control

2-complement "fast”

 In order to easily produce 2's complement of a binary
number, you can use the following procedure:

— Start from right

— Copy all bits from all zeroes to the first 1.

. Invert
— Invert all the rest of the bits “

Co
) PY

Example: 2-complement of ~ 010)0 is 1010

&=

William Sandgvist william@kth.se

EX. 2.2

Add or subtract (add with the corresponding negative number) the

numbers below. The numbers are representated as binary 2-complement
4-bit numbers (nibble).

a 1+2 b)4-1 ¢) 7-8 d) -3-5

The negative number that are used in the examples:
-1,, = (+1,,=0001, —» -1,=1110, +1,) = 1111,
-8,, = (+8,,= 1000, —» -8,,=0111, +1,) =1000,
-3,, = (+3,,= 0011, —» -3,,=1100, +1,) = 1101,
-5,,= (+5,,= 0101, » -5,,=1010, +1,) = 1011,

William Sandgvist william@kth.se

-1,, = 1111, -3,,= 1101,
-8,, = 1000, 5,,= 1011,
1+2=3 4-1=3
a) b) L1
0001 = 0100 =4
+10010 =2 +11 11 =
0011 = X001 1 =3
7-8=-1 -3-5=-8
C) d L 111
0111 =7 1 T01 =3
+11 000 =8 +]101 1 =
1111 =1 X[1000 =8

William Sandgvist william@kth.se

Ex. 2.3 ab

Multiplicate by hand the following pairs of unsigned binary numbers.
a) 110-010 b) 1110-1001

110-010=(6-2=12)=1100 1110-1001=1111110

) 110 =6 b) 1110 =14
<« 010 =2 x 1001 =9

000 1110

110 0000O0

+ 000 000O

01100=12 + 1110
1111110 =126

William Sandgvist william@kth.se

Ex. 2.3 c,d

Multiplicate by hand the following pairs of unsigned binary numbers.

110011.01-111.1= 01101.0.1110—

=110000000.011
q) =0-10110110
11001101 1101
x 1111} < [1110
11001101 0000
11001101 1101
11001101 1101
+11001101 + 1101
110000000011 10110110
=110000000.011 =0.10110110
(51,25-7,5 =384,376) (0,8125-0,875 =0.7109375)

Fixpoint multiplication is an "integer multiplication”, the binarypoint is
iInserted in the result.

William Sandgvist william@kth.se

EXx. 2.4

Divide by hand the following pairs of unsigned binary numbers.
Methood the Stairs:
110/010=(6/2=3)=011

a)

1 0|1
1

= = | —
| —

1
[—
o O

-

William Sandgvist william@kth.se

EXx. 2.4

Divide by hand the following pairs of unsigned binary numbers.

Methood the Stairs:

110/010=(6/2=3)=011 1110/1001=(14/9)=1.10 ...
a) 1 1 b) .1 00 01
10110 10011110
- 10 -1 001
1 0 1 010
-1 0 - 1001
0 1 0000
- 1001
1 11

If integer division the answer will be 1.

William Sandgvist william@kth.se

Ex 2.4

Divide by hand the following pairs of unsigned binary numbers.

Methood Short division:

a) 110/010=(6/2=3)=011

1
110 _ 10_, 1f_,
10 10 1

William Sandgvist william@kth.se

Ex 2.4

Divide by hand the following pairs of unsigned binary numbers.

Methood Short division:

b) 1110/1001=(14/9=1,55...)=1.10...

101 1010 1
1110 1110 1110. 1110.
1001 1001 1001 "~ 1001

If integer division the answer will be 1.

William Sandgvist william@kth.se

IEEE — 32 bit float

5 1/2

A
+55,;=+101.1,

Mormaliserat: +1011 *2@

R
teclken exponent signifilkand
31 30 23 22 0
[0] |1|D|D|D|D|D|D|1|1 [o[1]1]ofofolofofofolofofofolofoafolafolafo]o]
G2w127=120 (011
10000001
exess- 1271

The exponent is written exess-127. It is then possible to
sort float by size with ordinary integer arithmetic!

Dec — IEEE-754

William Sandgvist william@kth.se

http://babbage.cs.qc.edu/courses/cs341/IEEE-754hex32.html
http://babbage.cs.qc.edu/courses/cs341/IEEE-754hex32.html
http://babbage.cs.qc.edu/courses/cs341/IEEE-754hex32.html

2.5 Float format

|IEEE 32 bit float

s eeeeeeee THFFfffrrrrrerrrrefreerees
31 30 23 22 0

William Sandgvist william@kth.se

2.5 Float format

|IEEE 32 bit float

s eeeeeeee THFFfffrrrrrerrrrefreerees
31 30 23 22 0

What Is:

4 0 € 8 0 O o0 O
01000000110010000000000000000000

William Sandgvist william@kth.se

2.5 Float format

|IEEE 32 bit float

s eeeeeeee THFFfffrrrrrerrrrefreerees
31 30 23 22 0

What Is:

4 0 € 8 0 O o0 O
01000000110010000000000000000000

O 10000001 10010000000000000000000
+ 129-127 1 + 0.5+0.0625

William Sandgvist william@kth.se

2.5 Float format

|IEEE 32 bit float

s eeeeeeee THFFfffrrrrrerrrrefreerees
31 30 23 22 0

What Is:

4 0 € 8 0 O o0 O
01000000110010000000000000000000

O 10000001 10010000000000000000000
+ 129-127 1 + 0.5+0.0625
+1,5625-22 = +6,25

William Sandgvist william@kth.se

¥%) IEEE-754 Floating-Point Conversion from 32-bit Hexadecimal to Floating-Poink - Mozilla 1ol x|

frkiv Redigera Visa Historik Bokmérken Verkbyg Hislp

- O ¥ _;$ I“|http:,l',l'babbage.cs.qc.cuny.edu,l'IEEE-?54,|'32bit.htmI b -.’lv|GoogIe).'

J m IEEE-754 Floating-Point Conversion ... ITl F
IEEE-754 Floating-Point Conversion r

From 32-bit Hexadecimal Representation
To Decimal Floating-P oint
Along with the Equivalent 64-bit Hexadecimal and Binary Patterns

Enter the 32-bit hezadecimal representation of a floating-point number here,
then chck the Compute button.

Hexadecimal Representation: |4UCBUUUU Clear |

Results:

Decimal Value Entered: [5.25

Sinele precision (32 bits):

Binary: Sratus: InDrmaI

BiE 1 Bits 30 - 23 Bits 22 - O

dign Eit Exponent Field Significand
IU |'| 0ooooot |'| .10010000000000000000000
o: +

Decimal walue of exponent field and exponent |Decimal walue of the significand

1 = [les | - 127 = 2 [1 5625000

1l | _>|;I
Dec — IEEE-754

William Sandgvist william@kth.se

http://babbage.cs.qc.edu/courses/cs341/IEEE-754hex32.html
http://babbage.cs.qc.edu/courses/cs341/IEEE-754hex32.html
http://babbage.cs.qc.edu/courses/cs341/IEEE-754hex32.html

- 32 bits

S E M
Sign—t v Y |
0 denotest 8-bit . 23 bits of mantissa
excess-
1 denotes- exponent

(a) Single precision

- 64 bits
S E M
Sign I N _ v _
11-bit excess-1023 52 bits of mantissa
exponent

(b) Double precision

Figure 5.34. |EEE Standard floating-point formats.

Overflow

When using signed numbers the sum of
two positive numbers cold be incorrectly
negative (eg. "+4” + "+5" = "-7"), in the
same way the sum of two negative
numbers could incorrectly be positive
(eg. "-6" + "-7" = "+3").

This is called Overflow.

William Sandgvist william@kth.se

Logic to detect overflow

=1

For 4-bit-numbers XOR detects
Overflow If ¢, and c, are different ~ ’not equal™
Otherwise 1t’s not overflow

Overflow = c¢,C,+C.,c, =C,DcC,

For n-bit-numbers

Overflow = c_, @c,

William Sandgvist william@kth.se

¥ ¥a X1 Mo
'Y Y |V Y
l ' l i l ' '
C4 C3 CE Cl
FA -~ FA - FA -] FA
3 73 41 0
oy
¥
vV N Z
(overflow) (negative) (zero)
Figure 5.42. A|comparator|circuit.

BV ex 5.10,<>=

Flags, Comparator. Two four-bit signed numbers, X = X3X,X;X, and Y =
Y3Y.Y1Yo, Can be compared by using a subtractor circuit, which performs the
operation X — Y. The three Flag-outputs denote the following:

e Z =1 if the result is O; otherwise Z =0
* N = 1 if the result is negative; otherwise N =0
« \V/ =1 if aritmetic overflow occurs:; otherwise V =0

Show how Z, N, and V
can be used to ‘ ‘ .
determine the cases —

[X=VY, X<V, X >Y.] U | Subtractor circuit
' 7 used as
_ . , comparator.

{overflow (neganve) (zero)

William Sandgvist william@kth.se

BV ex 5.10

YOy Y Y xey
S 3}‘;:;77: V=c,®c N=s;
| U Z=(S;+S,+S,+5S,)

William Sandgvist william@kth.se

Y ?

BV ex 5.10

L |

|
L 1

—-—

1YY (Y

N i

X=Y ?

X=Y = =1

X =Y
V=c,®c, N-=s,

Z=(S;+S,+S,+5,)

William Sandgvist william@kth.se

X<Y ?

BV ex 5.10

Y

[§ |
| ¥ |
| v

FA | i

A

Y

Some test numbers;

X =Y
3-4=-1

4--3=-1

—3-4=-7
54 =+7

vV |V

N =s,

Z=(S;+S,+S,+5S,)

X —Y
V =c, ®c,
v oN
0 1
0 1
0 1
d %

William Sandgvist william@kth.se

BV ex 5.10

A
_ I. ___ o V:C4@C3 NZSs
v U Z=(5,+S,+5,+S,)
X<Y ? S

(2ero)

If Xand Y has th"e same sign X - Y will always be correct and the flag V =0. X,
Y positive eg. 3—4 N =1. X, Y negative eg. -4 —(-3) N=1.

If X neg and Y pos and X —Y has the correct sign, V=0and N = 1.
Tex. -3 —4.

If X neg and Y but X — Y gets the wrong sign, V = 1.
ThenN=0. Ex.-5-4.

e Summary: when X<Y the flags V and N is always different. This could be
indicated by a XOR gate.

William Sandgvist william@kth.se

BV ex 5.10

1Y v 1y 1Y X =Y
T & V=c,®c, N=s
v, U Z =(S,+S,+5, +5,)
X<Y ? C oz

If Xand Y has th"e same sign X - Y will always be correct and the flag V =0. X,
Y positive eg. 3—4 N =1. X, Y negative eg. -4 —(-3) N=1.

If X neg and Y pos and X —Y has the correct sign, V=0and N = 1.
Tex. -3 —4.

If X neg and Y but X — Y gets the wrong sign, V = 1.
ThenN=0. Ex.-5-4.

e Summary: when X<Y the flags V and N is always different. This could be
indicated by a XOR gate.

X<Y = N&V

William Sandgvist william@kth.se

¥y

Vex 5.10

@J’
Ll

LY Iy v 1Y
v

X=Y => 7Z=1

X<Y = NV

X<Y =

X>Y =

X>2Y =

X =Y
V=c,®&c; N=s,

Z=(S;+S,+S,+5,)

William Sandgvist william@kth.se

Vex 5.10

L]

LY 1Y [y IY
Sl | X -Y

U V=c,®&c; N-=s,

Z=(S;+S,+S,+5,)

X=Y = ZzZ=1
X<Y = N&V

X<Y = Z+N®V

X>Y = Z+N@®V=Z-(N&V)
X>Y = NV

William Sandgvist william@kth.se

BV ex 5.10

Y3 ¥y] Yo

X3 '_-? X v) v

l‘? | Yo

T L] L 1 L ¥ 1
— FA FA =

F.:\\ - X_Y
| V=c,®dc, N-=s,

Z=(S;+S,+S,+5,)

X =Y
X <Y
X <Y

X>Y
X>Y

I U Y

Z=1 This is how a computer
N ®V can perform the most

common comparisions
Z+NDBV

Z+N®V =Z-(N®V)
N ®V

William Sandgvist william@kth.se

William Sandgvist william@kth.se

(Ex 8.12) Adder circuit

Xy Xy X X X; Xy X X
1 1 | |1 1 |

b,b, b b, __J/a;a,q q
(8 ADD Cm 0
| N I

Ys Vs Vi M Wy Ys Vs VoW Vg

A four bit unsigned integer X (X3X,X;X,) IS connected to an 4-bit adder as in the
figure. The result is a 5-bit number y (y,y,Y,Y,Yo). Draw the figure to the right how
the same results can be obtained without using the adder. There are also bits with
the values 0 and 1 if needed.

William Sandgvist william@kth.se

(Ex 8.12) Adder circuit

X; Xy X X
1 1 |

xX+x=2-x

0

Ye Vs Vo M Wy

William Sandgvist william@kth.se

Ex 8.11 Multiply with 6 ?

F=b6xx=

| =2x(2xx+1xx)

William Sandgvist william@kth.se

Ex 8.11 Multiply with 6 !

William Sandgvist william@kth.se

Ex 8.11 Multiply with 6 !

Xy Xy X Xy 10
||

0
L]
bbb, b b a,
%\(:;m ﬂ \—/
ADD
HEER
RN
545 .S'M .5'1 S; .5'2 .5'1 Sﬂ

William Sandgvist william@kth.se

Ex 8.11 Multiply with 6 !

Az Xy Xy Xy 10
|
LLM‘JO Omuo
g 90, o\ / Ad a4,
%\Cr_‘) ur C IN
ADD
BRE
\ 0 2-(x-2+x-1)
I

William Sandgvist william@kth.se

Ex 8.11 Multiply with 6 !

/111100
1/ 0 15x2
1 1] 15x]
0 1
1 0 %2

\ |
|
1011010=90

William Sandgvist william@kth.se

\0 2-(X-2+x-1)
]

William Sandgvist william@kth.se

	Ex. 8.4 7-4-2-1 code
	Slide Number 2
	Slide Number 3
	8.4
	8.4
	8.4
	8.4
	8.4
	8.4
	8.4
	8.4
	8.4
	8.4
	Real numbers
	Ex. 1.2b
	Ex. 1.2b
	Calculation with complement
	2-complement
	Register arithmetic
	Register width
	Ex. 1.8
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Ex. 2.1
	Full adder
	Full adder
	4-bit adder
	Subtraction?
	Slide Number 31
	2-complement ”fast”
	Ex. 2.2
	2.2
	Ex. 2.3 a,b
	Ex. 2.3 c,d
	Ex. 2.4
	Ex. 2.4
	Ex 2.4
	Ex 2.4
	IEEE – 32 bit float
	2.5 Float format
	2.5 Float format
	2.5 Float format
	2.5 Float format
	Slide Number 46
	Slide Number 47
	Overflow
	Logic to detect overflow
	Slide Number 50
	BV ex 5.10, < > =
	BV ex 5.10
	BV ex 5.10
	BV ex 5.10
	BV ex 5.10
	BV ex 5.10
	BV ex 5.10
	BV ex 5.10
	BV ex 5.10
	Slide Number 60
	(Ex 8.12) Adder circuit
	(Ex 8.12) Adder circuit
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68

