Statistical mechanics, the partition function, and firstorder phase transitions

Magnus Andersson
magnus.andersson@scilifelab.se

SciLifeLab

Recap

- Secondary structure \& turns
- Properties, simple stability concepts
- Geometry/topology
- Amino acid properties, titration
- Natural selection of residues in proteins
- Free energy of hydrogen bond formation in proteins when in vacuo or aqueous solvent

titratable amino aciबs

$$
\begin{aligned}
& \mathrm{F}=\mathrm{E}-\mathrm{TS} \\
& \mathrm{~F}=\mathrm{E}-\mathrm{T}(\mathrm{ln} \ln) \text { i.e. number of accessible states }
\end{aligned}
$$ probability $\alpha \exp (-F / k T)$

$\mathrm{E}_{\mathrm{H}}<0$: Enthalpy of a hydrogen bond
$S_{\text {water }}>0$: Entropy of freely rotating body or complex (1 or 2 waters!)

Recap: H-bond ΔG

In vacuo State A State B

In solvent

$\mathrm{E}_{\mathrm{b}}=2 \mathrm{E}_{\mathrm{H}} \mathrm{S}_{\mathrm{b}}=\mathrm{S}_{\mathrm{H}}$

Today

- Statistical mechanics
- The partition function
- Free energy \& stable states
- Gradual changes \& phase transitions
- Activation barriers \& transition kinetics

Fluctuations in a closed system - E conserveed

Consider all microstates of this system with energy E \# thermostat microstates $M_{\text {therm }}$ with the energy ($\mathrm{E}-\varepsilon$)
Define: $S=k^{*} \ln M_{\text {therm }}$

Entropy

$$
S_{\text {therm }}(E-\epsilon)=\kappa \ln \left[M_{\text {therm }}(E-\epsilon)\right]
$$

Now do series expansion; only 1st order matters - why?

$$
\begin{aligned}
& S_{\text {therm }}(E-\epsilon)=S_{\text {therm }}(E)-\left.\epsilon\left(\frac{d S_{\text {therm }}}{d E}\right)\right|_{E} \\
& \quad \text { Solve for M }
\end{aligned} \begin{array}{r}
M(E-\epsilon)=\exp \left[\frac{S_{\text {therm }}(E-\epsilon)}{\kappa}\right] \\
=\exp \left[\frac{S_{\text {therm }}(E)}{\kappa}\right] \times \exp \left\{-\epsilon\left[\frac{\left.\left.\left(d S_{\text {therm }} / d E\right)\right|_{E}\right]}{\kappa}\right]\right\}
\end{array}
$$

Observation of microstates

- The probability of observing the small part in this state is proportional to the number of microstates corresponding to it
$p \propto M(E-\epsilon) \propto \exp \left\{-\epsilon\left[\left.(d S / d E)\right|_{E / \kappa]}\right\}\right.$
$\left.(d S / d E)\right|_{E}=\frac{1}{T}$
$\kappa=k$

Energy increases

What happens when energy increases by kT?

$$
\ln \left[M\left(E+k_{B} T\right)\right]=S\left(E+k_{B} T\right) / k_{B}=
$$

$$
=\left[S(E)+k_{B}(1 / T)\right] / k_{B}=\ln [M(E)]+1
$$

e (2.72) times more microstates, regardless of system properties and size!

Probabilities of states

probability of being in a state i

$$
w_{i}(T)=\frac{\exp \left(-\epsilon_{i} / k_{B} T\right)}{Z(T)}
$$

Normalization factor

$$
Z(T)=\sum_{i} \exp \left(-\epsilon_{i} / k_{B} T\right)
$$

$$
E(T)=\sum_{i} w_{i} \epsilon_{i}
$$

$$
S(T)=\sum_{i} w_{i} S_{i}
$$

How do we calculate S_{i} ?

System distribution over states

Consider N systems - how can we distribute them?

W_{j}
j

$$
n_{i}=w_{i} \mathbb{N}
$$

Question: how many ways can these systems be distributed over the j states?

Permutations

$$
\begin{aligned}
& \frac{N!}{n_{1}!n_{2}!\ldots n_{j}!}= \\
= & \text { Stirling: } \mathrm{n}!\approx(\mathrm{n} / \mathrm{e})^{\mathrm{n}} \\
= & \left(N / n_{1}\right)^{n_{1}} \ldots\left(N / n_{j}\right)^{n_{j}}=\left(1 / w_{1}\right)^{N w_{1}} \ldots\left(1 / w_{j}\right)^{N w_{j}} \\
= & {\left[1 /\left(w_{1}^{w_{1}} \ldots w_{j}^{w_{j}}\right)\right]^{N} } \\
=1 /\left(w_{1}^{w_{1}} \ldots w_{j}^{w_{j}}\right) & \text { for } \mathrm{N} \text { systems } \\
= & \text { for } 1 \text { system }
\end{aligned}
$$

...and the entropy becomes:

$$
S=k_{B} \ln M=k_{B} \sum_{i} w_{i} \ln \left(1 / w_{i}\right)
$$

Free energy

$$
\begin{gathered}
E(T)=\sum_{i} w_{i} \epsilon_{i} \\
S=k_{B} \ln M=k_{B} \sum_{i} w_{i} \ln \left(1 / w_{i}\right) \\
\mathrm{F}=\mathrm{E}-\mathrm{TS} \\
\mathrm{~F}=-\mathrm{kBT} \ln [\mathrm{Z}(\mathrm{~T})]
\end{gathered}
$$

System instability

System stability

Euclã

Gradual changes

EUGLEスえ
（p）Lambelsifilg
（J）
ग）

（p） 1 cuabcas，iz6（c）

EUGLฉฉス
What does this correspond to？Examples？

Abrupt changes

(a)
(s)

$$
d T=4 K T^{\wedge} 2
$$

Eugli่̊
Energy

Temperature (c)
(b)

Euclầ

A first-order phase transition!

A different change...

A second-order phase transition:

Free energy barriers

$n^{\#} \approx n \exp \left(-\Delta F^{\#} / k_{B} T\right) \quad T\left(n / n^{\#}\right) \approx T \exp \left(\Delta F^{\#} / k_{B} T\right)$
$t_{0 \rightarrow 1} \approx \tau \exp \left(+\Delta H^{\#} / \kappa_{B} \Gamma\right)$
Transition rate: $\quad k_{0 \rightarrow 1}=1 / t_{0 \rightarrow 1}$

Secondary structure

- Alpha helix formation
- Equilibrium between helix \& coil
- Beta sheet formation
- Properties of the "random" coil, or the denatured state - what is it?

Alpha helix formation

- Hydrogen bonds: i to i+4
- 0-4, 1-5, 2-6
- First hydrogen bond "locks" residues 1,2,3 in place

- Second stabilizes 2,3,4 (etc.)
- N residues stabilized by N-2 hydrogen bonds!

Alpha helix free energy

- Free energy of helix vs. "coil" states:

number of residues

H-bond free energy
Entropy loss of fixating one residue in helix

$$
\begin{aligned}
\Delta F_{\alpha}=F_{\alpha}-F_{\text {coil }} & =(n-2) f_{\mathrm{H} \text {-bond }}-n T S_{\alpha} \\
& =-2 f_{\mathrm{H} \text {-bond }}+n\left(f_{\mathrm{H} \text {-bond }}-T S_{\alpha}\right)
\end{aligned}
$$

$$
\Delta F_{\alpha}=f_{\mathrm{INIT}}+n f_{\mathrm{EL}}
$$

Alpha helix free energy

$$
\begin{aligned}
\exp \left(-\Delta F_{\alpha} / k_{B} T\right) & =\exp \left(-f_{\mathrm{INIT}} / k_{B} T\right) \exp \left(-n f_{\mathrm{EL}} / k_{B} T\right) \\
& =\exp \left(-f_{\mathrm{INIT}} / k_{B} T\right)\left[\exp \left(-f_{\mathrm{EL}} / k_{B} T\right)\right]^{n} \\
& =\sigma s^{n} \\
s & =\exp \left(-f_{\mathrm{EL}} / k_{B} T\right) \\
\sigma & =\exp \left(-f_{\mathrm{INIT}} / k_{B} T\right) \\
\sigma= & \exp \left(-f_{\mathrm{INIT}} / k_{B} T\right)=\exp \left(+2 f_{\mathrm{H}} / k_{B} T\right) \ll 1
\end{aligned}
$$

How does a helix form?

- First, consider ice in water
$n \propto V \propto r^{3}$
$A \propto r^{2} \propto n^{2 / 3} \quad$ Surface tension costly!
- $\mathrm{S}=\mathrm{k} \ln (\mathrm{N})$

How does a helix form?

- Landau: Phases cannot co-exist in 3D
- First order phase transitions means either state can be stable, but not the mixture
- Think ice/water - either freezing or melting $n \propto V \propto r^{3}$
$A \propto r^{2} \propto n^{2 / 3}$ Surface tension costly!
- But a helix-coil transition in a chain is 1D!
- Interface helix/coil does not depend on n

How does a helix form?

ice/water: n molecules in ice, N in water energy cost * n^2/3 \& entropy: $k \ln N$ helix/coil: n residues in helix out of N in total $\mathrm{f}_{\text {INIT }}-\mathrm{kT} \ln (\mathrm{N}-\mathrm{n})$ i.e. opposite to water/ice!

Helix/coil mixing

- Or: What helix length corresponds to the transition mid-point? $f_{\mathrm{EL}}=f_{\mathrm{H}}-T S_{\alpha}=0$
- Assuming helix can start/end anywhere, there are $\mathbf{N}^{\wedge} 2 / 2$ positions

$$
\begin{aligned}
& S=k \ln V \approx k \ln N^{2}=2 k \ln N \\
& \Delta F_{\text {helix }} \approx f_{\text {INIT }}-2 k T \ln N
\end{aligned}
$$

- At transition midpoint we have $\Delta \mathrm{F}=0$ \& $\mathrm{N}=\mathrm{n}_{0}$

$$
n_{0}=\exp \left(f_{\mathrm{INIT}} / 2 k T\right)=1 / \sqrt{\sigma}
$$

Helix parameters

- We can measure n_{0} from CD-spectra
- Calculate σ from last equation
- Typical values for common amino acids: $\mathrm{n}_{0} \approx 30 \quad \mathrm{f}_{\text {INIT }} \approx 4 \mathrm{kcal} / \mathrm{mol} \quad \sigma \approx 0.001$
- $f_{H}=-f_{\text {INIT }} / 2=-2 \mathrm{kcal} / \mathrm{mol}$
- $\mathrm{TS}_{\mathrm{a}}=\mathrm{f}_{\mathrm{H}}-\mathrm{f}_{\mathrm{EL}} \approx-2 \mathrm{kca} / \mathrm{mol}$
(Conformational entropy loss of helix res.)

Helix stability

- Temperature dependence
- Elongation term dominant for large no
- $d F(a l p h a)=f_{\text {INIT }}+n_{0}{ }^{*} f_{E L}$

Helix studies

- CD spectra
- Determine s \& σ
- Alanine: $s \approx 2, f_{E L} \approx-0.4 \mathrm{kcal} / \mathrm{mol}$
- Glycine: $\mathrm{s} \approx 0.2, \mathrm{f}_{\mathrm{EL}} \approx+1 \mathrm{kca} / \mathrm{mol}$

- Proline: $\mathrm{s} \approx 0.01-0.001$, $\mathrm{fEL} \approx+3-5 \mathrm{kcal} / \mathrm{mol}$
- Bioinformatics much more efficient for prediction, though!

Rate of Formation

- Experimentally: Helices form in ~0.1 $\mu \mathrm{s}$! (20-30 residue segments)
- One residue < 5 ns...

What is the limiting step?

Formation...

- Rate of formation at position 1: $\mathrm{T}: \mid-\mathrm{residue}$ elongation
$t_{\text {INIT0 }}=\tau \exp \left(f_{\text {INIT }} / k T\right)$ $=\tau / \sigma$
- Rate of formation anywhere ($\mathrm{n} 0 \approx 1 / \sqrt{ } \sigma$):

- Propagation to all residues: $\operatorname{tn}_{0}=\tau / \sqrt{\sigma}$
- Half time spent on initiation, half elongation!

Helix summary

- Very fast formation
- Both initiation \& elongation matters
- Quantitative values derived from CD-spectra
- Low free energy barriers, ~1kcal/mol
- Characteristic lengths 20-30 residues

