Protein Physics 2016

Lecture 4, January 29

Secondary structure and amino acid properties

Magnus Andersson

magnus.andersson@scilifelab.se

Recap

- Hydrophobic effect
- Solubility & Partitioning
- Electrostatics is very strong
 - Special screening effects
 - Molecules reorient to maintain interactions
 - Leads to entropic effects
- Protein folding is largely determined by hydrophobicity, and entropy is critical
- The Molten Globule

Outline today

- Back to the polypeptide chains
- Secondary structures & turns
 - Geometry, topology
 - Stabilization
- Amino acid properties & titration

Energy landscapes

Secondary Structure

- Think in terms of ΔG now!
- What happens during folding?
- Why are interactions important?

Alpha helices

- Hydrogen bonds: i to i+4
 - 0-4, 1-5, 2-6
- First hydrogen bond "locks" residues 1,2,3 in place
- Second stabilizes 2,3,4 (etc.)

Why are alternative helices (less common?

...and why are there only 3-4 different helix structures?

 π helix

titratable amino acids

Alpha

Other helices

Beta strands & sheets

- How is this different from helices?
- Interaction patterns?
- Where are side chains pointing?
- Can you think of differences for the folding/formation?

Beta twisting

b. а.

ting

is 2 = tmp1 = dys[dy];
if (tmp2 >)
for (dz<=dz1); dz++) {</pre>

Tight turns (in sheets)

Venkatachalam, 1968 (models) Simple steric repulsion

Туре	φ(i+1)	ψ(i+1)	φ(i+2)	ψ(i+2)
I	-60	-30	-90	0
ľ	60	30	90	0
II	-60	120	80	0
II'	60	-120	-80	0
IV	-61	10	-53	17
VIa I	-60	120	-90	0
Vla2	-120	120	-60	0
Vlb	-135	135	-75	160
VIII	-60	-30	-120	120

CD spectroscopy

- Circular dichroism chirality of amino acids will rotate polarized light
- Amount depends on the environment
- Cheap, fast, simple, no sequence resolution

NMR chemical shifts

- Environment will shift frequency of nuclear spin resonance 'chemical shifts'
- More complex than CD, but sequence resolved

Helices vs. sheets

- Helix
 - Local h-bonds
 - Gradual (but fast) growth
 - Low initiation barrier
- Sheets
 - Non-local h-bonds
 - Collective interactions; all-or-nothing
 - High initiation barrier very slow formation
- Next week: Phase/folding transitions!

Amino acid properties

- All amino acids are not equal
 - Proline is very rare in alpha helices
 - Glycine is common in tight turns
 - Some residues common at helix ends
 - Differences inside/surface of proteins
- What is the cause of these differences, and can it be useful?

Natural amino acids

Name	3-letter code	l-letter code	Abundance	ΔG solvation
Glycine	GLY	G	6,89%	
Alanine	ALA	A	7,34%	I,94
Proline	PRO	Р	5%	
Glutamic acid	GLU	E	6,22%	-79,12
Glutamine	GLN	Q	3,96%	-9,38
Aspartic acid	ASP	D	5,12%	-80,65
Asparagine	ASN	N	4,57%	-9,7
Serine	SER	S	7,38%	-5,06
Histidine	HIS	Н	2,26%	-10.27/-64.13
Lysine	LYS	K	5,81%	-69,24
Arginine	ARG	R	5,2%	~ -60
Threonine	THR	Т	5,85%	-4,88
Valine	VAL	V	6,48%	1,99
Isoleucine	ILE		5,76%	2,15
Leucine	LEU	L	9,36%	2,28
Metionine	MET	М	2,32%	-1,48
Phenylalanine	PHE	F	4,12%	-0,76
Tyrosine	TYR	Y	3,25%	-6,11
Cysteine	CYS	С	I,76%	-1,24
Tryptophan	TRP	\mathbb{W}	I,34%	-5,88
GLU or GLN	GLX	Z (= E OR Q)		
ASP or ASN	ASX	B(=DORN)		
Any amino acid	XXX	X		(kcal/mol)

Proline

• Proline:

- Cannot form hydrogen bonds, bulky sidechain with two carbons connected to the backbone nitrogen atom
- N-terminus of alpha helices
- Turns
- Normally not inside helices/sheets

Glycine / Alanine

- Glycine
 - No side chain means no clashes
 - Flexible ramachandran map
 - Common in turns (flexible)
- Alanine
 - Methyl side chain
 - Slight helix preference, but sheet ok

Hydrophobic residues

- Normally prefer beta sheets
- Side chains protrude on alternating sides
- More room for bulky side chains (often h-phobic)
 - In particular residues with two γ carbons

Labeling starts from backbone: $\alpha, \beta, \gamma, \delta, \epsilon, \zeta$

Cysteine

- Relatively small sidechain
 Contains an -S-H group
 - Polar
- Two Cysteines can form a disulphide bond: -S-S-
- Very tight (covalent) bonds, harder than hydrogen bond
- Fixes structure in space

Disulphides

Trp: Big & bulky

- Tryptophan
- Two rings
 - 5-member ring with indole group
 - Aromatic ring
- Large and stiff side chain
 - Difficult to pack
- World's smallest protein:
 - Trp Cage (Andersen 2002)

Paschek et al.

Polar/charged residues

• Polar:

- Prefers turn/loop regions
- H-bonds to both water and the polypeptide chain
- Charged:
 - Occurs on surface, in active sites
 - Negative charges stabilize helix N-terminus
 - Positive charges stabilize helix C-terminus

Helix capping

Remember the helix dipole?

ASP GLU HIS

N-terminus

C-terminus

Charged residues act as 'caps' for the helix dipole, which stabilizes both the helix and the charged residue in that position

Residue Main chain ^a NH	Side chain ^a		Dipole/charge ^b	pK_a^b	Structural occurrence tendencyc								
	C^{β}	y Number			before	iı	in helix		after	in			
						$\alpha_{\rm N}$	$\alpha_{\rm N}$	α	$\alpha_{\rm C}$	$\alpha_{\rm C}$	β	loops	core
Gly	+	-					_					+	
Ala	+	+					+					-	
Pro		+	1				+	-	-	-	_	+	
Glu	+	+	1	$COOH \rightarrow CO_2^-$	4.3	+	+			-			-
Asp	+	+	1	$COOH \rightarrow CO_2^{-}$	3.9	+	+				_	+	-
Gln	+	+	1	OCNH ₂									, min (
Asn	+	+	1	OCNH ₂		+		-		+	-	+	-
Ser	+	+	1	OH		+						+	
His	+	÷	1	NH; and $N \Rightarrow NH^+$	6.5		-		+	+			
Lys	+	+	1	$NH_2 \Rightarrow NH_3^+$	10.5	-	_		+	+	-		
Arg	+	+	1	$HNC(NH_2)^{\ddagger}_2$	12.5	-	-		+	+	-	+	-
Thr	+	+	2	OH		+					+		
lle	+	+	2								+		+
Val	+	+	2								+	-	+
Leu	+	+	1					+			+	-	+
Met	+	+	1					+			+	-	+
Phe	+	+	1								+		+
Tyr	+	+	I	$OH \Rightarrow 0^-$	10.1			-			+		+
Cys	+	+	1	$SH \Rightarrow S^-$	9.2			-			+		+
Trp	+	+	1	NH							+		+

Amíno acíds tend to occur ín places where they stabílíze the structure!

Hydrophobicity moment

FABP: Water-soluble surface Hydrophobic inside cavity

Titratable residues / pka

 The protonation state of charged/polar amino acids depends on the current pH

AA	pH 7 charge	рКа	
GLU	-	4,3	
ASP	- 1	3,9	
HIS	0 or +1	6,5 🔫	
LYS	+	10,5	
ARG	+	12,5	
TYR	0	10,1	
CYS	0	9,2	

too neutral p onment

Histidine: Two sites.

- N_{δ} & N_{ϵ}
- Three possibilities
- Neutral:
 - H_{δ}
 - Ηε
- Charged:
 - Η_δ & Η_ε

Charge vs. pH

pH-regulated properties

Ion channels: opening, gatingProtein stability,
Salt bridgesDNA-proteinSalt bridgesBinding of charged
moleculesinteraction
Can be difficult
to predict!

Summary

- Read chapters 7 & 10 of "Protein Physics"
- What are the fundamental differences between helices and sheets in terms of stabilization properties?
- How do you think they might form?