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Questions

What is meant by the electromagnetic response of a media?

— This lecture we will see how to calculate a response tensor.

What is meant by temporal dispersion, spatial dispersion and
anisotropy? Under what conditions do these three effects appear?

— This lecture we’ll calculate the response of dispersive and anisotropic
media.
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Overview

* Introduction to the concept of a response

» First example: Response of electron gas
— Changing the speed of light and dispersion

» Polarization of atoms and molecules (brief)
* Properties/symmetries of response tensors

 Medium of oscillators

— Detailed study of the resonance region

« Hermitian / antihermitian parts of the dielectric tensor
» Application of the Plemej formula

» Dielectric response for plasmas
— Magnetoionic theory (anisotropic/gyrotropic)
— Cold plasmas (Alfven velocity)
— Warm plasmas (Landau damping)
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What do we mean by dielectric response?

* When an electromagnetic wave passes through a media,
e.g. air, water, copper, a crystal or a plasma, then:

— The electromagnetic fields exert a force on the particles of the media

— The force may then “pull” the particles to induce
» charge separation p ==) drive E-field in Poisson’s equation

V ¢ Emedia = pmedia /80

— E-field is coupled to the B-field through Maxwells equations
« currents J ==) drive E- & B-fields through Ampere’s law

1 aEme ia
V X Bmedia - CZ atd = MOJmedia

— The fields induced by the media are called the dielectric response
— The total fields are:

E=E +E . See previous lecture for
external media representation in terms of:
B = Bmemal + Bmedia . Polarizalltior)P
* Magnetization M
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Equations for calculating the dielectric response

E- & B-field exerts a force on the particles in media

mv=g(E+vxB) solve for v !

The induced motion of charge particles form a current
and a charge density

0
J a nv me ia+ oJme ia =O
media sp;Ci:esq ot p d d

(n=particle density)

The response can be quantified by the conductivity o

J(k,w) = 0, (k,0)E ,(k,0)

Current and charge drive the electromagnetic response

V * Emedia = pmedia /80

1 oE_ .
V X B T2 et = MOJmedia
C ot
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Response of electron gas to oscillating E-field

Example: Consider electron response to electric field oscillations
(e.g. high frequency, long wave length waves in a plasma)

*Align x-axis with the electric field: E(z) =e E (1)
Electron equation of motion:

mi(0) =qE, (1) = x(@)=-—"3E (o)

*The current driven in the medium (let n be the electron density)
2

qn

J. (1) =qnx(t) = J(w)=i—
ma

E (w)

*Thus we have derived the conductivity of this media

2
o) =i d
mao

*Here: o~ 1/w, means that the media is dispersive!

1/28/16 Dispersive Media, Lecture 4 - Thomas Johnson



Response of electron gas to oscillating E-field (2)

« This media is isotropic (the same response in all directions)
— Proof 1: rotate E-field to align with y-axis or z-axis and repeat calculation

— Proof 2: use argument that the medium have no “intrinsic direction” (there is no
static the magnetic field, no structure like in a crystal, or similar), thus the media
have to be isotropic

— Being an isotropic media the components of the conductivity tensor are:

2 2
(6))
0;(w) =o(w)d, = o (w)= 1—6 =ig,—29,
mm 0
n
where w, is known as the plasma frequency: a); = g
E,m
° . . . 2
Other respo.n.s_e tensors: o la(a))é w, X
— susceptibility: X (W) =——0,(0) = i =——50,
€, €, W

2
— polarisation response: %((U) =100 ((U) =—&\, ‘5
2

Q)
— dielectric tensor: K,-j () = 5,7 +Xij (w) =|1- _1; 61’]’
Q)
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Application of response

 How does the electron response affect the propagation of waves?

— Consider: high frequency, long wave length waves in a plasma
« then response tensor from previous page is valid (more details later)

« Split currents into antenna current J . and the current induced in

ant
the media J,,,;,- Then Amperes and Faradays equations give:

edia-
2

(l) .
KxkxE+—E+iu0] . =-iu.n]J Note: total field £ driven
c’ Hofmedia =~ an by both /. and J,,

2

)
« Use the conductivity o=ie,— of the media:

()]
2 2 2
u) , ) , » 1 ®,
C_zE + ZMO(DJmedia = C_zE + lMO(DO'E =0 c—z(l — F)E
| |
®° e, 2
. Co
=5 kaXE+C—2E=—lMO(DJam

m 2\"!
W
i.e. a wave equation with speed of light: |¢2 = c2(1 ——’2’)
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Polarization of atoms and molecules

The polarization of an atom (requires quantum mechanics)

— The electric field pushes the electrons, Electric field
inducing a charge separation; <

— Quantum mechanically: perturbs the
eigenfunctions (orbitals): @ = @+ D

1) (0) ey 1)
wq = E aqq'wq' — Jmedia & pmedia 1

— The field induced by the media is opposite
to the total field

Electric field
The polarization of a water molecule <
— Water molecules, dipole moment d )6,.
— The electric field induces a torque X%Q
that turns it to reduce the total field —
— Note: the electron eigenstates of the (7%

molecules are also perturbed, like in the atom
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Uniaxial crystals

In solids the response, or electron mobility,
Is determined by the

— Metals: the valence electron give rapid response

— Insulators: electrons orbitals are bound to
a single atom or molecule

Uniaxial crystals: have an optical axis;

e.g. the normal nn to a sheeth structure

Stronger bonds within then between the sheeths
— Graphite: valence electrons are shared only within a sheeth
— electron mobility (response) is different within and perpendicular to the sheeths
— The crystal is anisotropic

Let the normal to the crystal be in the z-direction (as in figure)

-OL 0 0 Graphite
[0__] =10 o 0 0,=25-50x10"°
ij
0 0 o o,=3x10"

Example: slight birefrigence in optical fibres can cause modal dispersion
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Biaxial crystals

» Uniaxial crystals has symmetric plane,
iIn which the electron mobility is constant

« Biaxial crystals have no symmetry plane
— Instead they have different Conduct|V|ty in

all three directions o, 0 O
[oij] =10 o5 O
0O O O,

— When expressed in terms of the dlelectrlc tensor one may introduce
three refractive indexes of the media

n) 0 0
[K,.j] -

0 (n)* O
0 0 (n)
Epsom Salt (MgSO,):
n;=[1.433, 1.455, 1.461 ]

l
0, +—0,
WE,

These medias are rarely strongly unisotropic
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Overview

Introduction to the concept of a response
First example: Response of electron gas
— Changing the speed of light and dispersion
Polarization of atoms and molecules (brief)
Properties/symmetries of response tensors

Medium of oscillators

— Detailed study of the resonance region

« Hermitian / antihermitian parts of the dielectric tensor
» Application of the Plemej formula

Dielectric response for plasmas

— Magnetoionic theory (anisotropic/gyrotropic)
— Cold plasmas (Alfven velocity)

— Warm plasmas (Landau damping)
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Anithermitian part of dielectric tensor

Next lecture we’ll see that:
— Hermitian part of K determines the refractive index, K ~n?
— Antihermitian part of K determines the damping rate, K4 « y

How does K4 relate to damping? Study the work by electric fields:

W = j d3xdt E; (t,X)]; (t,X) = \]d\%dwlzi(w,k)];(w, k)

S 1 Plancherel’s theorem
Dissipative work: Re{W}=-(W + W") =

1
_ Ef d3kdw (Eio'ijEj + E; O'ijEj) = Jd3kda) E; O'{}E}-

How is the antihermitian part K4 related to the hermitian part ¢?

1 i i N1 i - _«\_ i _H
KA :_{5.. _0.._(5.. _J..) }:_{_0.._ 0--}= ok
ty 27U +£Ow Y Jt +£0w Jt 2lggw Y o ) gqw It

Damping caused by: hermitian o, or antihermitian K!
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Positive and negative Frequencies

Consider a plane wave representation real space and time:
. . | . ~ . .
E(x,t) = Re Eetkx—lwtl — _ ([ olkx—lwt 4 [*o—lkx+iwt
(. ) = Ref )= )

~ 1 . . . S
D(x,t) = Re{Delkx—Lwt} :E(Delkx—lwt _|_D*e—lkx+1wt) (A)

Thus, to represent a wave in space and time we need in fact two
plane waves with opposite frequencies and wave number.

— Two complex waves are needed for a single real-space wave...
— ...that means, their dielectric response have to be related!

The amplitude of E and D are related via the dielectric tensor
5((1)1 k) — EOKij ((1), k)E'((U, k)

1 o I
D(X, t) = E (KU((U, k)Eelkx—la)t 1 Kl] (—(1), _k)*E*e—lkaa)t) (B)
Comparing (A) and (B) we get:
Kij(w, k) = K;j(—w,—k)

1/28/16 Dispersive Media, Lecture 4 - Thomas Johnson 14



Kramer-Kroniger relations *

Inverse Fourier transformation of relation between E and D:
D;(w,K) = &K;j(w,K)E;(w,K)

D;(t,r) = eoj dt'j d*xK;j(t—t', r—r)E{t' 1)

Thus, since D;(t,r) and E;(t,r) is real, also K;;(t,r) must be real!
— Fourier transform of real functions gives symmetry:
Kij(w, k) = K;j(—w, —k)* (as on previous page)
Causality: only history impact the future:
Kijt—tr—r)=0for t' >t
For causal function: f(t) = H(t)f(t)
— After a few lines of algebra...the Kramer-Kronig relations:

. 00 A
H 1 ,Kij(a);k)
Kij ((l),k) — 51] —EPJ_OOd(,U °—
i K@K -6y
KA (w, k) =P f dw'— —
T J_4 W — W
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Time reversal

The dielectric response is a mechanical response due to
electromagnetic perturbations.

— Thus, any realistic response has to be consistent with the laws of
mechanics (Newton or Schrodinger)

Consider Newton’s equation of motion

dp_ E + vxB
E—CI( vXB)

Lars Onsager found that there is an important symmetry w.r.t time
reversal (in both Newton’s and Schrodinger's equation)

t—->—t,p—~>—-pB——-B
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Onsager relation

Reactive and resistive responses:
J(w,K) = 0 (w,K) - E(w,K) = (¢” (w,K) + ¢ (w,K)) - E(w,K)
The current can be split in reactive and resistive parts:
]resist — O'H . E

]react — O'A . E

Next: Let a particle be accelerated by a wave. If time is reversed...

— the work on reactive current should be transferred back to the wave
E(w,K) - J5°*"(w, k) = —E(—w,K) - J7%(—w, k)
- 04 (w,K) = —04;(—w,K)
— the work on resistive current should be unchanged
E(w,K) - JE*% (w,K) = E(—w, K) - J745t (—w, K)
- o4 (w,K) = c45(—w,K)
Combine with reality condition, ¢;; (w,K) = 0j; (—w, —K):
oij g (W,K) = gji _p (w,—K)
Kijp (w,K) = Kj; _p (w,—K)
These are the Onsager relations!
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Onsager’s relations: Magnetised media

Consider a magnetised media with B = Be, along the z-axis

K LB 0
Kij (a),k) = KSij,B + LEijkBk = |—LB K 0
0 0 K

The transpose of this matrix changes the signs of the off-diagonal
element.

The map B - —B has the same effect
Thus, leaving the matrix unchanged as predicted by Onsager!
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Overview

Introduction to the concept of a response

First example: Response of electron gas
— Changing the speed of light and dispersion

Polarization of atoms and molecules (brief)
Properties/symmetries of response tensors

Medium of oscillators

— Detailed study of the resonance region

« Hermitian / antihermitian parts of the dielectric tensor
» Application of the Plemej formula

Dielectric response for plasmas

— Magnetoionic theory (anisotropic/gyrotropic)
— Cold plasmas (Alfven velocity)

— Warm plasmas (Landau damping)
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Reminder: Equations for calculating the dielectric response

E- & B-field exerts force on particles in media

mv=g(E+vxB) solve for v !

The induced motion of charge particles form a current
and a charge density

0
J a nv me ia+ oJme ia =O
media sp;Ci:esq ot p d d

(n=particle density)

The response can be quantified in e.g. the conductivity o

Ji(k,m) =0,(k,0)E (k,w)

Current and charge drive the dielectric response

V * Emedia = pmedia /80

1 oE_ .
V X B -2 e = MOJmedia
C ot
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Medium of oscillators — dispersive media

Consider a medium consisting of charged particles with
— charge g, mass m , density n
Let the particles position x follow the equation of a forced oscillator

— i.e. the media has an eigenfrequency Q and a damping rate I

« damping could be due to collisions (resistivity) and the eigenfrequency
could be due to magnetization an acustic eigenfrequency of a crystal

q/m
Q> —w’ -iTw

(O +TH(D) +Qx(0) =LE (1) = x(w)= E (o)
m

The current is then

iong” /m
Q* —w® —il
Thus the dielectric tensor reads

J(w) = gn|[-iox(w)] = - - E_(w) = OE ()

. 2
l

2
w n
K,=6,+—o0, =|1+ 57—, , where . =2
£, Q -—w” -iT'w £,

— again w, is the plasma frequency
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Medium of oscillators (2)

Isotropic dielectric tensors K;; can be replaced by a scalar X,
consider e.g. the inner product K .E. =KO0 E; =KE,

For the medium of harmonic oscillators
2

W
K=1+—= —
Q —w” -1l w

In the high frequency limit where w >> 2 and w>> 1", then
2

w
K=1-—"2+..
w

— this is the response of the electron gas!

At low frequency w <<€ and w ~ I, then
2

W
K=1+Q—g

— here the medium is no longer dispersive (independent of w)
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Medium of oscillators (3)

« The medium has “strongly dispersive” when the frequency is near
the characteristic frequency of the medium w ~ Q

— To see this, first rewrite the denominator
D=Q’-w’-iTw =
=Q° —(w+il/2)*-T"/4
= (Q-w -il'/2)(Q+w +il/2) -T/4

— assume here the damping rate to be small w >> I" such that the last
last term is negligible

— Next use the relation: I = 1( ! _ 1 )
(a-b)(a+b) 2b\a-b a+b

— The dielectric constant is then

2
w

K=~1- . ——

(w +il/2 - Q)(w +il'/2 + Q)
=1_a)§ 1 ) 1

2Q| w+il/2-Q w+il/2+Q
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Medium of oscillators (4)

* Next we shall use the condition that we are close to resonance; i.e.
the frequency is near the characteristic frequency w ~ Q

1 1
w-Q <<|w+Q = ‘ . ‘>> .
w-Q+iI'/2 w+QQ+iI/2
 The dielectric constant then reads
W’ 1 o (0-Q-il/2)

K=~1-—2 —_=1--2 -
2Q (0 - Q+il'/2) 2Q [(w_g) AT /4]

2

i 0 )
K" =R{K } =1-—* W . = Hermitian: wave propagation
262 [(00 ~Q) +I7/ 4] (reactive response)
A N (Df) r . agn .
K" = J{K } = > Antihermitian: wave absorption
€2 [((x) ~-Q) +T?/ 4] (resistive response)
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Medium of oscillators (9)

 Antihermitian part comes from iI/2 in

] - Re(K

o, 1 A === i<
2Q (w - Q+il'/2) 4f P
/,\ 1-
— which is most important if [T'/2| ~|w - Q| , " e
(for /2| <<|w — Q| then K* << K*) 1' “

=7 | N
— Thus, the dissipation occur mainly o== //-_ ST
where [[1>|w - Q)| —V
2 1, 2
¢ Summary:

— Low frequency: not dispersive

— Resonant region: strong damping in thin layer [} >|w - Q|

— High frequency: response decay with frequency, y ~K -1~ w"~
like an electron gas.

2
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Medium of oscillators (6)

What happens in the limit when the damping I" goes to zero?
Again assume w ~ £ then
2
@ 1
K=1-—£ :
2Q (0 —Q+il'/2)

The limit where I" goes to zero can be rewritten using the Plemej formula

2 2
liszlim 1 wp 1 )=1_wp 1
r—0 r—0

2Q (w - Q+il'/2) 2Q (w —Q+i0)

0, 1
-2 _imd(w - Q
o [pw_g 8 )]
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